PUBLIC

Code Assessment

of the yDiscount

Smart Contracts

Aug 29, 2023

Produced for

by

Yy yearn

@EHAINSEEURITY




Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Informational

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG

© 0 N 01 W

10
11


https://chainsecurity.com

1 Executive Summary

Dear Yearn Team,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of yDiscount according to
Scope to support you in forming an opinion on their security risks.

Yearn implements a program allowing Yearn contributors to buy YFI at a discount each month, the
discount is subject to the duration of their ve YFI lock and the purchased YFI are immediately locked into
veYFl according to the contributor's current lock.

During this assessment, we did not uncover any severe issues and in summary, we find that the
codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

(¥ Specification Changed

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the yDiscount repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note
1 | 17 July 2023 d81212a46da5d8efeb16638c6cd889507f274baa Initial Version
2 | 08 August 2023 9f5725ach2c8368cdfel78a67cfe2a99f14ed606 Second Version

For the Vyper smart contracts, the compiler version 0. 3. 7 was chosen.

The only file in scope is Di scount . vy.

2.1.1 Excluded from scope

All test and mock files are excluded from the scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Yearn offers a possibility for contributors to the Yearn protocol to purchase YFI at a discount given the
current market price. The discount is computed from the user's current veYFI lock in such a way that the
longer the lock duration is, the greater the discount will be. The purchased YFI are immediately locked
into veYFI , keeping the same duration.

The Di scount contract is the entry point of the system and offers the following state modifying functions:

eset _team al | onances: can only be called by the nanagenent of the contract. This function can
be used to distribute allowances to different teams that will later be able to distribute these
allowances to their respective contributors using set _contributor_al |l onwances. The
management can specify if the allowances that are being given are for a new month, in which case,
all previously unused allowances are invalidated and can no longer be used both by teams and
contributors.

eset _contributor_all owance can be only called by addresses that have a team allowance
greater than 0 and that is still valid (has not expired and has been given for the current month).
Given a list of contributors and their respective allowances, the team allowance is distributed to the
contributors.

* buy: Can be called by anyone having a non-null allowance that is still valid (has not expired and has
been given for the current month). It essentially let a user buy YFI at a discount for some ETH, and
immediately locks it into veYFI, keeping the same lock duration.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 5


https://chainsecurity.com

« If the contributor is buying YFI for himself and has a lock duration of at least 4 weeks, a
discount between 10% and 60% relative to his lock duration is given.

« If the contributor is buying YFI for someone else (the specified account does not match the
message sender), a special rule applies: a discount of 10% is given if the lock of the account
has a remaining duration of at least 104 weeks (2 years), as opposed to the previous case, the
discount does not scale with the lock duration.

Once the discount has been computed, the amount of YFI that can be bought with the ETH sent
along the call is computed using the discount factor and the price of YFI in ETH obtained using
Chainlink and/or Curve oracles. The ETH is sent directly to the managenent and the purchased
YFI are locked int veYFI .

*w t hdr aw. Withdraw any ERC20 token from the contract, can only be called by the nanagenent .

Important notes:

* A contributor's address can be part of multiple teams, in which case, the allowances given by each
team are added to obtain the contributor's allowance.

« All allowances expire after 30 days or whenever a new allowance is set, whichever happens first.

2.3 Trust Model

The nanagenent is fully trusted and expected to behave honestly and correctly by correctly giving the
allowances and funding the contract with enough YFI to cover the contributors' purchases.

The oracles are trusted in returning accurate rates for the pair YFI/ETH.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 6


https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings £
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 9



https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0

y g

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 2
ty g

* Missing Indexing of Events (NS gEs
» Race Condition on Team Allowance il ENEE

6.1 Missing Indexing of Events

(Design {(EVZEETEY] Code Corrected

The event Newibnt h contains no indexed fields. The event's field nont h is a specific number. Yearn
might consider indexing it if needed.

CS-YRNDSCNT-004

Code corrected
The field nront h was indexed in the event Newivbnt h.

6.2 Race Condition on Team Allowance

(Design {(EJZZTRY] Specification Changed)

If the management calls set _t eam al | owances a second time during the same month while a team
has some allowance left, similar to the well-documented issue with the ERC20 appr ove function, it is
possible for a team to front-run the transaction to spend its remaining allowance before the management
set its allowance to the new amount.

CS-YRNDSCNT-005

Specification changed

Yearn highlighted the trust assumption that the team is a fully trusted party. Misbehaving will lead to
disqualification from participating in the program.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Event Reentrancy
(Informational] [Version 1]

CS-YRNDSCNT-001

In the function buy, the callback is done before logging the event, in the case that the call would reenter
the contract, it would be possible to have events emitted out of order.

7.2 Gas Optimizations
(Informational] [Version 1]

CS-YRNDSCNT-002

In set _contri butor_all owances, sel f. expiration is read from storage once before entering
the loop and then once at each iteration of the loop, caching it in memory would avoid several SLOAD.

7.3 Inconsistency of the Interface
Chai nl i nkOracl e

(Informational] [Version 1]

CS-YRNDSCNT-003

While the Chainlink documentation specifies that the return type of deci mal s is an ui nt 8, the interface
Chai nl i nkOr acl e defines the function deci mal s as returning an ui nt 256. Although a ui nt 8 will
always fit in a ui nt 256, it would be more consistent to use ui nt 8 as described in the documentation.

@ Yearn - yDiscount - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope

	2.2   System Overview
	2.3   Trust Model

	3   Limitations and use of report
	4   Terminology
	5   Findings
	6   Resolved Findings
	6.1   Missing Indexing of Events
	6.2   Race Condition on Team Allowance

	7   Informational
	7.1   Event Reentrancy
	7.2   Gas Optimizations
	7.3   Inconsistency of the Interface ChainlinkOracle


