

PUBLIC

Code Assessment

of the Yelay Lite

Smart Contracts

Feb 20, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 17

8 Notes 18

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Yelay team,

Thank you for trusting us to help Yelay with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Yelay Lite according to
Scope to support you in forming an opinion on their security risks.

Yelay implements a dedicated vault system that directs all yield into a yield extractor. Users will be
rewarded outside of the protocol from the respective clients. The vault is for approved projects only.

The code is well structured and implements an upgrade architecture similar to the diamond proxy
upgrade pattern. The most critical subjects covered in our audit are functional correctness and arithmetic
correctness. The most severe issues is an incorrectly calculated redeem (Incomplete fund transfer when
withdrawing) and a double counted balance when swapping (double-counting in swap). All issues were
addressed and resolved if necessary. We advised to increase the test suite as the issues could have
been caught by e.g., testing redeems with strategies that partially fulfill the request.

The team was always very responsive and was clarifying all questions quickly and professionally. In
summary, we find that the current codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 2

• Code Corrected 1

• Acknowledged 1

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Yelay Lite repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 10 Jan 2025 4ecadb6b796e54799a646ee5d7b2f0b3746a1d9c Initial Version

2 4 Feb 2025 4bf9fe5b00555351968772c9aa3473fd3a972ec4 Fix version

3 14 Feb 2025 b7da381440ee9d455005cdf8525b3f97bd547178 Fix version

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

2.1.1 Excluded from scope
All third-party contracts, mock and test contracts. Especially, we excluded integrated exchanges, tokens
and strategies. These integrations must be carefully tested and assessed to work with the system as
intended.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The Yelay light vault is, rather than a generic vault, a specialized vault for one use case. Clients need to
be whitelisted, and projects need to be agreed on with Yelay before the vault can be used. Users can
deposit to these projects and will receive project specific shares. However, all funds (from all projects)
are managed together in the vault and invested together into whitelisted strategies. When these
strategies earn a profit, these profits will not go to the investors but into a yield extractor. The investors
are compensated outside of this protocol.

For the main system components to work correct and allow user deposits, first, a client and a project id
needs to be created and activated. Secondly, there should be strategies activated. Else, the funds will sit
idle in the vault. To send the yield to the yield extractor, a yield extractor needs to be defined.
Additionally, the relevant functions should not be paused.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 5

https://github.com/YieldLayer/yelay-lite/tree/4ecadb6b796e54799a646ee5d7b2f0b3746a1d9c
https://github.com/YieldLayer/yelay-lite/tree/4bf9fe5b00555351968772c9aa3473fd3a972ec4
https://github.com/YieldLayer/yelay-lite/tree/b7da381440ee9d455005cdf8525b3f97bd547178
https://chainsecurity.com

2.2.1 Client and Project Management
Clients need to enroll and be created by the contract owner. A client will receive a specific range of
project ids. Each project id must be activated before it can be used. When a client with an activated
project id exists, anyone can deposit funds into the Yelay lite vault providing a valid project id. The
ownership (client data) can be transferred to another address at any time by the current account that has
the client data assigned.

A user has the ability to either deposit assets for shares, migrate a position to another project id or
redeem his shares for assets.

To deposit a client defines the asset amount to deposit, the project id and the share receiver address.
The project id must be activated to deposit. In case the vault asset hasn't been updated and the fee has
not been charged on the profit for more than a pre-defined update threshold
(lastTotalAssetsUpdateInterval), this is done before the asset contribution is converted to
shares and transferred into the vault. The user will receive shares proportional to the total assets and the
assets will be deposited into the strategies via the adapter contracts. The shares are dedicated shares
lined to the project id. A deposit queue determines the order the contract tries to deposit the funds. There
are only full, no partial deposits into the strategies supported. In case it fails to deposit into a strategy, the
contract will keep the asset tokens and account for the holdings in underlyingBalance.

To migrate a position, the user specifies an amount and the project id from and to which the shares shall
be migrated. As all assets are managed by the same vault, the project id linked to the shares is only for
tracking reasons but has no further impact on share or asset calculations. Hence, the migration will
simply change the project id by burning the share tokens allocated to the old project and mint new ones
with the updated project id. Additionally, the total asset amounts are updated and the fees charged on
potential profits before.

When a user wants to redeem their shares for assets, they need to specify the amount of shares to
redeem, the project id and a receiver. First, the total asset amount is updated and potential fees on profit
charged. The share amount is converted to assets and the assets withdrawn from the strategies. The
withdrawal process will loop over the strategies through a pre-defined withdrawal queue and try to pull
the assets from the strategies. The user should receive the amount that could be pulled from the
strategies or if nothing could be pulled from the strategies the full amount from the vault (currently there is
a severe issue described in Incomplete fund transfer when withdrawing). In the end the user's shares are
burned.

2.2.2 Strategy Management
Before a strategy can be activated and used by QUEUES_OPERATOR it needs to be created by the
STRATEGY_AUTHORITY. If no strategy is activated, all deposit will idle in the vault. The
ManagementFacet offers the functionality for the STRATEGY_AUTHORITY role to add, remove
strategies and approve tokens to strategies if no paused. For the QUEUES_OPERATOR role it offers the
ability to activate or deactivate a strategy. For each strategy activated or deactivated the deposit queue
and withdraw queue order needs to be defined. The queues will determine in which order funds are
added or withdrawn from the vault. The queue order can also be updated any time by the
QUEUES_OPERATOR.

2.2.3 Fund management
Invested users can at any time (if not paused) chose to deposit more funds, migrate their positions to
other project ids or redeem their position. Furthermore, the fund operator can deposit and withdraw funds
sitting idle in the vault to strategies or migrate a position to another strategy. The operator is also able to
claim rewards and trigger the fee calculation and total asset update. All actions can be paused
individually.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.4 Storage Management
Yelay decided to use a custom storage system to maintain upgradability and avoid reaching contract size
limits by using a modular approach. Instead of using the pre-defined storage layout each storage slot
address is encoded to avoid collisions and defined in one of library contracts. The main function is the
getter for the storage pointer that keeps the corresponding information. Some of the library functions also
include other convenient getters like the onlyOwner function in LibOwner. The only contracts that do
not define a state with getters are the Error, Events and Roles library. As the names suggest, they define
the events, errors and roles used in the system.

2.2.5 Helper Contracts
The VaultWrapper and Swapper contract are stand-alone helper contracts. They provide convenience
functions for users and, in case of the Swapper, also the functionality for the FUNDS_OPERATOR to swap
the rewards in the FundsFacet. User can use the wrapper to first swap their tokens to the underlying
tokens and then deposit these tokens into the vault. The VaultWrapper offers to wrap and deposit ETH
and to swap and deposit tokens. In case the user is using exchanges to swap before depositing the
tokens, the Swapper contract provides the corresponding functionality.

As both contracts are stand-alone contracts, they are simpler and extend OpenZeppelin's
OwnableUpgradeable pattern for the access permission and the UUPSUpgradeable pattern for
upgrades. Hence, both contracts have a dedicated owner role that is allowed to change the
implementation, transfer and renounce the ownership. Additionally, the owner can set the allowed
exchanges for the Swapper contract.

2.2.6 Access Control
The AccessFacet contains the access control logic for the main contract. The owner can grant and
revoke roles. The role logic extends OpenZeppelin's AccessControlEnumerableUpgradeable
contract and uses LibRoles for the role definitions. The role management relies on OpenZeppelin
except the onlyOwner check is implemented differently via the LibOwner contract as it uses the
custom storage management (see Storage Management). The pauser role additionally has the ability to
pause certain selectors. The function _checkNotPaused in the LibPausableContract will check the
pause flag for each selector such that it can be used in the modifier notPaused by the PausableCheck
contract. All functions in the vault except for the setPaused and owner functions can be paused
separately. The following functions can be called externally by the indicated roles:

For registered clients:

• transferClientOwnership

• activateProject

For the FUNDS_OPERATOR:

• setLastTotalAssetsUpdateInterval

• managedDeposit

• managedWithdraw

• reallocate

• swapRewards

• accrueFee

• claimStrategyRewards

For the QUEUES_OPERATOR:

• updateDepositQueue

• updateWithdrawQueue

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• activateStrategy

• deactivateStrategy

For the STRATEGY_AUTHORITY:

• addStrategy

• removeStrategy

• approveStrategy

For the PAUSER and UNPAUSER:

• setPaused

For the owner of the respective contract:

• grantRole

• revokeRole

• createClient

• setSelectorToFacets

• transferOwnership

For all accounts (users):

• deposit

• redeem

• migratePosition

• wrapEthAndDeposit

• swapAndDeposit

The two helper contracts have a dedicated owner as they use OpenZeppelin's UUPS proxy architecture.
The owner has the power to call:

• Swapper.updateExchangeAllowlist

• Swapper.transferOwnership

• Swapper.renounceOwnership

• Swapper.upgradeToAndCall

• VaultWrapper.transferOwnership

• VaultWrapper.renounceOwnership

• VaultWrapper.upgradeToAndCall

2.2.7 Trust Model
The following assumptions are highlighted regarding the system and roles:

• Registered clients are trusted to activate their project as intended. This can be assumed as it is in
their own interest.

• Fund operators are fully trusted to behave correctly. They could cause losses for the system by e.g.,
swapping funds in an unfavorable way or change allocations (reallocate, deposit or withdraw) in an
unfavorable way from strategies. Less severe actions is to not claim outstanding rewards or updated
the fee and total asset balance when needed.

• The Queue operator is only trusted to activate and deactivate and set the intended order for deposits
and withdraws.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• The Strategy authority is fully trusted. This role is critical as it could add malicious strategies and
ultimately steal funds.

• The Pauser is trusted to not DOS the system and pause the correct selectors. The Unpauser is
trusted to unpause accordingly.

• The Yield extractor is trusted not to steal the yield and not to perform inflation attacks if the vault is
empty.

• The contract owners are fully trusted. They have ultimate power and multiple ways to bankrupt the
system, e.g., by using other roles like the strategy authority, changing contract implementations or
selector to facet routes.

• General users are not trusted. However, general users might cause dust accumulations and
incorrect accounting as mentioned in Fund accounting might deviate from real value by (costly)
irrational interactions.

Furthermore, we assume:

• The swapper never holds any ETH or tokens as they could be taken by users.

• The vault wrapper should never hold tokens or ETH as they could be taken by users.

• The tokens used in the system have only one entry point. Else, the reward swapping can disrupt the
accounting. Furthermore, all tokens are intensively tested and assessed to correctly work with the
system before being added.

• All strategies are thoroughly tested and the functionality of the third-party protocols (which are
out-of-scope) are tested and assessed to work as intended before being added.

• All exchanges that are allowed to be used are tested and assessed to work correctly with the
system.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• AcknowledgedDivision by Zero in Deposit

5.1 Division by Zero in Deposit
Correctness Low Version 1 Acknowledged

CS-YLY-LITE-005

The _convertToShares() function will revert if newTotalSupply is non-zero and newTotalAssets
is zero.

This can only occur in an edge case where a loss in one of the strategies wipes out all the assets, and
the internal balance is zero. If that is the case, deposit() will fail, meaning that the contract is bricked
unless every single outstanding share is redeemed in exchange for zero assets such that totalSupply is
zero again.

Acknowledged:

Yelay is aware and acknowledges the issue.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedGriefing of Client Data

• Code CorrectedIncomplete Fund Transfer When Withdrawing

Medium -Severity Findings 2

• Code CorrectedDouble-Counting in Swap

• Code Correctedabi.decode Can Fail

Low -Severity Findings 1

• Code CorrectedFund Accounting Might Deviate From Real Value

Informational Findings 4

• Code CorrectedDuplicated Code

• Code CorrectedEvent

• Code CorrectedUnnecessary Approval

• Code CorrectedUnused Import

6.1 Griefing of Client Data
Security High Version 1 Code Corrected

CS-YLY-LITE-001

transferClientOwnership overwrites a location in the ownerToClientData mapping without
checking if it is in use. This means that a malicious client can pass the address of another client and
override their data.

Code corrected:

Yelay prevented the override by checking if the new address already has a client struct associated.

6.2 Incomplete Fund Transfer When Withdrawing
Correctness High Version 1 Code Corrected

CS-YLY-LITE-002

When withdrawing funds, the intended behavior is, to first try to withdraw the desired amount form the
strategies in the queue. If funds are missing, the remainder is tried to be covered by the idle funds sitting
in the vault. The implementation calculates the remaining funds to be covered by the vault by:

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

toReturn = assets == _assets ? assets : assets - _assets;
sF.underlyingAsset.safeTransfer(receiver, toReturn);
_burn(msg.sender, projectId, shares);

assets is the required amount and _assets is the remaining desired amount that could not be
withdrawn from the strategies. shares is the amount of shares corresponding to X assets. There are
now three possible scenarios:

1. We could cover the desired amount X by withdrawing from the strategies and do not need any
additional funds from the vault. Hence, assets = X and _assets = 0. toReturn would be X
and the user would receive the whole desired amount in the next transfer. The corresponding
shares would be burned.

2. We could recover nothing from the desired amount by withdrawing from the strategies. Thus,
assets = X and _assets = assets. toReturn would be assets. We would try to cover the
whole amount with funds from the vault.

3. It was only possible to recover a fraction of the desired funds and we want to cover for the
remaining funds with assets from the vault. This scenario was a dedicated provided specification.
Let's assume p is the percentage we were able to recover from the desired balance with the
strategies. In this case assets = X and _assets = X * (1-P). toReturn would in this case
be X*P.

In numbers the last example might be that the user wants to withdraw 100. The strategies can only cover
for 10 (_assets = 90). toReturn is in this case 10. The transfer will in the end only transfer 10
tokens to the user and burn all shares corresponding to 100. In this case, we also subtract 90 from
underlyingBalance, which is inconsistent.

Code corrected:

Version 2In , the vault tries to cover the shortfall using its internal balance. If it cannot, the transaction
reverts. As long as more than WITHDRAW_MARGIN wei are covered by the vault, the
underlyingBalance is correctly updated.

6.3 Double-Counting in Swap
Correctness Medium Version 1 Code Corrected

CS-YLY-LITE-003

The Swapper.swap() function counts the amount of tokens it obtained by checking the swapper's
balance. However, it adds together the successive balances in tokenOutAmount, meaning it would
double-count tokens from the first swap if there is a second one, leading to a revert in
safeTransfer().

Code corrected:

The tokenOutAmount is now set to the token balance of the contract and not accumulated anymore.

6.4 abi.decode Can Fail
Correctness Medium Version 1 Code Corrected

CS-YLY-LITE-004

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

redeem() tries to decode the returndata from IStrategyBase.withdraw() even if the function
reverted. If the function reverted, returndata would contain a revert reason of arbitrary length, which may
not cleanly decode to an uint. This will cause the entire redemption to fail or other unintended behavior.

Code corrected:

The abi decoding is only done in the branch executed if the withdraw() call was successful.

6.5 Fund Accounting Might Deviate From Real
Value
Correctness Low Version 1 Code Corrected

CS-YLY-LITE-006

In fundsFacet.redeem() the underlyingBalance is only updated if the assets exceed
WITHDRAW_MARGIN. In case the vault has some underlying assets, a user could specify the share
amount to redeem such that it will convert to WITHDRAW_MARGIN (or less). This will immediately break
the loop and not withdraw from the strategies. Finally, it will use the vault's balance and transfer the
amount to the user and burn the corresponding shares. Currently, WITHDRAW_MARGIN is set to 10 and
the impact is marginal even if it accumulates over time. Yet, the accounting will be slightly off.

Code corrected:

Version 3In , the underlyingBalance is correctly updated in all cases, fixing the issue. In addition,
redeem requests of less than WITHDRAW_MARGIN in assets will revert.

6.6 Duplicated Code
Informational Version 1 Code Corrected

CS-YLY-LITE-007

The LibClients contract defines the function _isProjectActive. A copy of this function is also
implemented in the ClientsFaucet contract named projectIdActive.

Code corrected:

The function in ClientsFaucet now uses the function from LibClients.

6.7 Event
Informational Version 1 Code Corrected

CS-YLY-LITE-008

Most relevant setters or state changes emit an event. However,
FundsFacet.setLastTotalAssetsUpdateInterval does not. Yelay might evaluate if this is
needed.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:

An event was added to the function.

6.8 Unnecessary Approval
Informational Version 1 Code Corrected

CS-YLY-LITE-011

In AaveV3Strategy.onAdd, it is not necessary to explicitly approve the Aave pool in order to redeem
ATokens according to this information.

Code corrected:

The superfluous approval has been removed.

6.9 Unused Import
Informational Version 1 Code Corrected

CS-YLY-LITE-012

In LibClients, ClientsFacet.sol is imported. The imported definition is unused, and the import
constitutes a circular import.

Code corrected:

The unused import has been removed.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 16

https://aave.com/docs/developers/smart-contracts/pool#write-methods-withdraw
https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Costs
Informational Version 1

CS-YLY-LITE-009

The current code structure uses mostly storage pointer. Hence, most variable modifications or reads are
state operations. Gas could be saved in cases if there are reoccurring reads or writes to the same
storage pointer by caching the relevant values in memory. However, attention needs to be paid to not
load whole objects into memory if not needed.

7.2 Swap Token Spender Must Be the Same as
Entry Point
Informational Version 1

CS-YLY-LITE-010

The Swapper always gives the approval to the same contract that it then calls to execute the swap.
Some protocols such as Paraswap V5 (but not V6) require a different contract to be approved than the
one that receives the call. The change log is documented here and including the corresponding code.

7.3 Withdraw Priority
Informational Version 1

CS-YLY-LITE-013

Usually, withdrawing from strategy has a certain risk that fees or other losses might occur. In case the
vault has funds sitting idle not in strategies, it might be beneficial to use these funds first for a withdraw.
Currently, only in case when the strategies could not cover the desired amount, the funds sitting idle are
used to eventually cover the remaining amount of a withdraw. However, it might be that certain business
requirements make the implemented priority necessary.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 17

https://developers.paraswap.network/api/master/api-v6.2
https://developers.paraswap.network/augustus-swapper/augustus-v6.2
https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 User Might Receive a Few WEI Less Than
Expected
Note Version 1

When redeeming, a user might receive up to WITHDRAW_MARGIN-1 wei less even if the fund could cover
for the full request. This might happen if the difference between the funds withdrawn and the funds
requested is smaller than WITHDRAW_MARGIN.

Yelay - Yelay Lite - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Client and Project Management
	2.2.2 Strategy Management
	2.2.3 Fund management
	2.2.4 Storage Management
	2.2.5 Helper Contracts
	2.2.6 Access Control
	2.2.7 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Division by Zero in Deposit

	6 Resolved Findings
	6.1 Griefing of Client Data
	6.2 Incomplete Fund Transfer When Withdrawing
	6.3 Double-Counting in Swap
	6.4 abi.decode Can Fail
	6.5 Fund Accounting Might Deviate From Real Value
	6.6 Duplicated Code
	6.7 Event
	6.8 Unnecessary Approval
	6.9 Unused Import

	7 Informational
	7.1 Gas Costs
	7.2 Swap Token Spender Must Be the Same as Entry Point
	7.3 Withdraw Priority

	8 Notes
	8.1 User Might Receive a Few WEI Less Than Expected

