PUBLIC

Code Assessment

of the yETH Governance

Smart Contracts

November 3, 2023

Yy yearn

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG

11
12
13
14
21
23

https://chainsecurity.com

1 Executive Summary

Dear Yearn team,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of yETH Governance according
to Scope to support you in forming an opinion on their security risks.

Yearn implements an on-chain governance system for yETH and the new contracts. They allow st - yETH
holders to vote for generic proposals and Pool parameter changes.

The most critical subjects covered in our audit are access control and functional correctness. All raised
issues have been addressed accordingly. The most critical issue found in the assessment was related to
incorrectly counted votes in | ncl usi onVot e (see Blank Votes Not Counted).

In summary, we find that the codebase now provides a good level of security. It is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the yETH Governance repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note
1 | 25 September 2023 | d1ed4007f71982629906b51d219ee2e2d9560e8c Initial Version
2 | 31 October 2023 2a6bf23ce399beac5bef72b412dc76f2ded44¢20 Version 2

For the vyper smart contracts, the compiler version 0. 3. 7 was chosen.

The following contracts are in the scope of the review:

contract s/ gover nance/
Del egat eMeasure. vy
Execut or. vy
Generi cGovernor. vy
I ncl usi onl ncenti ves. vy
I ncl usi onVot e. vy
LaunchMeasure. vy
Omner shi pProxy. vy
Pool Gover nor . vy
Snapshot Token. vy
Wi ght I ncenti ves. vy
Wi ght Vot e. vy

2.1.1 Excluded from scope

Any contracts not explicitly listed above are out of the scope of this review. The Vyper compiler and
standard library are out of the scope of this review. Any other yETH contracts not listed, such as
Boot st rap or St aki ng, are out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The assessed contacts are part of Yearn's ecosystem and move the management role of yETH on-chain.
Until now, the management power was distributed over different accounts and contracts that had different
roles. This set of management roles that have powers within the protocol to, e.g., set rates, add assets,
etc. will be replaced by the Omer shi pPr oxy. The Oaner shi pPr oxy will become the new owner of all
these management roles (excluding the proxy's own). The Oaner shi pPr oxy is not a del egat ecal |

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

proxy contract. It acts as a relay contract that relays arbitrary calls, and executes them with
Owner shi pProxy as nsg. sender . The Oaner shi pPr oxy has one privileged role, (managenent) that
is allowed to call execut e() on the Omer shi pPr oxy. In this way, calls can be made from the proxy's
managenent to contracts for which the Oaner shi pPr oxy has admin power. It is assumed that the
managenent role will be held by the Execut or contract. The Execut or maintains a set of governors.
Accounts or contracts with the governor role can call the Execut or's execut e() function. Additionally,
the contract has a white- and blacklist allowing to define a very precise access control by setting the
functions and the target that a specific governor account is allowed to call - or not to call. The Execut or
is self-governing, meaning the Oaner shi pPr oxy is supposed to fulfill its managemnent role.

There are currently two contracts that are intended to act as governors. The Gener i cGover nor and the
Pool Gover nor. Both contracts allow to call execut e() on the Execut or via their own execut e
function if a proposal has passed successfully. The Generi cGover nor is used for arbitrary calls and
allows to add proposals and vote on them directly. The users' voting weight is determined by querying
either the Del egat eMeasur e or the LaunchMeasur e contract. The Del egat eMeasur e is similar to
the LaunchMeasur e, but allows the delegation of voting power to another address. In the first 3 weeks
of an epoch, the Generi cGover nor accepts proposals from anyone with sufficient voting weight.
Proposals come in the form of a script, which will be executed on the Execut or if passed. In the final
week of the epoch, users vote in favor of - or against each proposal. At the end of the epoch, all
proposals that pass a threshold of relative votes in favor will have passed. They become executable by
anyone after a delay. The author of the proposal can retract their proposal, and managenent can cancel
any before it is executed.

The Pool Gover nor has two attached contracts that contain the voting mechanisms: Wi ght Vot e and
I ncl usi onVot e. The Pool Gover nor is more explicit (compared to the generic governor) in the
actions it can execute. These are adding a new asset to a pool and/or changing the target weights of
assets in the Pool . The voting process of the Pool Govenor is handled in separate contracts depending
on the operation to be executed. The two contracts used are Wi ght Vot e and | ncl usi onVot e. They
handle the voting process and the Governor will handle the execution for both if a vote is successful. To
incentivize voting to increase a certain asset's weight, or to add a certain asset, users can deposit
incentives in Wi ght 1 ncenti ves and | ncl usi onl ncenti ves. In the first three weeks, anyone can
apply (upon paying a fee) for a token to be whitelisted in | ncl usi onVot e. The oper at or role has the
task of setting rate providers for each of the applying tokens. An application with a rate provider
automatically becomes whitelisted, meaning it can be voted on. The token with the most votes will be
added to the pool. One of the vote options is a bl ank vote. If that option has the most votes, no new
asset will be added to the pool this epoch. In Wi ght Vot e users can vote to increase the weight an
asset has in the Pool .

All voting takes place in the last week of a four-week-long epoch (each starting on a Thursday 00: 00
UTC).

2.2.1 OwnershipProxy

The contract will eventually be assigned the managenent role of all relevant contracts. It is not a
del egat ecal | proxy, but a relay contract that has an execut e() function to execute arbitrary calls
(including calling itself), to mainly manage other Yearn contracts. This function can only be called by a
managenent role, which can be set via set _managenent (). The contract meant to hold this
managenent role is the Execut or contract.

2.2.2 EXxecutor

The contract allows the execution of arbitrary calls via the Oaner shi pPr oxy's execut e function, by
either calling execut e_si ngl e() or execut e() (multi-call option). When multiple calls are executed in
one transaction, the data needs to be parsed correctly and is called in a script in this context. The view
function scri pt helps compose and format the script.

To execute a call, the calling address needs to be a governor. The governor role can be set in
set _governor. E.g., the Generi cGover nor and the Pool Gover nor will have this role. Additionally, a

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

governor can be limited in the actions they can execute. Via set _access, a flag can be set to indicate
what kind of access restrictions are set. This should be either a white- or blacklist, or none. To white- or
blacklist, the management role can call whi tel i st () or bl ackl i st (). The Executor's managenent
role can be changed using set _nanagenent and accept_managenent. All the mentioned
administrative functions can only be called by the management role, which is expected to be held by the
Owner shi pPr oxy.

2.2.3 LaunchMeasure

To execute a proposal the Generi cGover nor and Pool Gover nor are used. Both query the voting
weight of a user from a measure contract. The LaunchMeasur e has only two relevant functions.
vote_wei ght and total vote wei ght. The total vote weight is the total supply of the staking
contract, and a user's vot e_wei ght is the user's vot e_wei ght in the staking contract plus their
bootstrap contribution. The additional vot e_wei ght from the bootstrap is equal to the bootstrap
contract's staking vot e_wei ght multiplied by the user's share of the bootstrap contract.

2.2.4 DelegateMeasure

The delegate Measure also implements the two functions vot e_wei ght and t ot al _vot e_wei ght ,
which can be queried by the Generi cGovernor and Pool Gover nor. Additionally, it adds the
functionality to delegate voting power to a specific address. However, the delegation address cannot be
set by users. It needs to be set by the contract's management role. The feature is intended to be used by
protocols that aggregate the voting weight of multiple users. When using delegation, the voting weight is
not a decay function based on time, as it is for individual users that have deposited to the staking
contract. Instead, the vot e_wei ght is equal to the staking balance of the address, which is the voting
power that would usually be achieved after holding the tokens for an infinite amount of time. However,
there is a multiplier that can be set by the contract's management, which multiplies the voting power of
delegated funds by a fixed factor (e.g., 0. 5). The multiplier can be set via set_mul tiplier. The
management role can be set via set _managenent and accept _managenent. The management is
assumed to be the Oaner shi pPr oxy. Voting power in the bootstrap contract cannot be delegated.

2.2.5 DelegatedStaking

The Del egat edSt aki ng contract is a wrapper and helper contract that allows users (mainly protocols)
to delegate their voting power. To delegate the voting power, the functions deposit or nmi nt can be
called. When Del egat eMeasure™ "cal cul ates the vote weight, it will call " Del egat
edSt aki ng. vot e_wei ght and weigh it with a scaling factor. By calling wi t hdr aw and r edeemusers
can exit the delegation contract. The contract implements the ERC4626 interface including standard
ERC20 functionality.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.6 GenericGovernor

The generic governor has the proposal and voting functionality for users. To vote, a user can either call
vote_yea() orvote_nay() to vote with the full voting weight for a proposal or call vot e() to allocate
percentages of the voting weight to yes or no. A successful proposal can be executed by calling enact .
Note that there was no quorum needed in version 1, a proposal could pass with 1 yes vote. This was
changed. Voting is carried out in the last week of a four-week-long epoch. In the first three weeks,
proposals can be created by calling propose(). To create a proposal, the proposer needs to have at
least propose_m n_wei ght voting weight. Proposals contain a script, which can be executed by the
Executor. At the end of the epoch, all proposals that pass a threshold of relative votes in favor will have
passed. After a delay, their scripts become executable by anyone by calling enact . The author of the
proposal can retract their proposal by calling retract as long as it is proposed, and management can
call cancel to cancel any proposal before it is executed. In case management is the Oaner shi pPr oxy,
it would be impossible to call cancel as another vote would need to succeed to call it. But this function
intends to have the current/first holder of management roles as a governor and remove it after a few
epochs via governance vote. During this period the cancel functionality can be used in emergencies. It
could potentially be used in the future by introducing additional governors, although Yearn states, that no
such plans exist currently. The state of a proposal can be updated via updat e_proposal _state().
Internally, the contract uses the packed values packed _quorumand packed_del ay. They have the
following bit-layout (from least significant to most significant bit):
current (120) | previous (120) | epoch (16).

The contract's neanagenent (Oawner shi pPr oxy) can set the following configuration parameters:
e set _neasur e - to set the contract responsible for defining the voting weights a user has

eset _executor - to set the address of the executor contract that is called when a proposal is
executed

*set _del ay - sets the delay after a proposal passes before it can be executed
eset _nmjority - Sets the threshold (e.g. 50 percent would be 5000) for a proposal to pass
eset _propose_m n_wei ght - Defines the minimal voting weight a user needs to submit proposals

eset _nmanagenent - Sets a pending management address, that will be able to call the administrative
functions

e accept _managenent - Called by the pending management address to become the management
role

2.2.7 PoolGovernor

This contract is intended to manage Yearn's YETH pool. It will execute successfully proposed weight
changes and add new tokens to the Pool . The proposal and voting process is handled in the two
separate contracts Wi ght Vot e and | ncenti veVot e. The Pool Gover nor is the shared execution
handler for the two contracts. The Pool Gover nor will evaluate the votes from both contracts and
execute a successful proposal by calling execut e_si ngl e on the Execut or contract. There is an
oper at or role, which is tasked with calling the execut e() function and choosing parameters that
minimize the arbitrage opportunities created from adding a new asset to the Pool .

The contract has the following configuration parameters that can be set by the management contract
(Omner shi pPr oxy):

eset _target_anplification - Sets the target amplification that can be applied to the pool.

eset _executor - Sets the address of the executor contract that is called when a proposal is
executed.

*set _oper at or - Sets the operator.
eset _initial_weight - Sets the initial weight for newly added assets.

eset _ranp_wei ght - Set the ramp target weight for newly added assets.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

eset _redistribute weight - Set the weight that can be redistributed each epoch.
eset _ranp_duration - Set the ramp duration.

eset _inclusion_vote - Set the inclusion vote contract that determines which assets should be
added to the pool.

eset _wei ght _vot e - Set the weight vote contract that determines the redistribution of weights over
the assets.

eset _nmanagenent - Sets a pending management address, that will be able to call the administrative
functions

eaccept _managenent - Called by the pending management address to become the management
role

2.2.8 WeightVote

This contract is used to indicate to the Pool Gover nor how to update the target weight of assets in the
pool. It will accept votes in the last week of every epoch. Users can vote with their voting weight, which is
determined by a Measur e contract. They can vote for any number of assets in the pool, as well as the
bl ank option, which keeps the current target weights. The maximum amount of weight change per
epoch is defined by set _redi stribute weight “in "~ Pool Govenor.

2.2.9 InclusionVote

This contract is used to indicate to the pool governor contract whether or not an asset should be added to
the pool. It will accept votes in the last week of every epoch. Outside of the voting period, users can apply
to add any ERC20 token to the pool, paying an application fee. If the token has already been applied for
in a previous epoch, a different fee is applied than if it is an initial application. The contract's oper at or is
expected to add a suitable rate provider contract for the token, which returns the ETH value per token.
Users can vote with their voting weight, which is determined by a Measur e contract. They can vote for
any number of assets, as well as the bl ank option, which does not add an asset.

2.2.10 WeightIincentives

This contract allows users to deposit incentives in any ERC20 token to reward voters who vote for a
certain asset in Wi ght Vot e. The reward per asset is always paid to voters, proportional to the vote
weight they used to vote for the incentivized asset. For example, if 2 voters A and B voted for the asset,
and A used twice as much voting power as B, then A will receive 2/ 3 of the reward, while B will receive
1/ 3. After the voting is over, the voters can claim their share of the rewards. Rewards left unclaimed for a
configurable amount of epochs can be swept by the treasury.

2.2.11 Inclusionincentives

This contract allows users to deposit incentives in any ERC20 token to incentivize voters who vote in
I ncl usi onVot e to include a given candidate token or vote for the blank option. If the incentivized target
wins, the rewards are allocated to all voters in proportion to their voting weight, regardless of how they
voted. After the voting is over, either the depositor can get a refund on their deposit (if their target did not
win), or the voters can claim their share of the rewards. Rewards left unclaimed or unrefunded for a
configurable amount of epochs can be swept by the treasury.

2.2.12 Roles and trust assumptions

The system has one main role. The Oaner shi pPr oxy. It has the management role in these contracts:
» Del egat eMeasur e

e Execut or

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

» Generi cGover nor

eI ncl usionlncentives
eI ncl usi onVot e

* Pool Gover nor

Wi ghtl ncenti ves

* Wi ght Vot e

It is assumed that the management contract of the Oaner shi pPr oxy is the Executor. It is the only
account that can call the Oaner shi pProxy. As long as this is the case, there are no additional trust
assumptions needed besides the trust assumptions for the Execut or. The Executor's execute
function can only be triggered by governors. Consequently, the trust assumptions propagate to this role.
We assume the governors to be fully trusted. Usually, these should be contracts that are controlled
through a voting process. These votes need to be proposed, assessed and voted on by the token
holders. This means that the decisions made by the majority of token holders are assumed to be fully
trusted.

We assume the deploying account to be fully trusted, up until the moment when it gives all its privileged
roles to other addresses.

The Pool Gover nor is operated by an oper at or , which is a role tasked with adding assets to the pool
while minimizing the arb opportunities. The role is trusted to choose only appropriate and well-tested
parameters for pool changes. Especially, the oper at or needs to take care to plan the ramping so that it
will not harm the pool and be in sync with the new epoch. The power is limited as the role cannot change
weights at will or add arbitrary assets.

The oper at or role in the | ncl usi onVot e contract is trusted to set an appropriate, non-malicious, and
well-tested rate provider. The rate providers are trusted and assumed to work correctly at all times.

We assume pool tokens that are added to be non-malicious and not have problematic properties, e.g.,
rebasing, or tokens with double entry points.

We assume the staking contract does not return different vot e_wei ght s during an ongoing epoch. We
also assume deposits to the bootstrap contract are no longer possible.

2.2.13 Changes in Version 2

A quorum has been added to the GenericGovernor, meaning that a minimum number of yes + no votes is
now required for a proposal to pass.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies
o (ENTTED: Mismatches between specification and implementation

« @D: Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 1
» Blank Votes Not Counted

(Medium)-Severity Findings 5

» Balance Used Instead of Voting Weight in DelegateMeasure
» Griefing by Flooding Malicious Proposals

» InclusionVote Operator Trust

» Proposals Can Be Enacted After More Than One Epoch

» Voters Trust Proposal Author Not to Retract

(Low)-Severity Findings 4
» Access Control Can Have Invalid Value
» Delegation Could Allow Double Voting
 Number of Assets Could Change During Vote
* Race Condition in GenericGovernor

Informational Findings 4

+ Majority Parameter Can Be Less Than Fifty Percent

 Sanity Checks (SNl
» Missing Events e ENFED

» Should Governance Be Able to Evict the Treasury

6.1 Blank Votes Not Counted
(Correctness | Mg WZIETI| Code Corrected)

In InclusionVote, the winner is determined as follows:

CS-YEGOV-013

if votes > wi nner_votes:
candi date: address = sel f.candi dates[epoch][i]
if self.rate_providers[candidate] in [enpty(address), APPLI CATI ON_DI SABLED] :
operator could have unset rate provider after
conti nue
wi nner = candi date
W nner_votes = votes

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The zero (blank) candidate will not have a rate provider set. The condition for cont i nue will be fulfilled
and the winner_votes will not be set to the blank votes.

As a result, the blank votes are ignored and a candidate with fewer votes than the blank votes can
become the wi nner.

Code corrected:

A special case has been added for candidate == 0x0. Now, the votes of the zero address are counted.
Additionally, the zero address's rate_provider is not set to APPLICATION_DISABLED when the zero
address is the winner.

6.2 Balance Used Instead of Voting Weight in

Del egat eMeasur e
(Correctness \ITTINVIETIRY Code Corrected)

When computing the voting weight of an account, if the account has been delegated to, the following
formula is used to compute the additional weight.

CS-YEGOV-018

wei ght St aki ng(st aki ng) . bal anceOf (del egat ed) sel f.del egate_mnul tiplier DELEGATE_SCALE

Since the balance can be altered without delay simply by acquiring the staking token on the spot, the call
to bal anceOF is prone to manipulation.

This issue was found during the review. It was also reported independently by Yearn while the review
was still ongoing.

Code corrected:

This was fixed in by storing delegated stake in a separate vault, which only updates
vot e_wei ght at the end of the week.

6.3 Griefing by Flooding Malicious Proposals
7D (Viedium) (Version 1) (CXIYSIRT)

In Generi cGover nor, as long as an attacker holds at least pr opose_ni n_wei ght tokens, they can
submit as many proposals as they want, paying only gas.

CS-YEGOV-015

If these proposals would hurt the protocol, other users are forced to vote nay each time, to ensure the
proposal does not pass. There is no quorum needed to pass a proposal.

It may also be problematic if the same proposal is submitted multiple times. Voters will need to
coordinate and choose which of these they want to pass, while rejecting the others. See also: Voters trust
proposal author not to retract.

Code corrected:

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

A quorum has been added to the GenericGovernor, meaning that a minimum number of yes + no votes is
now required for a proposal to pass. Governance functions for setting the quorum, as well as view
functions to read it have also been added.

6.4 InclusionVote Operator Trust

(D (Mediom) (Version 1) NI

The InclusionVote contract has an oper at or role, which is tasked with setting rate providers for
proposed tokens.

CS-YEGOV-016

In the current implementation, the oper at or can change the rate provider at any time. In particular, it
can change the rate provider even after voters have already voted.

This design results in the oper at or role needing to be fully trusted to set a correct rate provider.

If an alternative design was chosen where the rate provider can no longer change between the beginning
of the voting period and f i nal i ze_epoch(), the voters could ensure that they are voting for a correct
rate provider and that it cannot change after their vote. This would reduce the trust assumption on the
oper at or role.

Code corrected:

Now, the oper at or can only change a rate provider that was previously set if:
1. The voting period of the current epoch has not started
2. The previous epoch has already been finalized

If the rate provider has never been set (still 0x0), it can still be added at any time.

This means that voters can now independently check that the oper at or has set a correct rate provider,
and can be sure that it will not change after they vote. This reduces the trust required in the oper at or .

6.5 Proposals Can Be Enacted After More Than

One Epoch
D (Viediurm) (Version 1) (XIS

To enact proposals in the Generi cGover nor via enact , the proposal state is checked and asserted to
be PASSED by calling _proposal state(). The function _proposal state explicitly returns
PASSED only if current _epoch == vote_epoch + 1. Consequently, a proposal must be enacted
one epoch after vot e_epoch.

CS-YEGOV-014

However, by calling updat e_pr oposal _state() on a proposal that just passed, it is possible to set
the state of this proposal to PASSED in storage. In this case, it is possible to circumvent the condition that
a proposal needs to be enacted one epoch after vot e_epoch, because proposal state() returns
PASSED from now on dueto:i f state ! = STATE PROPOSED return state.

This will allow the execution of the proposal forever, even though it should revert if it is not executed in
the epoch after passing.

Code corrected:

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The state is now reevaluated when calling _proposal _state(), even if the storage was set to
PASSED.

6.6 Voters Trust Proposal Author Not to Retract
D (Viedium) (Version 1) (XTI

In Generi cGover nor, a proposal can be retracted by its author at any point up until the end of the
voting period. This means that the author can grief voters by retracting maliciously.

CS-YEGOV-012

Consider the following situation:
1. The community decides off-chain that a certain proposal is something they want to vote on.
2. Alice has pr opose_m n_wei ght votes and anonymously submits the proposal.
3. The proposal receives 99% yea votes.
4. One hour before the vote period ends, Alice retracts the proposal.

5. Now the proposal will not be executable and it will take at least another epoch until it can be voted
on again and pass.

To avoid this, the proposal author needs to be trusted by the voters.

As a possible countermeasure, the same proposal could be submitted multiple times by different authors.
However, this could be problematic if the proposal does something which should not happen multiple
times, (e.g., send some tokens) and more than one of the proposals pass.

Code corrected:

Proposals can now no longer be retracted once the voting period has begun.

6.7 Access Control Can Have Invalid Value

(Design {(FO VTR Code Corrected

The access control in Executor is set using the Access enum. When something should have a whitelist,
the enum is set to a value of 1, when it should have a blacklist, it is set to a value of 2. If neither is true, it
should be set to the default value of 0.

CS-YEGOV-009

However, in Vyper it is also possible to set enum in such a way that multiple "flags" are set at once, not
just one. set _access() has no sanity check for the access argument. As a result, set _access()
could be called by the management with a value of 3, which is a valid value in Vyper and represents the
states whitelist and blacklist being true at the same time.

However, the contract is not designed to handle this value and will treat it the same as 0.

Code corrected:

A check has been added that disallows values that are greater than 2. Now the only possible enum
values are default, whitelist and blacklist.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.8 Delegation Could Allow Double Voting
D) (Low) (Version 1) (XTI

In DelegateMeasure, an address that has given a delegation to another address, has a vot e_wei ght of
0, which means it can no longer vote directly.

CS-YEGOV-011

However, the del egat e() function does not check if the address that is giving delegation has
previously voted during the current epoch. As a result, it is possible that an address first votes with its
own vot e_wei ght , then del egat e() is called. This would allow the voting power to be used a second
time by the address receiving the delegation.

Note that del egat e() can only be called by the managenent role, which is expected to be used
through the Generi cGover nor. In this case, the issue can be avoided by calling enact () before the
VOTE_PERI OD starts, given that the del ay is smaller than VOTE_START.

Code corrected:

This was fixed in by storing delegated stake in a separate vault, which only updates
vot e_wei ght at the end of the week.

6.9 Number of Assets Could Change During Vote
(Design [(EDIEEITB] Code Corrected)

In WeightVote, the number of assets in the Pool is queried once when the first vote in a voting period
happens. The value is cached and not updated for the rest of the epoch.

CS-YEGOV-010

If the number of assets changes within the voting period, it will be impossible to vote for the newly voted
asset. This would only happen if the execut e function of PoolGovernor is called late (in the last week of
the epoch) by the oper at or .

Code corrected:

Yearn removed the caching of the number of tokens and now queries them directly from the pool.

6.10 Race Condition in Generi cGover nor

(D (Low) (Version 1) CRIEEIEE)

If a proposal is passed that stops another proposal in the same epoch from being enacted, whether by
explicitly canceling it or by modifying common parameters such as nmaj ori ty, then a race condition
occurs whereby depending on the order in which the proposals are enacted, the end result is different.

CS-YEGOV-005

Note that enact () can be called by anyone, thus this ordering is also subject to MEV.

Yearn found and reported this issue while the review was ongoing.

Code corrected:

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

In (Version 2), enact () uses the values of maj ori ty and del ay snapshotted at the end of the previous
epoch.

6.11 Majority Parameter Can Be Less Than Fifty
Percent

[Informational] [Version 1]

In Generi cGover nor, the maj ori ty parameter can counterintuitively be set to less than 50%

CS-YEGOV-006

This would mean that a proposal with more no votes than yes votes can pass.

Code corrected:
Yearn now enforces a range betweeen VOTE_SCALE / 2 and VOTE_SCALE for maj ority.

6.12 Missing Events
[Informational] [Version 1]

The constructors of Del egat eMeasur e, Execut or, Generi cGover nor, | ncl usi onl ncenti ves,
I ncl usi onVot e, Omer shi pPr oxy, Pool Gover nor, Wi ght | ncenti ves and Wi ght Vot e do not
emit the Set Managenent () event.

CS-YEGOV-008

Specfication changed

Yearn answered:
This is intentional, as it would require to also enmt events for a | ot of other paraneters

during the constructor to be fully consistent. For exanple, in the
generi c governor constructor we set a value for nmeasure, delay, quorum nmjority and del ay.

6.13 Sanity Checks
[Informationalj [Version 1]

Multiple functions do not sanitize their input. E.g., the Executor contract in set _access(),
set _governor(), whitelist() and bl acklist() do not check for address zero. We advise
reviewing which functions would benefit from a sanity check, even if they are permissioned.

CS-YEGOV-007

Code corrected:

Yearn changed the listed functions and implemented sanity checks. We additionally assume Yearn
checked all other potential functions and added checks.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.14 Should Governance Be Able to Evict the

Treasury
[Informational] [Version 1] Specification Changed

CS-YEGOV-017
In the setTreasury() function of InclusionVote, Inclusionlncentives and

Wei ght | ncenti ves, the management role has the power to change the treasury address to an
arbitrary value. The yETH protocol is designed to be governed by st-yETH holders. At the same time,
YIP-72 says that the treasury should be the "Yearn Treasury or an autonomous splitter contract directed
by yBudget." Is it intended that holders are able to direct the treasury revenue away from Yearn?

Specification changed

This described behavior was originally intended. But after being raised and careful consideration, Yearn
decided that only the treasury shall be allowed to call set Tr asur y and changed the code accordingly.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimisations
(Informational] [Version 1][]

CS-YEGOV-003
We discovered the following potential gas optimizations:

1. The Proxy interface in Executor uses Byt es[65536] as data argument, but the OwnershipProxy
only supports Byt es[2048] . The cal | dat a variable in execut e() also uses this large Array
size. In Vyper, arrays reserve memory slots for their maximum size, even when many of the
elements are zero. As a result, the memory will be extended by 65536 Bytes as soon as another
variable is placed in memory after the array. This is very expensive.

2. ui nt could be used instead of boolean values. E.g., as governor flag in Execut or .

Code partially corrected

Yearn decided to decrease the overall max script size to Byt es[2048] . In the rare case that a proposal
requires a script larger than this, they can work around it by deploying a one-time use contract that is
granted a temporary governor role during execution.

7.2 PoolGovernor Can Skip Epochs

(Informational) (Version 1)

CS-YEGOV-001

The PoolGovernor's execut e function always executes the vote results for epoch - 1. This means
that if execut e() is not called during an epoch, the preceding epoch's vote results will never be
executed.

The wi nner in InclusionVote has its r at e_pr ovi der set to APPLI CATI ON_DI SABLED, so if an asset
wins but then the execution of the winning epoch is skipped, that asset cannot be proposed again unless
the oper at or of InclusionVote sets the rate_provider again.

The execut e function can only be called by the oper at or of PoolGovernor. If the operator is
unavailable or malicious, it may not be called.

7.3 Unused Code

[Informationalj (Version 1] []

CS-YEGOV-004
The following code is not used:
* \\éi ght Vot e: the interface definition of Measur e. t ot al _vot e_wei ght

* I ncl usi onVot e: the interface Measur e. t ot al _vot e_wei ght

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

el nclusionlncentives: the interface voting.candidates map and the constants
VOTE_START and VOTE_LENGTH.

Wi ght I ncenti ves: the constants VOTE _LENGTH and VOTE_START

e Generi cGover nor : the interface definition Measure. t ot al _vot e_wei ght

Code partially corrected
The unused interfaces were removed. The unused constants still exist in Wei ght | ncent i ves.

7.4 Del egat edSt aki ng Does Not Strictly
Conform to ERC-4626

[Informational] [Version 1]

CS-YEGOV-002

maxDeposi t () and maxM nt () return 22> — 1. Per ERC-4626, "MUST NOT be higher than the actual
maximum that would be accepted”. The balance is eventually stored packed in only 240-bits. Therefore,
the theoretical maximum is 224° — 1. However, this is not enforced in the code, rather the supply of ETH
is assumed to upper-bound the system.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Epoch Boundary Agreement

To prevent double voting, VOTE_LENGTH should always be at most one week, EPOCH_LENGTH should
always be a multiple of one week, and genesi s should be set to a multiple of one week. This is to be
consistent with the current St aki ng contract which provides voting weights.

8.2 Governance Proposal Passes In The Event Of
A Tie

In Gener i cGover nor, the condition for a proposal to be treated as passed is as follows:

if votes 0 and yea VOTE_SCALE vot es self.majority:
return STATE PASSED

Assuming majority is 50% and a proposal has one yea and one nay vote, it will pass.

8.3 Limted Number of Pool Tokens
(D) (Version 1

Pools have 32 slots. This sets a cap to the maximum number of tokens to add. Once included, a token
can never be removed from the protocol. Removing tokens from a pool would need a redeploy.

In PoolGovernor, the execut e function will get the wi nner of the InclusionVote and try to add it to the
Pool.

If there are already 32 assets in the Pool and InclusionVote has a wi nner, execut e() will revert. This
will also make it impossible to change the weights during that epoch.

The managenent of InclusionVote should call di sabl e() once there are 32 assets to avoid this.

8.4 Power of the PoolGovernor Operator

(D) (Version 1)

The specifications currently say that the operator of PoolGovernor has limited power. This is true but the
operator role is still extremely powerful as it must be trusted to set the pool values like amplification and
ramping in a non-exploitable way. The parameters the operator role can set are critical in a yETH pool
and related to other parameters. Hence, as mentioned in the system assumptions, ths role needs to be
fully trusted.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8.5 Ramp_Duration Should Be Chosen Carefully
(D) (Version T

The ranp_dur at i on variable in Pool Gover nor should be chosen carefully. If it is too short, it may be
possible to make profitable sandwich attacks.

It should also not be too long. In particular, it must be shorter than the length of an epoch, as assets
cannot be added to the Pool while there is an ongoing ramp. The oper at or of Pool Gover nor should
call execut e() at least ranp_dur at i on before the end of the epoch, so that the ramp ends by the
time execut e() is callable again.

8.6 Rebasing and Fee-On-Transfer Tokens Cannot
Be Used as Incentives

(D) (Version 1)

Both I ncl usi onl ncenti ves and Wei ght | ncenti ves keep internal balances for tokens used as
incentives. This is done in such a way that, if the contract ends up with more tokens than expected, then
the leftover amount will be lost. If the contract ends up with fewer tokens than expected, then
transfer () will fail and the last user to claim will not be able to receive the incentives they are owed.

@ Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 OwnershipProxy
	2.2.2 Executor
	2.2.3 LaunchMeasure
	2.2.4 DelegateMeasure
	2.2.5 DelegatedStaking
	2.2.6 GenericGovernor
	2.2.7 PoolGovernor
	2.2.8 WeightVote
	2.2.9 InclusionVote
	2.2.10 WeightIncentives
	2.2.11 InclusionIncentives
	2.2.12 Roles and trust assumptions
	2.2.13 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Blank Votes Not Counted
	6.2 Balance Used Instead of Voting Weight in DelegateMeasure
	6.3 Griefing by Flooding Malicious Proposals
	6.4 InclusionVote Operator Trust
	6.5 Proposals Can Be Enacted After More Than One Epoch
	6.6 Voters Trust Proposal Author Not to Retract
	6.7 Access Control Can Have Invalid Value
	6.8 Delegation Could Allow Double Voting
	6.9 Number of Assets Could Change During Vote
	6.10 Race Condition in GenericGovernor
	6.11 Majority Parameter Can Be Less Than Fifty Percent
	6.12 Missing Events
	6.13 Sanity Checks
	6.14 Should Governance Be Able to Evict the Treasury

	7 Informational
	7.1 Gas Optimisations
	7.2 PoolGovernor Can Skip Epochs
	7.3 Unused Code
	7.4 DelegatedStaking Does Not Strictly Conform to ERC-4626

	8 Notes
	8.1 Epoch Boundary Agreement
	8.2 Governance Proposal Passes In The Event Of A Tie
	8.3 Limted Number of Pool Tokens
	8.4 Power of the PoolGovernor Operator
	8.5 Ramp_Duration Should Be Chosen Carefully
	8.6 Rebasing and Fee-On-Transfer Tokens Cannot Be Used as Incentives

