

PUBLIC

Code Assessment

of the yETH Governance

Smart Contracts

November 3, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 14

7 Informational 21

8 Notes 23

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Yearn team,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of yETH Governance according
to Scope to support you in forming an opinion on their security risks.

Yearn implements an on-chain governance system for yETH and the new contracts. They allow st-yETH
holders to vote for generic proposals and Pool parameter changes.

The most critical subjects covered in our audit are access control and functional correctness. All raised
issues have been addressed accordingly. The most critical issue found in the assessment was related to
incorrectly counted votes in InclusionVote (see Blank Votes Not Counted).

In summary, we find that the codebase now provides a good level of security. It is important to note that
security audits are time-boxed and cannot uncover all vulnerabilities. They complement but don't replace
other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 5

Low -Severity Findings 4

• Code Corrected 4

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the yETH Governance repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 25 September 2023 d1ed4007f71982629906b51d219ee2e2d9560e8c Initial Version

2 31 October 2023 2a6bf23ce399beac5bef72b412dc76f2ded44c20 Version 2

For the vyper smart contracts, the compiler version 0.3.7 was chosen.

The following contracts are in the scope of the review:

contracts/governance/
 DelegateMeasure.vy
 Executor.vy
 GenericGovernor.vy
 InclusionIncentives.vy
 InclusionVote.vy
 LaunchMeasure.vy
 OwnershipProxy.vy
 PoolGovernor.vy
 SnapshotToken.vy
 WeightIncentives.vy
 WeightVote.vy

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. The Vyper compiler and
standard library are out of the scope of this review. Any other yETH contracts not listed, such as
Bootstrap or Staking, are out of the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The assessed contacts are part of Yearn's ecosystem and move the management role of yETH on-chain.
Until now, the management power was distributed over different accounts and contracts that had different
roles. This set of management roles that have powers within the protocol to, e.g., set rates, add assets,
etc. will be replaced by the OwnershipProxy. The OwnershipProxy will become the new owner of all
these management roles (excluding the proxy's own). The OwnershipProxy is not a delegatecall

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

proxy contract. It acts as a relay contract that relays arbitrary calls, and executes them with
OwnershipProxy as msg.sender. The OwnershipProxy has one privileged role, (management) that
is allowed to call execute() on the OwnershipProxy. In this way, calls can be made from the proxy's
management to contracts for which the OwnershipProxy has admin power. It is assumed that the
management role will be held by the Executor contract. The Executor maintains a set of governors.
Accounts or contracts with the governor role can call the Executor's execute() function. Additionally,
the contract has a white- and blacklist allowing to define a very precise access control by setting the
functions and the target that a specific governor account is allowed to call - or not to call. The Executor
is self-governing, meaning the OwnershipProxy is supposed to fulfill its management role.

There are currently two contracts that are intended to act as governors. The GenericGovernor and the
PoolGovernor. Both contracts allow to call execute() on the Executor via their own execute
function if a proposal has passed successfully. The GenericGovernor is used for arbitrary calls and
allows to add proposals and vote on them directly. The users' voting weight is determined by querying
either the DelegateMeasure or the LaunchMeasure contract. The DelegateMeasure is similar to
the LaunchMeasure, but allows the delegation of voting power to another address. In the first 3 weeks
of an epoch, the GenericGovernor accepts proposals from anyone with sufficient voting weight.
Proposals come in the form of a script, which will be executed on the Executor if passed. In the final
week of the epoch, users vote in favor of - or against each proposal. At the end of the epoch, all
proposals that pass a threshold of relative votes in favor will have passed. They become executable by
anyone after a delay. The author of the proposal can retract their proposal, and management can cancel
any before it is executed.

The PoolGovernor has two attached contracts that contain the voting mechanisms: WeightVote and
InclusionVote. The PoolGovernor is more explicit (compared to the generic governor) in the
actions it can execute. These are adding a new asset to a pool and/or changing the target weights of
assets in the Pool. The voting process of the PoolGovenor is handled in separate contracts depending
on the operation to be executed. The two contracts used are WeightVote and InclusionVote. They
handle the voting process and the Governor will handle the execution for both if a vote is successful. To
incentivize voting to increase a certain asset's weight, or to add a certain asset, users can deposit
incentives in WeightIncentives and InclusionIncentives. In the first three weeks, anyone can
apply (upon paying a fee) for a token to be whitelisted in InclusionVote. The operator role has the
task of setting rate providers for each of the applying tokens. An application with a rate provider
automatically becomes whitelisted, meaning it can be voted on. The token with the most votes will be
added to the pool. One of the vote options is a blank vote. If that option has the most votes, no new
asset will be added to the pool this epoch. In WeightVote users can vote to increase the weight an
asset has in the Pool.

All voting takes place in the last week of a four-week-long epoch (each starting on a Thursday 00:00
UTC).

2.2.1 OwnershipProxy
The contract will eventually be assigned the management role of all relevant contracts. It is not a
delegatecall proxy, but a relay contract that has an execute() function to execute arbitrary calls
(including calling itself), to mainly manage other Yearn contracts. This function can only be called by a
management role, which can be set via set_management(). The contract meant to hold this
management role is the Executor contract.

2.2.2 Executor
The contract allows the execution of arbitrary calls via the OwnershipProxy's execute function, by
either calling execute_single() or execute() (multi-call option). When multiple calls are executed in
one transaction, the data needs to be parsed correctly and is called in a script in this context. The view
function script helps compose and format the script.

To execute a call, the calling address needs to be a governor. The governor role can be set in
set_governor. E.g., the GenericGovernor and the PoolGovernor will have this role. Additionally, a

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

governor can be limited in the actions they can execute. Via set_access, a flag can be set to indicate
what kind of access restrictions are set. This should be either a white- or blacklist, or none. To white- or
blacklist, the management role can call whitelist() or blacklist(). The Executor's management
role can be changed using set_management and accept_management. All the mentioned
administrative functions can only be called by the management role, which is expected to be held by the
OwnershipProxy.

2.2.3 LaunchMeasure
To execute a proposal the GenericGovernor and PoolGovernor are used. Both query the voting
weight of a user from a measure contract. The LaunchMeasure has only two relevant functions.
vote_weight and total_vote_weight. The total vote weight is the total supply of the staking
contract, and a user's vote_weight is the user's vote_weight in the staking contract plus their
bootstrap contribution. The additional vote_weight from the bootstrap is equal to the bootstrap
contract's staking vote_weight multiplied by the user's share of the bootstrap contract.

2.2.4 DelegateMeasure
The delegate Measure also implements the two functions vote_weight and total_vote_weight,
which can be queried by the GenericGovernor and PoolGovernor. Additionally, it adds the
functionality to delegate voting power to a specific address. However, the delegation address cannot be
set by users. It needs to be set by the contract's management role. The feature is intended to be used by
protocols that aggregate the voting weight of multiple users. When using delegation, the voting weight is
not a decay function based on time, as it is for individual users that have deposited to the staking
contract. Instead, the vote_weight is equal to the staking balance of the address, which is the voting
power that would usually be achieved after holding the tokens for an infinite amount of time. However,
there is a multiplier that can be set by the contract's management, which multiplies the voting power of
delegated funds by a fixed factor (e.g., 0.5). The multiplier can be set via set_multiplier. The
management role can be set via set_management and accept_management. The management is
assumed to be the OwnershipProxy. Voting power in the bootstrap contract cannot be delegated.

2.2.5 DelegatedStaking
The DelegatedStaking contract is a wrapper and helper contract that allows users (mainly protocols)
to delegate their voting power. To delegate the voting power, the functions deposit or mint can be
called. When DelegateMeasure``calculates the vote weight, it will call ``Delegat
edStaking.vote_weight and weigh it with a scaling factor. By calling withdraw and redeem users
can exit the delegation contract. The contract implements the ERC4626 interface including standard
ERC20 functionality.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.6 GenericGovernor
The generic governor has the proposal and voting functionality for users. To vote, a user can either call
vote_yea() or vote_nay() to vote with the full voting weight for a proposal or call vote() to allocate
percentages of the voting weight to yes or no. A successful proposal can be executed by calling enact.
Note that there was no quorum needed in version 1, a proposal could pass with 1 yes vote. This was
changed. Voting is carried out in the last week of a four-week-long epoch. In the first three weeks,
proposals can be created by calling propose(). To create a proposal, the proposer needs to have at
least propose_min_weight voting weight. Proposals contain a script, which can be executed by the
Executor. At the end of the epoch, all proposals that pass a threshold of relative votes in favor will have
passed. After a delay, their scripts become executable by anyone by calling enact. The author of the
proposal can retract their proposal by calling retract as long as it is proposed, and management can
call cancel to cancel any proposal before it is executed. In case management is the OwnershipProxy,
it would be impossible to call cancel as another vote would need to succeed to call it. But this function
intends to have the current/first holder of management roles as a governor and remove it after a few
epochs via governance vote. During this period the cancel functionality can be used in emergencies. It
could potentially be used in the future by introducing additional governors, although Yearn states, that no
such plans exist currently. The state of a proposal can be updated via update_proposal_state().
Internally, the contract uses the packed values packed_quorum and packed_delay. They have the
following bit-layout (from least significant to most significant bit):
current (120) | previous (120) | epoch (16).

The contract's management (OwnershipProxy) can set the following configuration parameters:

• set_measure - to set the contract responsible for defining the voting weights a user has

• set_executor - to set the address of the executor contract that is called when a proposal is
executed

• set_delay - sets the delay after a proposal passes before it can be executed

• set_majority - Sets the threshold (e.g. 50 percent would be 5000) for a proposal to pass

• set_propose_min_weight - Defines the minimal voting weight a user needs to submit proposals

• set_management - Sets a pending management address, that will be able to call the administrative
functions

• accept_management - Called by the pending management address to become the management
role

2.2.7 PoolGovernor
This contract is intended to manage Yearn's yETH pool. It will execute successfully proposed weight
changes and add new tokens to the Pool. The proposal and voting process is handled in the two
separate contracts WeightVote and IncentiveVote. The PoolGovernor is the shared execution
handler for the two contracts. The PoolGovernor will evaluate the votes from both contracts and
execute a successful proposal by calling execute_single on the Executor contract. There is an
operator role, which is tasked with calling the execute() function and choosing parameters that
minimize the arbitrage opportunities created from adding a new asset to the Pool.

The contract has the following configuration parameters that can be set by the management contract
(OwnershipProxy):

• set_target_amplification - Sets the target amplification that can be applied to the pool.

• set_executor - Sets the address of the executor contract that is called when a proposal is
executed.

• set_operator - Sets the operator.

• set_initial_weight - Sets the initial weight for newly added assets.

• set_ramp_weight - Set the ramp target weight for newly added assets.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• set_redistribute_weight - Set the weight that can be redistributed each epoch.

• set_ramp_duration - Set the ramp duration.

• set_inclusion_vote - Set the inclusion vote contract that determines which assets should be
added to the pool.

• set_weight_vote - Set the weight vote contract that determines the redistribution of weights over
the assets.

• set_management - Sets a pending management address, that will be able to call the administrative
functions

• accept_management - Called by the pending management address to become the management
role

2.2.8 WeightVote
This contract is used to indicate to the PoolGovernor how to update the target weight of assets in the
pool. It will accept votes in the last week of every epoch. Users can vote with their voting weight, which is
determined by a Measure contract. They can vote for any number of assets in the pool, as well as the
blank option, which keeps the current target weights. The maximum amount of weight change per
epoch is defined by set_redistribute_weight``in ``PoolGovenor.

2.2.9 InclusionVote
This contract is used to indicate to the pool governor contract whether or not an asset should be added to
the pool. It will accept votes in the last week of every epoch. Outside of the voting period, users can apply
to add any ERC20 token to the pool, paying an application fee. If the token has already been applied for
in a previous epoch, a different fee is applied than if it is an initial application. The contract's operator is
expected to add a suitable rate provider contract for the token, which returns the ETH value per token.
Users can vote with their voting weight, which is determined by a Measure contract. They can vote for
any number of assets, as well as the blank option, which does not add an asset.

2.2.10 WeightIncentives
This contract allows users to deposit incentives in any ERC20 token to reward voters who vote for a
certain asset in WeightVote. The reward per asset is always paid to voters, proportional to the vote
weight they used to vote for the incentivized asset. For example, if 2 voters A and B voted for the asset,
and A used twice as much voting power as B, then A will receive 2/3 of the reward, while B will receive
1/3. After the voting is over, the voters can claim their share of the rewards. Rewards left unclaimed for a
configurable amount of epochs can be swept by the treasury.

2.2.11 InclusionIncentives
This contract allows users to deposit incentives in any ERC20 token to incentivize voters who vote in
InclusionVote to include a given candidate token or vote for the blank option. If the incentivized target
wins, the rewards are allocated to all voters in proportion to their voting weight, regardless of how they
voted. After the voting is over, either the depositor can get a refund on their deposit (if their target did not
win), or the voters can claim their share of the rewards. Rewards left unclaimed or unrefunded for a
configurable amount of epochs can be swept by the treasury.

2.2.12 Roles and trust assumptions
The system has one main role. The OwnershipProxy. It has the management role in these contracts:

• DelegateMeasure

• Executor

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

• GenericGovernor

• InclusionIncentives

• InclusionVote

• PoolGovernor

• WeightIncentives

• WeightVote

It is assumed that the management contract of the OwnershipProxy is the Executor. It is the only
account that can call the OwnershipProxy. As long as this is the case, there are no additional trust
assumptions needed besides the trust assumptions for the Executor. The Executor's execute
function can only be triggered by governors. Consequently, the trust assumptions propagate to this role.
We assume the governors to be fully trusted. Usually, these should be contracts that are controlled
through a voting process. These votes need to be proposed, assessed and voted on by the token
holders. This means that the decisions made by the majority of token holders are assumed to be fully
trusted.

We assume the deploying account to be fully trusted, up until the moment when it gives all its privileged
roles to other addresses.

The PoolGovernor is operated by an operator, which is a role tasked with adding assets to the pool
while minimizing the arb opportunities. The role is trusted to choose only appropriate and well-tested
parameters for pool changes. Especially, the operator needs to take care to plan the ramping so that it
will not harm the pool and be in sync with the new epoch. The power is limited as the role cannot change
weights at will or add arbitrary assets.

The operator role in the InclusionVote contract is trusted to set an appropriate, non-malicious, and
well-tested rate provider. The rate providers are trusted and assumed to work correctly at all times.

We assume pool tokens that are added to be non-malicious and not have problematic properties, e.g.,
rebasing, or tokens with double entry points.

We assume the staking contract does not return different vote_weights during an ongoing epoch. We
also assume deposits to the bootstrap contract are no longer possible.

2.2.13 Changes in Version 2
A quorum has been added to the GenericGovernor, meaning that a minimum number of yes + no votes is
now required for a proposal to pass.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

• Trust : Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedBlank Votes Not Counted

Medium -Severity Findings 5

• Code CorrectedBalance Used Instead of Voting Weight in DelegateMeasure

• Code CorrectedGriefing by Flooding Malicious Proposals

• Code CorrectedInclusionVote Operator Trust

• Code CorrectedProposals Can Be Enacted After More Than One Epoch

• Code CorrectedVoters Trust Proposal Author Not to Retract

Low -Severity Findings 4

• Code CorrectedAccess Control Can Have Invalid Value

• Code CorrectedDelegation Could Allow Double Voting

• Code CorrectedNumber of Assets Could Change During Vote

• Code CorrectedRace Condition in GenericGovernor

Informational Findings 4

• Code CorrectedMajority Parameter Can Be Less Than Fifty Percent

• Code CorrectedSanity Checks

• Specification ChangedMissing Events

• Specification ChangedShould Governance Be Able to Evict the Treasury

6.1 Blank Votes Not Counted
Correctness High Version 1 Code Corrected

CS-YEGOV-013

In InclusionVote, the winner is determined as follows:

if votes > winner_votes:
 candidate: address = self.candidates[epoch][i]
 if self.rate_providers[candidate] in [empty(address), APPLICATION_DISABLED]:
 # operator could have unset rate provider after
 continue
 winner = candidate
 winner_votes = votes

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The zero (blank) candidate will not have a rate provider set. The condition for continue will be fulfilled
and the winner_votes will not be set to the blank votes.

As a result, the blank votes are ignored and a candidate with fewer votes than the blank votes can
become the winner.

Code corrected:

A special case has been added for candidate == 0x0. Now, the votes of the zero address are counted.
Additionally, the zero address's rate_provider is not set to APPLICATION_DISABLED when the zero
address is the winner.

6.2 Balance Used Instead of Voting Weight in
DelegateMeasure
Correctness Medium Version 1 Code Corrected

CS-YEGOV-018

When computing the voting weight of an account, if the account has been delegated to, the following
formula is used to compute the additional weight.

weight += Staking(staking).balanceOf(delegated) * self.delegate_multiplier / DELEGATE_SCALE

Since the balance can be altered without delay simply by acquiring the staking token on the spot, the call
to balanceOf is prone to manipulation.

This issue was found during the review. It was also reported independently by Yearn while the review
was still ongoing.

Code corrected:

Version 2This was fixed in by storing delegated stake in a separate vault, which only updates
vote_weight at the end of the week.

6.3 Griefing by Flooding Malicious Proposals
Design Medium Version 1 Code Corrected

CS-YEGOV-015

In GenericGovernor, as long as an attacker holds at least propose_min_weight tokens, they can
submit as many proposals as they want, paying only gas.

If these proposals would hurt the protocol, other users are forced to vote nay each time, to ensure the
proposal does not pass. There is no quorum needed to pass a proposal.

It may also be problematic if the same proposal is submitted multiple times. Voters will need to
coordinate and choose which of these they want to pass, while rejecting the others. See also: Voters trust
proposal author not to retract.

Code corrected:

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

A quorum has been added to the GenericGovernor, meaning that a minimum number of yes + no votes is
now required for a proposal to pass. Governance functions for setting the quorum, as well as view
functions to read it have also been added.

6.4 InclusionVote Operator Trust
Trust Medium Version 1 Code Corrected

CS-YEGOV-016

The InclusionVote contract has an operator role, which is tasked with setting rate providers for
proposed tokens.

In the current implementation, the operator can change the rate provider at any time. In particular, it
can change the rate provider even after voters have already voted.

This design results in the operator role needing to be fully trusted to set a correct rate provider.

If an alternative design was chosen where the rate provider can no longer change between the beginning
of the voting period and finalize_epoch(), the voters could ensure that they are voting for a correct
rate provider and that it cannot change after their vote. This would reduce the trust assumption on the
operator role.

Code corrected:

Now, the operator can only change a rate provider that was previously set if:

1. The voting period of the current epoch has not started

2. The previous epoch has already been finalized

If the rate provider has never been set (still 0x0), it can still be added at any time.

This means that voters can now independently check that the operator has set a correct rate provider,
and can be sure that it will not change after they vote. This reduces the trust required in the operator.

6.5 Proposals Can Be Enacted After More Than
One Epoch
Correctness Medium Version 1 Code Corrected

CS-YEGOV-014

To enact proposals in the GenericGovernor via enact, the proposal state is checked and asserted to
be PASSED by calling _proposal_state(). The function _proposal_state explicitly returns
PASSED only if current_epoch == vote_epoch + 1. Consequently, a proposal must be enacted
one epoch after vote_epoch.

However, by calling update_proposal_state() on a proposal that just passed, it is possible to set
the state of this proposal to PASSED in storage. In this case, it is possible to circumvent the condition that
a proposal needs to be enacted one epoch after vote_epoch, because _proposal_state() returns
PASSED from now on due to: if state != STATE_PROPOSED return state.

This will allow the execution of the proposal forever, even though it should revert if it is not executed in
the epoch after passing.

Code corrected:

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The state is now reevaluated when calling _proposal_state(), even if the storage was set to
PASSED.

6.6 Voters Trust Proposal Author Not to Retract
Trust Medium Version 1 Code Corrected

CS-YEGOV-012

In GenericGovernor, a proposal can be retracted by its author at any point up until the end of the
voting period. This means that the author can grief voters by retracting maliciously.

Consider the following situation:

1. The community decides off-chain that a certain proposal is something they want to vote on.

2. Alice has propose_min_weight votes and anonymously submits the proposal.

3. The proposal receives 99% yea votes.

4. One hour before the vote period ends, Alice retracts the proposal.

5. Now the proposal will not be executable and it will take at least another epoch until it can be voted
on again and pass.

To avoid this, the proposal author needs to be trusted by the voters.

As a possible countermeasure, the same proposal could be submitted multiple times by different authors.
However, this could be problematic if the proposal does something which should not happen multiple
times, (e.g., send some tokens) and more than one of the proposals pass.

Code corrected:

Proposals can now no longer be retracted once the voting period has begun.

6.7 Access Control Can Have Invalid Value
Design Low Version 1 Code Corrected

CS-YEGOV-009

The access control in Executor is set using the Access enum. When something should have a whitelist,
the enum is set to a value of 1, when it should have a blacklist, it is set to a value of 2. If neither is true, it
should be set to the default value of 0.

However, in Vyper it is also possible to set enum in such a way that multiple "flags" are set at once, not
just one. set_access() has no sanity check for the access argument. As a result, set_access()
could be called by the management with a value of 3, which is a valid value in Vyper and represents the
states whitelist and blacklist being true at the same time.

However, the contract is not designed to handle this value and will treat it the same as 0.

Code corrected:

A check has been added that disallows values that are greater than 2. Now the only possible enum
values are default, whitelist and blacklist.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.8 Delegation Could Allow Double Voting
Design Low Version 1 Code Corrected

CS-YEGOV-011

In DelegateMeasure, an address that has given a delegation to another address, has a vote_weight of
0, which means it can no longer vote directly.

However, the delegate() function does not check if the address that is giving delegation has
previously voted during the current epoch. As a result, it is possible that an address first votes with its
own vote_weight, then delegate() is called. This would allow the voting power to be used a second
time by the address receiving the delegation.

Note that delegate() can only be called by the management role, which is expected to be used
through the GenericGovernor. In this case, the issue can be avoided by calling enact() before the
VOTE_PERIOD starts, given that the delay is smaller than VOTE_START.

Code corrected:

Version 2This was fixed in by storing delegated stake in a separate vault, which only updates
vote_weight at the end of the week.

6.9 Number of Assets Could Change During Vote
Design Low Version 1 Code Corrected

CS-YEGOV-010

In WeightVote, the number of assets in the Pool is queried once when the first vote in a voting period
happens. The value is cached and not updated for the rest of the epoch.

If the number of assets changes within the voting period, it will be impossible to vote for the newly voted
asset. This would only happen if the execute function of PoolGovernor is called late (in the last week of
the epoch) by the operator.

Code corrected:

Yearn removed the caching of the number of tokens and now queries them directly from the pool.

6.10 Race Condition in GenericGovernor
Design Low Version 1 Code Corrected

CS-YEGOV-005

If a proposal is passed that stops another proposal in the same epoch from being enacted, whether by
explicitly canceling it or by modifying common parameters such as majority, then a race condition
occurs whereby depending on the order in which the proposals are enacted, the end result is different.

Note that enact() can be called by anyone, thus this ordering is also subject to MEV.

Yearn found and reported this issue while the review was ongoing.

Code corrected:

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Version 2In , enact() uses the values of majority and delay snapshotted at the end of the previous
epoch.

6.11 Majority Parameter Can Be Less Than Fifty
Percent
Informational Version 1 Code Corrected

CS-YEGOV-006

In GenericGovernor, the majority parameter can counterintuitively be set to less than 50%.

This would mean that a proposal with more no votes than yes votes can pass.

Code corrected:

Yearn now enforces a range betweeen VOTE_SCALE / 2 and VOTE_SCALE for majority.

6.12 Missing Events
Informational Version 1 Specification Changed

CS-YEGOV-008

The constructors of DelegateMeasure, Executor, GenericGovernor, InclusionIncentives,
InclusionVote, OwnershipProxy, PoolGovernor, WeightIncentives and WeightVote do not
emit the SetManagement() event.

Specfication changed

Yearn answered:

This is intentional, as it would require to also emit events for a lot of other parameters
during the constructor to be fully consistent. For example, in the
generic governor constructor we set a value for measure, delay, quorum, majority and delay.

6.13 Sanity Checks
Informational Version 1 Code Corrected

CS-YEGOV-007

Multiple functions do not sanitize their input. E.g., the Executor contract in set_access(),
set_governor(), whitelist() and blacklist() do not check for address zero. We advise
reviewing which functions would benefit from a sanity check, even if they are permissioned.

Code corrected:

Yearn changed the listed functions and implemented sanity checks. We additionally assume Yearn
checked all other potential functions and added checks.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6.14 Should Governance Be Able to Evict the
Treasury
Informational Version 1 Specification Changed

CS-YEGOV-017

In the setTreasury() function of InclusionVote, InclusionIncentives and
WeightIncentives, the management role has the power to change the treasury address to an
arbitrary value. The yETH protocol is designed to be governed by st-yETH holders. At the same time,
YIP-72 says that the treasury should be the "Yearn Treasury or an autonomous splitter contract directed
by yBudget." Is it intended that holders are able to direct the treasury revenue away from Yearn?

Specification changed

This described behavior was originally intended. But after being raised and careful consideration, Yearn
decided that only the treasury shall be allowed to call setTrasury and changed the code accordingly.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimisations
Informational Version 1 Code Partially Corrected

CS-YEGOV-003

We discovered the following potential gas optimizations:

1. The Proxy interface in Executor uses Bytes[65536] as data argument, but the OwnershipProxy
only supports Bytes[2048]. The calldata variable in execute() also uses this large Array
size. In Vyper, arrays reserve memory slots for their maximum size, even when many of the
elements are zero. As a result, the memory will be extended by 65536 Bytes as soon as another
variable is placed in memory after the array. This is very expensive.

2. uint could be used instead of boolean values. E.g., as governor flag in Executor.

Code partially corrected

Yearn decided to decrease the overall max script size to Bytes[2048]. In the rare case that a proposal
requires a script larger than this, they can work around it by deploying a one-time use contract that is
granted a temporary governor role during execution.

7.2 PoolGovernor Can Skip Epochs
Informational Version 1

CS-YEGOV-001

The PoolGovernor's execute function always executes the vote results for epoch - 1. This means
that if execute() is not called during an epoch, the preceding epoch's vote results will never be
executed.

The winner in InclusionVote has its rate_provider set to APPLICATION_DISABLED, so if an asset
wins but then the execution of the winning epoch is skipped, that asset cannot be proposed again unless
the operator of InclusionVote sets the rate_provider again.

The execute function can only be called by the operator of PoolGovernor. If the operator is
unavailable or malicious, it may not be called.

7.3 Unused Code
Informational Version 1 Code Partially Corrected

CS-YEGOV-004

The following code is not used:

• WeightVote: the interface definition of Measure.total_vote_weight

• InclusionVote: the interface Measure.total_vote_weight

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

• InclusionIncentives: the interface voting.candidates_map and the constants
VOTE_START and VOTE_LENGTH.

• WeightIncentives: the constants VOTE_LENGTH and VOTE_START

• GenericGovernor: the interface definition Measure.total_vote_weight

Code partially corrected

The unused interfaces were removed. The unused constants still exist in WeightIncentives.

7.4 DelegatedStaking Does Not Strictly
Conform to ERC-4626
Informational Version 1

CS-YEGOV-002

maxDeposit() and maxMint() return . Per ERC-4626, "MUST NOT be higher than the actual
maximum that would be accepted". The balance is eventually stored packed in only 240-bits. Therefore,
the theoretical maximum is . However, this is not enforced in the code, rather the supply of ETH
is assumed to upper-bound the system.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Epoch Boundary Agreement
Note Version 1

To prevent double voting, VOTE_LENGTH should always be at most one week, EPOCH_LENGTH should
always be a multiple of one week, and genesis should be set to a multiple of one week. This is to be
consistent with the current Staking contract which provides voting weights.

8.2 Governance Proposal Passes In The Event Of
A Tie
Note Version 1

In GenericGovernor, the condition for a proposal to be treated as passed is as follows:

if votes > 0 and yea * VOTE_SCALE >= votes * self.majority:
 return STATE_PASSED

Assuming majority is 50% and a proposal has one yea and one nay vote, it will pass.

8.3 Limted Number of Pool Tokens
Note Version 1

Pools have 32 slots. This sets a cap to the maximum number of tokens to add. Once included, a token
can never be removed from the protocol. Removing tokens from a pool would need a redeploy.

In PoolGovernor, the execute function will get the winner of the InclusionVote and try to add it to the
Pool.

If there are already 32 assets in the Pool and InclusionVote has a winner, execute() will revert. This
will also make it impossible to change the weights during that epoch.

The management of InclusionVote should call disable() once there are 32 assets to avoid this.

8.4 Power of the PoolGovernor Operator
Note Version 1

The specifications currently say that the operator of PoolGovernor has limited power. This is true but the
operator role is still extremely powerful as it must be trusted to set the pool values like amplification and
ramping in a non-exploitable way. The parameters the operator role can set are critical in a yETH pool
and related to other parameters. Hence, as mentioned in the system assumptions, ths role needs to be
fully trusted.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8.5 Ramp_Duration Should Be Chosen Carefully
Note Version 1

The ramp_duration variable in PoolGovernor should be chosen carefully. If it is too short, it may be
possible to make profitable sandwich attacks.

It should also not be too long. In particular, it must be shorter than the length of an epoch, as assets
cannot be added to the Pool while there is an ongoing ramp. The operator of PoolGovernor should
call execute() at least ramp_duration before the end of the epoch, so that the ramp ends by the
time execute() is callable again.

8.6 Rebasing and Fee-On-Transfer Tokens Cannot
Be Used as Incentives
Note Version 1

Both InclusionIncentives and WeightIncentives keep internal balances for tokens used as
incentives. This is done in such a way that, if the contract ends up with more tokens than expected, then
the leftover amount will be lost. If the contract ends up with fewer tokens than expected, then
transfer() will fail and the last user to claim will not be able to receive the incentives they are owed.

Yearn - yETH Governance - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 OwnershipProxy
	2.2.2 Executor
	2.2.3 LaunchMeasure
	2.2.4 DelegateMeasure
	2.2.5 DelegatedStaking
	2.2.6 GenericGovernor
	2.2.7 PoolGovernor
	2.2.8 WeightVote
	2.2.9 InclusionVote
	2.2.10 WeightIncentives
	2.2.11 InclusionIncentives
	2.2.12 Roles and trust assumptions
	2.2.13 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Blank Votes Not Counted
	6.2 Balance Used Instead of Voting Weight in DelegateMeasure
	6.3 Griefing by Flooding Malicious Proposals
	6.4 InclusionVote Operator Trust
	6.5 Proposals Can Be Enacted After More Than One Epoch
	6.6 Voters Trust Proposal Author Not to Retract
	6.7 Access Control Can Have Invalid Value
	6.8 Delegation Could Allow Double Voting
	6.9 Number of Assets Could Change During Vote
	6.10 Race Condition in GenericGovernor
	6.11 Majority Parameter Can Be Less Than Fifty Percent
	6.12 Missing Events
	6.13 Sanity Checks
	6.14 Should Governance Be Able to Evict the Treasury

	7 Informational
	7.1 Gas Optimisations
	7.2 PoolGovernor Can Skip Epochs
	7.3 Unused Code
	7.4 DelegatedStaking Does Not Strictly Conform to ERC-4626

	8 Notes
	8.1 Epoch Boundary Agreement
	8.2 Governance Proposal Passes In The Event Of A Tie
	8.3 Limted Number of Pool Tokens
	8.4 Power of the PoolGovernor Operator
	8.5 Ramp_Duration Should Be Chosen Carefully
	8.6 Rebasing and Fee-On-Transfer Tokens Cannot Be Used as Incentives

