

PUBLIC

Code Assessment

of the Yearn yETH

Smart Contracts

June 26, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 18

7 Open Questions 27

8 Informational 28

9 Notes 30

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Yearn Team,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Yearn yETH according to
Scope to support you in forming an opinion on their security risks.

Yearn implements a modified StableSwap pool for liquid staking derivatives and a staking vault. The pool
token is yETH and can be staked into the Staking contract to earn rewards.

The most critical subjects covered in our review are asset solvency, functional correctness, access
control and front-running. The security regarding functional correctness and front-running still has some
potential to improve, see Implementation Mismatch With ERC-4626 and Possible to Frontrun the First
Deposit in Pool. The security regarding other subjects is good.

Although we did not identify critical or highly severe issues during this review, we highlight that
sandwiching attacks are important for the system as the curve's shape changes when Pool parameters
get updated by privileged accounts, or when rates of underlying assets change significantly. Possible
sandwiching attacks are described in section Notes.

Given the complexity of the system, we highly recommend extending significantly the test suite and only
apply changes to the system after rigorous testing.

In summary, we currently find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 6

• Code Corrected 5

• Code Partially Corrected 1

Low -Severity Findings 19

• Code Corrected 8

• Specification Changed 2

• Code Partially Corrected 2

• Risk Accepted 2

• Acknowledged 5

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the Pool.vy and Staking.vy source code files inside the Yearn
yETH repository based on the documentation files. The table below indicates the code versions relevant
to this report and when they were received.

V Date Commit Hash Note

1 10 Apr 2023 4ba5ccdad2d12903a702593c728d1363f81e6695 Initial Version

2 22 May 2023 564ef429a338e55ef35a1f59a33e1a82e6cf528b Version 2

3 08 Jun 2023 2c77af241db5a783274a185da757d5fbbd07d690 Version 3

For the vyper smart contracts, the compiler version 0.3.7 was chosen.

2.1.1 Excluded from scope
All other contracts and associated third-party contracts that are not in the repository. We only assessed
the technical risks, and we did not assess the economic sanity of the contracts.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The reviewed contracts allow users to put liquid staking derivatives (LSDs) in a modified Curve Stable
Swap pool as liquidity. The pool token that users receive is yETH. In contrast to Curve Pools, the users
will not receive any fees or staking rewards from the LSDs unless they stake their yETH in a staking
contract. The total number of yETH tokens shall always equal D. Whereas D is the current value of the
pool and calculated by the pool's invariant. Yearn modified Curve's invariant by adding weights to each
token in the pool with a pool weight that defines when the pool is balanced. The invariant is:

A

n
∏

i = 1
xwin

i

(D
n
∏

i = 1
wwi

i)n
Dn − 1

n
∑

i = 1
xi +

n
∏

i = 1
xwin

i = A

n
∏

i = 1
xwin

i

(D
n
∏

i = 1
wwi

i)n
Dn + (D

n
∏

i = 1
wwi

i)n

x_i is the virtual balance of token i. The value x is the balance multiplied by the rate. n is the number of
tokens. A is a defined amplification factor.

The pool's management can change the pool weights, the amplification factor, and the number of
different LSD tokens in the pool. When D changes, the pool mints or burns an amount of yETH tokens
to/from the staking contract to keep the total supply and D in sync. Through minting to the staking
contract, the staking contract receives the tokens to distribute to the users who staked. The tokens to be
distributed are put into a queue. The queue consists of three buckets. A pending bucket, a streaming

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

bucket and unlocked bucket. On a new week the queue progresses and funds from the pending bucket
are put into the streaming bucket and then distributed to the users (unlocked buckets). Tokens to be
distributed this week from the streaming bucket are distributed linearly over the week. The distribution
increases the share of underlying asset to the users proportionally to their stake. Vice versa, when Pool
makes losses and tokens are burned, the contract tries to remove tokens from the pending and
streaming buckets first and as a last resort will touch the unlocked bucket, which affects directly the
balance of users staking yETH.

The staking contract is a vault implementing the ERC20 and ERC4626 standards. Additionally, users
who staked will have a voting weight. In principle, the voting weight will increase with the time a user has
staked. The implemented voting weight calculation becomes more complex when the vault shares are
transferred.

The main functionalities of the two contracts are:

Pool:

• add_liquidity, remove_liquidity, remove_liquidity_single: Add and remove liquidity
from the pool.

• swap and swap_exact_out: The user can swap tokens and define either the input and a minimum
output or the desired output and a maximum input amount.

• update_rates: A function that can be called by anyone to update the token values with the current
rate. The rate is pulled from a rate provider that must be defined for each token. Sudden rate
changes above a threshold can only be applied by management.

• set_ramp: Allows the management to change the target weights (weights that define a balanced
pool) and the amplification factor. As these changes change the Curve the changes are ramped
(split into small changes over time) to prevent successful sandwich attacks. With each operation or
by explicitly calling update functions, these changes can be applied gradually.

• update_weights: Can be called by anyone to update the weights and amplification factor when a
weight ramping is in progress.

• set_ramp_step: Sets the minimum time between two ramp steps in seconds.

• stop_ramp: Stops the ramping process at current values.

• add_asset: Allows to add a new asset to the pool. The defined weight for the asset will be taken
equally distributed from all existing asset weights. The caller must assure that effective amplification
before and after the call is the same.

• rescue: Allows the management to transfer tokens from the pool that are not the asset or the pool
token.

• skim: In case the pool has more tokens of an asset than the pool should have and has accounted
for, management can transfer out these tokens.

• set_swap_fee_rate: The management can set a fee for swapping. Between 0 and 100 percent.

• set_weight_bands: The management can set the maximum and minimum bounds for a token
weight in the pool. If a token value is outside of the bounds, operations will revert to prevent
deviations too far away from the target weights.

• set_rate_provider: Management function to set the rate provider contract for a token.

• set_staking: Management function to set the staking contract address.

• set_management: Management function to change the management address.

• set_guardian: Management or the guardian can call the function to set the guardian address.

• pause and unpause: Guardian and management role can pause or unpause the pool. In a paused
pool no swaps, liquidity additions, single-sided removals, ramping or rate provider updates are
possible.

• kill: Will pause a pool forever by removing the possibility to unpause the pool.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Staking:

• transfer, transferFrom: Transfer shares to another address. In the case of transferFrom an
approval is needed to transfer on behalf of the user.

• vote_weight: Returns the voting weight of an account at the end of the last week. Any change on
the amount of staked shares during the ongoing week is not considered by this function. Therefore,
an account withdrawing (or transferring) all of its staked shares, still has a non-zero voting weight
during that week.

• approve: Allows users to approve an account to use transferFrom to move their assets.

• deposit and mint: Users can deposit yETH into the vault to be eligible for rewards. In the case of
a deposit, the user specifies the amount of yETH they want to deposit. Calling mint allows one to
specify the number of vault shares to be received.

• withdraw, redeem: Users can withdraw their yETH from the vault. In the case of a withdraw, the
user specifies the amount of yETH they want to withdraw. Calling redeem allows one to specify the
number of vault shares to be redeemed.

• update_amounts: Updates the amounts in each of the three buckets (pending, steaming and
locked) by moving funds into pending and from pending to streaming or locked.

• rescue: Allows the management to transfer tokens from the vault that are not yETH (vault assets)
tokens.

• set_performance_fee_rate: The management can set a fee for the vault. The fee is taken if the
vault's total assets increased.

• set_half_time: This function can be called by management to set the time after which a user will
have half of the maximum voting weight. This only applies to cases when t has not been adjusted
yet through transfers.

• set_management: This function allows the management to change the management address.

• set_treasury: This function allows the management or treasury to change the treasury address
that will collect the fees.

2.2.1 Roles and trust model:
Each contract has a management role that needs to be fully trusted as it performs operations that could
stop the contracts from working correctly. The pool additionally has a guardian role. This role can pause
and unpause the contract. Hence, this role is also assumed to be fully trusted. The rate providers used in
the pool contract are also fully trusted, we assume they return the correct rates at all times (resistant to
DoS attacks) and they are resistant to attacks which alter the rate by changing token amounts in a 3rd
party system. We assume the rate providers publish rates frequently and they represent the correct
backing ratio of the asset in ETH. We assume the ratio is always in 18 decimals.

We assume the underlying assets of a pool are ERC20-compliant, use 18 decimals, and are
non-malicious. Additionally, we assume they do not have special behaviors such as rebasing, charging
fees on transfers, or implementing transfer callback (like ERC777 or ERC677). Finally, the rate of pool
assets is roughly equal to 1 ETH.

The oracles are assumed to be safe and price fluctuations are small enough to not become an issue as
described in Decreasing Pool Value through rate updates.

All parameter changes need to be simulated rigorously and carefully evaluated before being applied.

In this review, we assume that the LP token in Pool and the asset in Staking is yETH (as
implemented in Token.vy). Furthermore, we assume that yETH reverts on burn function if there is not
enough balance, and that only the pool contract has the minter role in yETH.

The initialization process is assumed to be done correctly, such that the pool and staking contract
integrate and work as intended. Finally, we assume the contracts in scope of this review are not
upgradable.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Partially CorrectedCircumvention of Ramping

Low -Severity Findings 9

• AcknowledgedDecreasing Pool Value Through Rate Updates

• AcknowledgedGuardian Can Front-Run Kill Command

• Code Partially CorrectedImplementation Mismatch With ERC-4626

• AcknowledgedInefficient Initial Approximation Value for Pi in Supply Calculation

• Code Partially CorrectedMissing Sanity Checks

• Risk AcceptedPossible to Frontrun the First Deposit in Pool

• Risk AcceptedPossible to Update Ramp Step While Ramping

• AcknowledgedViolation of Sum of Weights

• AcknowledgedVoting Weight Increase Differs for New and Existing Positions

5.1 Circumvention of Ramping
Design Medium Version 1 Code Partially Corrected

The management account of Pool can initiate a change of asset weights or the amplification factor for a
pool. The change should be applied slowly to minimize profits from sandwiching attacks, see
Sandwiching Curve changes. However, the function add_asset allows the management to modify
(reduce) the weights of assets and the amplification factor by avoiding the ramping limitations entirely.
The natspec description of the function notes:

@dev Every other asset will have their weight reduced pro rata
@dev Caller should assure that effective amplification before and after call are the same

Code partially corrected:

The function add_asset now sets an upper limit of 1% on the initial weight of the new asset being added
to the pool. Although this reduces the likelihood of accidentally changing the weights of assets

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

significantly, it does not enforce any restriction on the amplification factor (_amplification represents
the term A * f^n in the whitepaper). Therefore, management should consider sandwiching attacks
when calling this function and carefully choose input parameters. The response of Yearn is:

Added a limit to the new asset weight, it is not allowed to exceed 1%. Since
the `amplification` in the pool represents 'A * f^n', we cannot easily put
bounds on the amplification factor. It is up to the management role to make sure
the call cannot be sandwiched, either by picking a new amplification factor and
initial weight (even lower than 1%) that minimises the effect or by first pausing
the pool and in a separate call add the asset before unpausing.

5.2 Decreasing Pool Value Through Rate Updates
Design Low Version 1 Acknowledged

Big rate updates might drain value from the pool. Assuming a swap_fee of 0.3%, then a rate update of
1% (e.g. from 1.00 -> 1.01) seems already too big. Generally, it seems that any rate change twice as
big as the swap_fee (so any rate change >= 0.6% for a swap_fee of 0.3%) leads to this issue.

We provide an example with three assets. In the beginning, everything is balanced and the rates are all
1.00. Now, the pool can lose value in the following way:

• The price of asset 2 in the market rises from 1.00 -> 1.01

• Assuming an efficient market, trades happen inside the pool which imbalance the pool so that
get_dy(2, 0, 10**18) == get_dy(2, 1, 10**18) == 1.01 * 10**18. (If such trades
do not happen an attacker can front-run the rate update with such trades.) Here the pool is selling
asset 2 too cheaply.

• Now the rate update is performed, setting the rate of asset 2 from 1.00 -> 1.01.

• As a consequence, the pool's exchange rate from asset 2 => asset 1 (and
asset 2 => asset 0), will now go to roughly 1.02. The pool is paying too much to obtain asset
2.

• Therefore an attacker trail-runs the rate update and sells asset 2 to the pool.

• Eventually, the price of asset 2 goes back down from 1.01 -> 1.00.

• Again trades happen which change the balance of the pool so that it has a 1:1 exchange ratio
between the assets. Here the attacker or others sell asset 2 to the pool.

• Now the rate update is performed, setting the rate of asset 2 from 1.01 -> 1.00.

As a consequence, the pool's exchange rate is so that asset 2 can be bought too cheaply. Hence, the
attacker buys asset 2 cheaply. After all, trades are settled, the pool has fewer funds than at the
beginning. In this example, they might have lost 0.3% of value. As a consequence, the balance in the
Staking contract is now smaller, even though all prices are the same as in the beginning.

Generally, the significance of this issue depends on different parameters, like number of assets, weights
and amplification factor. In some configurations, it will be more severe than in others. A combination of
smaller, parallel rate updates for different assets might also be problematic.

Acknowledged

Yearn is aware of the issue and acknowledges it. They will take care to mitigate it by only using
high-quality rate providers that return the backing rate on the beacon chain which they assume will not
fluctuate much to be an issue. Additionally, these oracles are assumed to be not influenced by the
market. Yearn emphasized that every oracle will be rigorously tested and simulated before being used.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.3 Guardian Can Front-Run Kill Command
Security Low Version 1 Acknowledged

The guardian role in contract Pool can set or unset the paused flag, while only management can set
the flag killed to true. For the function kill to execute successfully, the flag paused should be
true. Therefore, guardian can prevent the execution of function kill by frontrunning the transaction
with a call to function unpause.

Acknowledged:

Yearn acknowledges the risk of frontrunning and accepts the consequences of the attack with the
following reasoning: "In the unlikely case the guardian decides to grief by front-running such a call,
management has the option to replace the guardian".

We want to note that the replacement of the guardian can also be front-run by the guardian as
set_guardian can be called by both roles.

5.4 Implementation Mismatch With ERC-4626
Correctness Low Version 1 Code Partially Corrected

The contract Staking implements the external functions specified in the standard ERC4626. The
implementation of functions maxWithdraw and maxRedeem is not in line with the standard. Both
functions return max_value(uint256), but the standard for maxWithdraw (similarly for maxRedeem)
states:

MUST return the maximum amount of assets that could be transferred from ``owner``
 through ``withdraw`` and not cause a revert, which MUST NOT be higher than the
 actual maximum that would be accepted (it should underestimate if necessary).

MUST factor in both global and user-specific limits, like if withdrawals are
 entirely disabled (even temporarily) it MUST return 0.

Code partially corrected:

Version 3Both functions have been updated in to return the maximum amount of assets or shares that
can be withdrawn or redeemed by address _owner.

However, the special case when totalSupply cannot be less than MINIMUM_INITIAL_DEPOSIT is
not handled correctly. Therefore, it is possible that both functions maxWithdraw and maxRedeem return
non-zero values, while the respective functions withdraw and redeem could revert, which violates the
standard.

5.5 Inefficient Initial Approximation Value for Pi in
Supply Calculation
Design Low Version 1 Acknowledged

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

When a rate change or balance change occurs, the starting value for pi (vb product), to later
approximate the supply, is:

vb_prod * self._pow_up(prev_rate * PRECISION / rate, wn) / PRECISION

or

vb_prod_final * self._pow_up(prev_vb * PRECISION / vb, wn) / PRECISION

The result of this calculation is then passed into _calc_supply. In _calc_supply an iterative method
is used to approximate the correct supply. Starting with the result as the first guess for r in:

r = unsafe_div(unsafe_mul(r, sp), s)

The initial guess seems inefficient and almost always dominated by the old value for pi as starting value.

Acknowledged:

Yearn replied:

The value for pi needs to be updated somewhere before or during the iteration process,
as otherwise the supply will not converge to the correct value. It might be possible
to save on iterations by updating pi to the correct value after the first iteration,
but such a change would significantly complicate the function and as such is deemed
not worth it.

5.6 Missing Sanity Checks
Design Low Version 1 Code Partially Corrected

The following functions update important state variables but do not perform any sanity check on inputs.

Staking contract:

1. _asset in function __init__.

2. _fee_rate in function set_performance_fee_rate.

3. _management in function set_management.

4. _treasury in function set_treasury.

5. Version 2 : If _value is larger than current allowance, an underflow happens.

6. Version 2 : _spender in functions that modify allowance.

Pool contract:

7. _assets in function __init__ can include duplicate.

8. _duration in function set_ramp can be 0.

9. _rate_provider in function set_rate_provider.

10. _staking in function set_staking.

11. _guardian in function set_guardian.

12. _management in function set_management.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code partially corrected:

Missing sanity checks reported in the Staking contract have been added. Additionally, the same checks
were applied in the Token contract. In the Pool contract sanity checks for points 10 and 12 were added.
The sanity check for _guardian (point 11) is intentionally left out to allow for flexibility of burning the role
in the future.

5.7 Possible to Frontrun the First Deposit in Pool
Design Low Version 1 Risk Accepted

The first liquidity provider in a pool does not pay any fee. Other liquidity providers do not pay a fee only if
they deposit tokens in the same ratio as the current state of the pool. If a user adds liquidity into a pool in
an unbalanced manner (e.g., single token or with different ratios from the current state), a fee is payed.

An attacker can frontrun the first deposit to add tokens in a pool in a wrong ratio such that the victim user
pays high fees. The fees are sent to the Staking contract and can be claimed after a delay by users that
have staked their yETH. The profits of the attacker depend on the amount of tokens deposited by the
victim and the share of yETH staked by the attacker at the time rewards (includes fee) move to
unlocked bucket in Staking contract.

Risk accepted:

Yearn replied:

This is acceptable behaviour, and can be mitigated by setting a very tight value for the
minimum amount of tokens received for the initial deposit.

5.8 Possible to Update Ramp Step While Ramping
Correctness Low Version 1 Risk Accepted

The function set_ramp_step sets a new ramp_step without checking if there is currently an active
ramp. Raising ramp_step while there is an active ramp increases the risks of sandwiching attacks (see
Sandwiching Curve changes) as the _duration of ramping remains the same.

Risk accepted:

Yearn replied:

We’d like to retain the option to increase the step size, even during a ramp. However,
management should take care not to increase it to such a degree that it affects the
sandwich risk in a significant way. This is in line with the responsibilities the
management account already has. It has the ability to set the duration of a ramp,
which suffers from the same consequences if not set properly

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5.9 Violation of Sum of Weights
Correctness Low Version 1 Acknowledged

The trading curve is defined by a function that assumes that the sum of all weights in a pool equals
PRECISION (100%). However, this invariant does not apply always as the weights of assets change
when: i) adding a new asset, ii) updating weights in a ramp. Therefore, it is possible that these dynamic
changes of weights break the invariant due to rounding errors. For instance, current is rounded down
in the following code:

if current > target:
 current = current - (current - target) * span / duration
else:
 current = current + (target - current) * span / duration

Acknowledged:

Yearn acknowledges the issue.

5.10 Voting Weight Increase Differs for New and
Existing Positions
Correctness Low Version 1 Acknowledged

Transferring shares to a position increases the voting weight of the receiving position. For the same
amount of shares transferred, the new voting weight depends on the existing state of the receiver,
namely variable Weight.t.

The picture below plots voting power where x-axis is the time and y-axis is the voting weight. The blue
line illustrates a position that has staked 25 shares for a long time. If this position receives 25 more
shares, its voting power will change over time as shown by the red dashed line.

However, if 25 shares are sent to a new position, its voting weight increases according to the violet
dashed line. The green line shows the difference on the voting weight after new tokens are received
between an existing position (red dashed line) versus existing position and new position that receives
tokens (blue line and violet dashed line). The plot suggests that receiving shares in new positions instead
of existing ones maximizes the voting weight of a party.

Acknowledged:

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Yearn replied:

This is an acceptable side effect of our choice to have a asymptotically increasing
weight function.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 5

• Code CorrectedIncorrect Computation of Product Term

• Code CorrectedMissing Transfer of Tokens When Adding New Assets

• Code CorrectedPool Might End up With Less Shares Than MINIMUM_INITIAL_DEPOSIT

• Code CorrectedShare Distribution Depends on First Deposit

• Code CorrectedWrong Calculation of Voting Weight for Withdrawn Shares

Low -Severity Findings 10

• Code CorrectedApprove Can Be Frontrun

• Code CorrectedDefault Target Weight

• Specification ChangedIncomplete Specifications for Paused Pool

• Code CorrectedInconsistent Behavior of Conversion Function

• Specification ChangedMismatch of Code With the Specification for Pending Rewards

• Code CorrectedMissing Slippage Protection When Adding New Asset

• Code CorrectedNo Meaningful Revert Messages

• Code CorrectedPossible to Lock Management Role

• Code CorrectedTypes of Variables in Weight

• Code CorrectedUnused Event in Staking

6.1 Incorrect Computation of Product Term
Correctness Medium Version 1 Code Corrected

The product term pi in the whitepaper depends on D, w_i and x_i. The function _calc_vb_prod takes
as input _s which is the sum of tokens in the Pool and is different from D if the pool is not at equilibrium
point.

This issue was found by Yearn also while the review was ongoing.

Code corrected:

The function _update_weights has been updated to pass supply when calling function
_calc_vb_prod as follows:

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

supply: uint256 = self.supply
if supply > 0:
 vb_prod = self._calc_vb_prod(supply)

Furthermore, the function _calc_vb_prod_sum, which is called on first deposit or when adding a new
asset, is revised to not take _s (sum term) as an input parameter.

6.2 Missing Transfer of Tokens When Adding New
Assets
Correctness Medium Version 1 Code Corrected

Function add_asset can be called only by management which is trusted to behave correctly in the
contract Pool. The parameter _amount in function add_asset is the amount of tokens that are
deposited into the Pool when the new asset is added. However, the code does not pull the funds from an
external account (if approved) or check that the Pool has already the required balance (if already
transferred).

Code corrected:

The issue has been resolved by adding the code in function add_asset that pulls the respective tokens
from msg.sender:

assert ERC20(_asset).transferFrom(msg.sender, self, _amount, default_return_value=True)

6.3 Pool Might End up With Less Shares Than
MINIMUM_INITIAL_DEPOSIT
Design Medium Version 1 Code Corrected

The new MINIMUM_INITIAL_DEPOSIT amount does not mitigate that a user manipulates the share
amount to be very low before another user deposits or rewards are accounted.

A malicious user might deposit MINIMUM_INITIAL_DEPOSIT tokens but could immediately call redeem
in such a way that they end up with one remaining share. This breaks the assumption that the pool
always has a minimum amount of assets, which could have unintended side effects.

Code corrected:

Version 3The internal function _withdraw has been updated in to enforce that totalSupply in the
contract Staking is either 0 or larger than MINIMUM_INITIAL_DEPOSIT. This restriction is implemented
in the following code:

if total_shares < MINIMUM_INITIAL_DEPOSIT:
 assert total_shares == 0

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.4 Share Distribution Depends on First Deposit
Correctness Medium Version 1 Code Corrected

The user's shares when depositing an amount of yETH are calculated as:

_assets * _total_shares / _total_assets

However, in the case of the first deposit, the number of assets deposited is the number of shares the user
receives. In case a user deposits a very small amount (at best 1 WEI), they would receive 1 share. When
the total assets increase because profits are made, the fraction _total_shares / _total_assets
will become 0 for amounts smaller than _total_assets. Additionally, when adding assets, they need
to be multiples of _total_assets. Hence, the first deposit determines the minimum step size or
rounding error for the following deposits.

The was independently reported by Yearn while the review was ongoing.

Code corrected:

Yearn implemented a practical solution by specifying a minimum deposit amount
MINIMUM_INITIAL_DEPOSIT of 1e15 which makes the attack unlikely in practice. However, we would
like to highlight that the core issue is still present even with this practical mitigation. The issue arises only
in case of a high discrepancy between the first deposit and the potential rewards which now should be
higher by a factor of 1e15.

6.5 Wrong Calculation of Voting Weight for
Withdrawn Shares
Correctness Medium Version 1 Code Corrected

By depositing yETH into the Staking contract, users gain voting power that continuously increases over
time. The voting power depends on the amount of shares a user has and the time they have been
deposited in the contract. The contract stores two checkpoints for a user: weights and
previous_weights. weights track the latest state of a position, while previous_weight stores the
state of the position in the week before latest changes.

The function vote_weight should consider previous_weights when the position is updated on the
ongoing week. However, the code checks for two conditions as follows:

if weight.week > week or weight.week == 0:
 weight = self.previous_weights[_account]

The second condition is true for users that have withdrawn or transferred out all their shares. In this
case, the code still considers their previous_weights and incorrectly computes a voting power based
on the state of the position before its shares were removed. This can be exploited by attackers to create
positions that gain voting power, and then move shares to a new position.

This issue was uncovered by Yearn also while the review was ongoing.

Code partially corrected:

Version 2 : The internal function _update_account_shares has been revised to reset only field t when
an account withdraws all of its shares:

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

if shares == 0:
 t = 0
 last_shares = 0

The function vote_weight checks if the position of an account has been updated on the ongoing week
as follows:

if week > current_week or week == 0:
 packed_weight = self.previous_packed_weights[_account]

The second condition week == 0 is true only for empty accounts, which should have a voting weight of
0 and there is no need to consider their previous state.

Code corrected:

Version 3 : The unnecessary check week == 0 has been removed from function vote_weight.

6.6 Approve Can Be Frontrun
Security Low Version 1 Code Corrected

The function approve in Staking contract is vulnerable to frontrunning attacks. The function approve
always overwrites the current value without checking if the allowance has been consumed or not.

Assume a scenario where Alice provides an allowance of value X to a spender. Then, she decides to
change the allowance to a value Y. The spender can front-run the second transaction, spend X, and then
spend the new allowance Y also. This attack vector and possible mitigations are discussed in EIP20.

Code corrected:

increaseAllowance and decreaseAllowance functions were added. These functions are similar to
approve function, but they do not overwrite the current value. Instead, they increase or decrease the
current value with a given delta.

6.7 Default Target Weight
Correctness Low Version 1 Code Corrected

The function weight in contract Pool returns 0 as the default target weight when no ramp is active:

if self.ramp_last_time == 0:
 target = 0

Furthermore, the function add_asset does not set 0 as target weight although no ramp is active.

Code corrected:

The external function weight has been updated to return the current weight of an asset in the pool
when there is no active ramp.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 21

http://web.archive.org/web/20230420143343/https://eips.ethereum.org/EIPS/eip-20
https://chainsecurity.com

6.8 Incomplete Specifications for Paused Pool
Correctness Low Version 1 Specification Changed

When a pool is paused no swaps can be executed. Furthermore, rate providers cannot be updated while
the pool is in this state as _update_rates reverts. Specifications do not describe these behaviors.

The following functions cannot be executed when a pool is paused:

• update_rates

• update_weights

• set_ramp

• swap

• swap_exact_out

• add_liquidity

• remove_liquidity_single

• set_rate_provider

Specifications changed:

The specifications regarding pause mode have been extended in file specification.md.

6.9 Inconsistent Behavior of Conversion Function
Correctness Low Version 1 Code Corrected

External view functions convertToShares and convertToAssets return the input value, _assets
and _shares respectively, when total_assets is 0. However, on the same conditions (``
_total_assets == 0``) both internal functions _preview_deposit and _preview_mint return 0.
Therefore, depositing and minting in this scenario reverts.

Code corrected:

Yearn corrected the code and both external functions are now in line with the internal ones.

6.10 Mismatch of Code With the Specification for
Pending Rewards
Correctness Low Version 1 Specification Changed

The specifications of the contract Staking state:

If the balance has increased, it is added to the pending bucket. If one or more week has been missed,
the increase is distributed instead over the three buckets fairly.

However, the function _get_amounts adds rewards to the streaming bucket if it is called on the first
day of a new week:

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

if weeks == 1 and block.timestamp % WEEK_LENGTH <= DAY_LENGTH:
 streaming += rewards

Specification changed:

Yearn added a more concise specification for this scenario:

If the first update of the week is in the first day, it is added to the streaming bucket directly instead.

6.11 Missing Slippage Protection When Adding
New Asset
Security Low Version 1 Code Corrected

The management can add a new asset into a Pool by calling the function add_asset. The caller should
send _amount tokens of the new asset to the pool, which increases the overall value of the Pool. The
function mints the difference in the total supply (supply - prev_supply) as LP tokens to the address
_receiver, however no slippage protection is implemented.

Code corrected:

The function add_asset has been revised to take an additional argument _min_lp_amount as input
and now explicitly asserts that supply has strictly increased and the caller receives more LP shares
than _min_lp_amount:

...
assert supply > prev_supply
lp_amount: uint256 = unsafe_sub(supply, prev_supply)
assert lp_amount >= _min_lp_amount
PoolToken(token).mint(_receiver, lp_amount)
...

6.12 No Meaningful Revert Messages
Design Low Version 1 Code Corrected

Reverts could emit meaningful messages to provide the reason for failed calls. The downside of
informing users accordingly is the slightly increased gas costs. Hence, Yearn needs to evaluate if a
meaningful revert message should be returned.

Code corrected:

Yearn added selected revert messages.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.13 Possible to Lock Management Role
Design Low Version 1 Code Corrected

Both contracts Staking and Pool implement the function set_management that allows the existing
management account to set a new management address. As management is responsible for setting
multiple parameters of contracts, measures should be taken to avoid mistakes when updating it. Besides
sanity checks, the update of critical roles that cannot be recovered should follow the set/accept
approach.

Code corrected:

Both functions were changed to a commit/accept scheme with two functions set_management and
accept_management.

6.14 Types of Variables in Weight
Design Low Version 1 Code Corrected

The types uint16, uint56 and uint128 are used for variables of struct Weight. Together these
values fit in a storage slot (256 bits). However, Vyper does not optimize storage used by packing together
variables that fit in 32 bytes. As each value is stored in a separate storage slot, EVM uses additional
operations to convert the value from 32 bytes to the correct type.

Code corrected:

Yearn added a custom way to pack the variables in a single storage slot for the variables:
previous_packed_weights and packed_weights. This optimization on the storage comes with
slighly added gas costs on execution due to packing and unpacking of variables in a single storage slot.

6.15 Unused Event in Staking
Design Low Version 1 Code Corrected

The event SetMinter in the contract Staking is not used.

Code corrected:

The unused event has been removed.

6.16 Functions Return True Always
Informational Version 1 Code Corrected

The natspec description for the return value of functions transfer and transferFrom states:

@return Flag indicating whether the transfer was successful

Both functions return only True, otherwise they revert.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Code corrected:

The natspec description for the return value has been updated: @return True.

6.17 Missing Natespec
Informational Version 1 Code Corrected

A majority of the critical logic is implemented in internal functions. In-line documentation and proper
natspec for all functions can significantly improve code readability to understand correctly the intended
behavior of the code.

Code corrected:

Natspec was added to all functions.

6.18 Possible to Index Event Parameters
Informational Version 1 Code Corrected

It is recommended to index the relevant event parameters to allow integrators and dApps to quickly
search for these and simplify UIs. We would like to highlight that asset could be indexed in the
respective events.

Code corrected:

The parameter asset is now indexed in events Swap, RemoveLiquiditySingle and
SetWeightBand.

6.19 Possible to Mark Functions as View
Informational Version 1 Code Corrected

Functions virtual_balance and rate in Pool do not modify the state and can be marked as view.

Code corrected:

Both functions have been marked as view functions.

6.20 Redundant Code in _Calc_Supply
Informational Version 1 Code Corrected

The code inside if/else branches in the function _calc_supply is redundant and could be removed
if the delta between values s and sp is computed first.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Code corrected:

The function _calc_supply has been revised to avoid the redundant code.

6.21 Return Values When Removing Liquidity
Informational Version 1 Specification Changed

The function remove_liquidity_single returns dx which is the amount of tokens being withdrawn
for the target asset. However, the function remove_liquidity does not return any value.

Specification provided:

Yearn informed ChainSecurity that this was done intentionally as a gas saving measure, as otherwise it
would need to construct and return an array of up to 32 values of type uint256.

6.22 Transfers of 0 Values Revert in Staking
Informational Version 1 Code Corrected

Both functions transfer and transferFrom check that value being transferred is non-zero
(assert _value > 0). This behavior is not in line with EIP20 which has the following note:

Transfers of 0 values MUST be treated as normal transfers and fire the Transfer event.

Code corrected:

Yearn changed the code to allow zero value transfers.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7 Open Questions
Here, we list open questions that came up during the assessment and that we would like to clarify to
ensure that no important information is missing.

7.1 Adding New Assets When Paused
Open Question Version 1

The function add_asset does not check if the pool has been paused when adding a new asset. Is this
behavior intentional?

7.2 Approval Events on transferFrom
Open Question Version 1

The Staking.transferFrom function does not emit any event regarding the approval change. Thus, it
is not possible to recover state based on Approval+Transfer events. While this is compliant with
ERC4626/ERC20 specification, some libraries like OpenZeppelin, emit explicit Approval event during
the transferFrom. On the other hand, DAI token does not emit such event. We would like to bring this
detail to your attention and know if it is as expected in your case.

7.3 Total Assets Can Be 0
Open Question Version 1

Both functions _preview_deposit and _preview_mint check if _total_assets == 0 although
_total_shares are non-zero. Can you please describe the scenarios when this happens?

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

8 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Extracting Value From First Deposit in Pool
Informational Version 2

The attacks based on strategies that artificially inflate the value of LP shares in Pool are unlikely to
succeed due to the way how rewards (donations) are tracked in different buckets. Nevertheless, it is
theoretically possible for an attacker to extract value from the first depositor if certain conditions hold
before first deposit, e.g., significant rewards are ready to be moved to unlocked bucket.

8.2 Incomplete Natspec
Informational Version 1

The natspec description for the return value of function update_weights is incomplete.

8.3 Missing Events in Staking Contract
Informational Version 1 Code Partially Corrected

Functions rescue, set_half_time, set_management and set_treasury in contract Staking
update the state, but no event is emitted.

Code partially corrected:

The respective events in the functions listed above were added except function rescue, which still does
not emit an event.

8.4 Preview Functions Round in Favor of Users
Informational Version 2

The functions _preview_withdraw is used to calculate the number of shares a user needs to pay for
withdrawing a given amount of assets. The calculation rounds in favor of the user. This means the user
needs to pay slightly less shares for the respective assets. Hence, reducing the value of all shares. The
same issue is also present in _preview_mint. The magnitude of the rounding error depends on the
share-to-assets ratio.

This violates the invariant that the share value can only go down by incurred losses. Still, the impact
should be limited and the issue is mainly theoretical.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

8.5 Theoretical Underflow in _Get_Amounts
Informational Version 1

The function Staking._get_amounts can theoretically underflow when the shortage is higher than
the sum of all tokens accounted in the buckets. The underflow happens in the statement
unlocked -= shortage. However, practically this should not happen as the loss cannot be larger
than the balance of Staking contract in yETH.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

9 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 Assets Cannot Be Removed From Pool
Note Version 1

Contract Pool implements the function add_asset that allows the management account to add new
assets into the Pool, up to a total of 32 assets. We highlight that the contract does not implement a
functionality to remove an asset from a Pool. Therefore, the asset removal requires a redeployment of
the contract, which forces all LPs to withdraw their liquidity from the old Pool and deposit into the new
one.

9.2 Assumption on Balance of Staking
Note Version 1

The internal function _update_supply is called when key functionalities of the contract Pool are
performed. Based on the activity of the Pool LP tokens are minted to the staking (if supply
increases), or LP tokens are burned from the staking (if supply decreases). The implementation of
the function assumes that the staking contract has always enough balance in yETH to cover the losses
of the pool such that the burning of LP tokens will always succeed.

Yearn is aware that after deployment or in certain conditions (e.g., no staked tokens) this assumption
might not hold, and extra measures need to be taken for the function to work as intended.

9.3 Buckets Can Be Updated at Most Once per
Block
Note Version 1

The function _get_amounts returns the current state if the buckets have already been updated in the
same block:

if updated == block.timestamp:
 return self.pending, self.streaming, self.unlocked, 0, 0

If the Staking contract receives rewards in a block, after function _update_totals has already been
called, the pending and streaming buckets do not get updated. Note that, the unlocked bucket is
always updated when users stake or unstake their yETH tokens.

9.4 Charged Fees Are Unclear
Note Version 1

The function add_liquidity charges fees depending on the differences between deposited amounts
and the current state of the pool. The larger the delta, the higher the fees. However, it is not easy for a

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

liquidity provider to know the actual fees payed. Similarly, the function remove_liquidity_single
charges fees but it is not explicit to the caller.

9.5 Decay of Voting Weight on Transfers
Note Version 1

Voting weight is computed by a asymptotic function that depends on the amount of shares and the time
they have been staked. The variable Weight.t is adjusted (lowered) when a position receives new
shares such that the voting weight before and after the transfer remains the same. However, when
transferring out tokens the variable Weight.t is not modified.

The side effect of this behavior is that if a position with a voting weight v1 receives x shares and then
transfers out the same amount x shares, ends up with a lower voting weight v2 (v2 < v1) although the
number of staked shares has not changed. Furthermore, transfers also affect the global voting weight as
transfers decrease voting weight of individual positions.

9.6 Large Ratio Drops for an Asset Break Pool
Composition
Note Version 1

Pool implements a safety mechanism to ensure that the portfolio composition of underlying assets is
according to specified parameters. Each asset in the Pool has a target weight (a range) associated with
it. User operations, like swap, deposit, or withdraw, that change the asset balances in the Pool are
permitted only if they do not move the actual weights of the involved assets outside the specified ranges.
However, the Pool composition changes also when updating rates as asset balances change. The safety
mechanism is not enforced in such changes of Pool composition.

While the mechanism of safety bands helps to maintain the desired composition of the Pool when all
assets have a backing ratio as expected (around 1 ETH), they do no limit the value loss of the Pool when
the ratio of one asset drops significantly (e.g., goes towards 0). A lower rate for an asset results in a
lower virtual balance for the asset, which lowers its weight in the Pool, therefore enabling trades that
transfer the cheaper asset into the Pool and transfer out other assets. If the rate of one asset drops
significantly (e.g., due to a hack), the Pool should be paused immediately, before the new ratio is
published by the respective provider, to prevent traders from selling the worthless asset to the Pool.

9.7 Precision of Packed Weights
Note Version 1

The precision of weight variables passed as arguments in function is 18 decimals. This precision is lost
when the variables are stored as packed in storage due to space limitations. Variables weight, target,
lower and upper are limited to 20 bits, therefore they can store values with a precision of 6 digits only.
The management account should take into consideration this behavior when setting the respective
parameters of Pool.

For instance, the function set_ramp does not enforce a lower bound on the values passed in the array
_weights. If a value smaller than 10**12 is passed as target weight for an asset, the function
_pack_weight will store 0. In this case, the ramp cannot complete and main functionalities of the Pool
stop working as the function _update_weights calls function _calc_vb_prod which requires the
weight of each asset to be non-zero: assert weight > 0.

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

9.8 Sandwiching Curve Changes
Note Version 1

There are many ways a Curve can significantly change its shape. A prominent attack example is the
sandwich attack on Curve when the amplification factor is changed. Therefore, these important changes
are ramped (split in smaller changes over a defined time) to minimize the revenue of sandwiching these
changes. Yearn also implements ramping for weight changes and amplification factor. However, ramping
does not guarantee that an attack is not profitable. As Yearn does have more potential ways to change
their Curve than e.g., the original Curve by Curve finance, this risk is increased.

Ramping can be initiated only by the trusted account management which should carefully select the
parameters _amplification, _weights, _duration and ramp_step. First, as _amplification
represents the factor A * f^n and f depends on weights, both target _amplification and target
_weights should be chosen such that they stay in line with each-other in intermediary steps of ramping.
Otherwise, management should execute each step as a separate ramp. For instance, transitioning from
a pool with weights (10%, 20%, 70%) to a pool with weights (60%, 30%, 10%) introduces an error in the
amplification factor of up to 49% in the intermediary steps of the ramping. The error gets higher for more
excessive changes. For example, transitioning from a pool with weights (1%,99%) to weights (99%,1%)
introduces an error up to 72% in the intermediary steps of the ramping.

Finally, _duration and ramp_step should be carefully chosen such that each step of ramping does
not change the curve significantly. Any update of the ramp_step should take into consideration the
ongoing ramp.

9.9 Staking Does Not Lock Tokens
Note Version 1

Users holding yETH can stake their tokens into the contract Staking. The contract does not lock staked
tokens and there is no time restriction to withdraw them. The only incentive to keep tokens staked is the
increasing voting weight. Hence, yETH holders might have a stronger incentive to stake their tokens if the
Pool generates rewards and withdraw if there are losses.

9.10 Supply Updates in Pool
Note Version 1

The rate update of underlying assets can be triggered explicitly by calling the function update_rates or
it gets triggered when sensitive operations are executed, e.g., adding/removing liquidity or swaps. The
rate update changes the composition of the virtual balances of assets in the pool. The new supply is
then computed, and Pool mints or burns tokens to/from the staking based on the positive or negative
delta.

Updates of the supply provide different incentives to users. For instance, if new rates are published and
they lower supply, an existing LP can profit by sandwiching the transaction that triggers the supply
update by withdrawing their tokens first and then deposing again after the supply gets updated.

On the other case, if supply is going to be increased, LPs have an additional incentive to stake their
yETH to claim the respective rewards (subject to delays).

Yearn - Yearn yETH - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Roles and trust model:

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Circumvention of Ramping
	5.2 Decreasing Pool Value Through Rate Updates
	5.3 Guardian Can Front-Run Kill Command
	5.4 Implementation Mismatch With ERC-4626
	5.5 Inefficient Initial Approximation Value for Pi in Supply Calculation
	5.6 Missing Sanity Checks
	5.7 Possible to Frontrun the First Deposit in Pool
	5.8 Possible to Update Ramp Step While Ramping
	5.9 Violation of Sum of Weights
	5.10 Voting Weight Increase Differs for New and Existing Positions

	6 Resolved Findings
	6.1 Incorrect Computation of Product Term
	6.2 Missing Transfer of Tokens When Adding New Assets
	6.3 Pool Might End up With Less Shares Than MINIMUM_INITIAL_DEPOSIT
	6.4 Share Distribution Depends on First Deposit
	6.5 Wrong Calculation of Voting Weight for Withdrawn Shares
	6.6 Approve Can Be Frontrun
	6.7 Default Target Weight
	6.8 Incomplete Specifications for Paused Pool
	6.9 Inconsistent Behavior of Conversion Function
	6.10 Mismatch of Code With the Specification for Pending Rewards
	6.11 Missing Slippage Protection When Adding New Asset
	6.12 No Meaningful Revert Messages
	6.13 Possible to Lock Management Role
	6.14 Types of Variables in Weight
	6.15 Unused Event in Staking
	6.16 Functions Return True Always
	6.17 Missing Natespec
	6.18 Possible to Index Event Parameters
	6.19 Possible to Mark Functions as View
	6.20 Redundant Code in _Calc_Supply
	6.21 Return Values When Removing Liquidity
	6.22 Transfers of 0 Values Revert in Staking

	7 Open Questions
	7.1 Adding New Assets When Paused
	7.2 Approval Events on transferFrom
	7.3 Total Assets Can Be 0

	8 Informational
	8.1 Extracting Value From First Deposit in Pool
	8.2 Incomplete Natspec
	8.3 Missing Events in Staking Contract
	8.4 Preview Functions Round in Favor of Users
	8.5 Theoretical Underflow in _Get_Amounts

	9 Notes
	9.1 Assets Cannot Be Removed From Pool
	9.2 Assumption on Balance of Staking
	9.3 Buckets Can Be Updated at Most Once per Block
	9.4 Charged Fees Are Unclear
	9.5 Decay of Voting Weight on Transfers
	9.6 Large Ratio Drops for an Asset Break Pool Composition
	9.7 Precision of Packed Weights
	9.8 Sandwiching Curve Changes
	9.9 Staking Does Not Lock Tokens
	9.10 Supply Updates in Pool

