PUBLIC

Code Assessment

of the V3 Vaults
Smart Contracts

May 4, 2023

Produced for

by

Yy yearn

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG

10
11
13
19
20

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of V3 Vaults according to
Scope to support you in forming an opinion on their security risks.

Yearn implements VaultsV3, an unopinionated ERC-4626 compliant system designed to distribute
depositor funds into various strategies and manage accounting robustly. Depositors receive ERC-20
compliant shares that can be redeemed at any time.

The most critical subjects covered in our audit are security, functional correctness and the proper
accounting of the assets and shares.

During the review, no critical or highly severe issues were uncovered. Two medium severity correctness
issues have been found which have been resolved after the intermediate report.

The general subjects covered are adherence to the implemented standards, code complexity and gas
efficiency.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings 0
CID-Severity Findings 0
(Medium)-Severity Findings 2
Y Code Corrected 2
(Low)-Severity Findings 10
N Code Corrected 7
WSvecication Changsd) 1
Wik Accepied 1
W Acknowicdged 1
@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the V3 Vaults repository based on the
documentation files.

The scope consists of the two vyper smart contracts:
1. ./contracts/VaultFactory.vy
2. ./contracts/VaultV3.vy

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
V

11 April 2023 | 05fbd377a7778c660034f17c11b32e3767ff9166 Initial Version

2 May 2023 ab3ed5878bbdd8d305e6a6hbc3cheal5e8acd569 | After Intermediate Report
2 a

3 May 2023 953f8b663ed2658c9cc937d380e3b6beefdecd18 | Updated Decimal Check

3

For the vyper smart contracts, the compiler version 0. 3. 7 was chosen.

2.1.1 Excluded from scope

Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Yearn implements an ERC-4626 compliant VaultV3 that functions as a secure and efficient debt allocator
for an underlying ERC-20 compliant token. A factory contract is utilized to enable permissionless
deployment of a vault. Users can mint shares of a vault by depositing underlying tokens, with the
expectation of receiving passive yield yet taking on the risk of potential loss. The vault's share is simply
an ERC-20 token which cannot be transferred to the vault itself or zero address. Shares can be
redeemed later to withdraw the underlying tokens. ERC-4626 compliant strategies can be added to the
vault to generate yield on the underlying tokens. The vault utilizes several mechanisms to mitigate price
per share (pps) fluctuations and manipulation: (1) Internal accounting is used instead of bal anceOf () to
keep track of the vault's debt and idle. (2) A profit locking mechanism designed by V3 Vaults locks profits
or accountant's refunds by issuing new shares to the vault itself that are slowly burnt over the an unlock
period. (3) In the event of losses or fees, the vault will always try to offset them by burning locked shares
it owns. The price per share is expected to decrease only when excess losses or fees occur upon

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

processing a report, or a loss occurs upon force revoking a strategy. It will increase when the profit is
slowly unlocked as time goes by.

2.2.1 Vault Factory

The Vaul t Fact ory contract implements a factory where all vaults are deployed in a permissionless
manner. Any address can call depl oy_new vaul t to create a vault from blueprint by the CREATE2
opcode. Several vaults can exist for one underlying token. There is a gover nance role that sets the
protocol fee and the fee recipient. The transfer of gover nance role involves two phases: first, the
gover nance assigns the pendi ng_gover nance, and later, the pendi ng_gover nance takes the
initiative to accept the nomination.

2.2.2 VaultVv3

The Vaul t V3 contract implements all the logic for funds allocation, profits and losses reporting, fees
assessment, and vault maintenance. Users can deposit funds to m nt shares and r edeem their
shares to wi t hdr aw funds in a permissionless manner. Roles-specific functions are defined to manage
the vault, rebalance the strategies and report the profits, loss and fees.

Users Permissionless Entry Points

The deposit and mi nt functions would transfer funds to the vault, increase the total _i dl e, and
issue new shares to the user when the vault is not shutdown and deposit _| i m t is not reached.

Upon wi t hdraw and redeem the vault burns the shares and transfers the funds to the user if
t ot al _i dl e is sufficient. Otherwise, following steps will be taken to increase t ot al _i dl e:

* The vault iterates through an array of strategi es specified either by the user or the
gueue_manager to withdraw funds.

* In case the strategy has any unrealized loss since the last report, the user would bear part of it as
well as the potential token transfer loss during withdraw from the strategy.

A redemption may not be successful if there are not enough funds available to be provided.
Roles

rol e_manager is the administrator set in constructor that controls all roles. The transfer of
rol e_manager follows the same two-phase transition as Vaul t Fact or y. Different roles are assigned
to separate the critical functionalities of vault management. Roles can be filled by EOA, smart contract
like a multisig or a governance module that relays calls.

*« ADD STRATEGY_ MANAGER can add strategies to the vault.
« REVOKE_STRATEGY _MANACER can remove strategies from the vault.
* FORCE_REVCKE MANAGER can force remove a strategy causing a loss.

« ACCOUNTANT _MANAGER can set the accountant module address that assesses fees and
potentially refunds to the vault in case of a loss.

« QUEUE_MANAGER can set the queue_manager module address that can provide and override the
withdraw queue.

* REPORTI NG_MANAGER calls report for strategies.

« DEBT_MANACER adds and removes debt from strategies.

« MAX DEBT_MANAGER can set the max debt for a strategy.

« DEPOSI T_LI M T_MANAGER sets deposit limit for the vault.

M NI MUM | DLE_MANAGER sets the i ni mum t ot al _i dl e the vault should keep.
* PROFI T_UNLOCK _MANAGER sets the profit_max_unl ock_ti ne.

* SWEEPER can sweep tokens from the vault.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

* EMERGENCY_MANAGER can shutdown vault in an emergency.
In addition, an open_r ol e mechanism is used by the r ol e_nanager to turn a permissioned function
open to public. The r ol e_rmanager can set _open_rol e and cl ose_open_r ol e at its discretion.
Debt Operations

The following are the most important permissioned entry points to operate the vault, which can be called
by bots or manually depending on periphery implementation:

updat e_debt () is called by the DEBT_MANAGER to either deposit into or withdraw from a strategy. The
actual amount is bounded by the strategy's max_debt , maxDeposi t and maxW t hdr aw and the vault's
mnimmtotal idle.

process_report () is called by the REPORTI NG_MANAGER to report profits or losses for individual
strategies as well as charging fees:

etotal _assets will be queried from the strategy and compared with the current _debt to
compute the incoming gain and loss.

* Protocol and strategy fees are assessed and charged by minting shares to the corresponding
recipients. The account ant may provide a t ot al _r ef unds as newly locked shares to offset the
loss.

» The vault will issue newly locked shares to itself if there is a profit. Users will bear the excess loss
and fees only if they exceed the newly and previously locked shares.

« In the event of a profit, the profit releasing period will be updated by the weighted average of the
remaining locked profits and the newly locked profits.

sweep() can be called by the SWEEPER to sweep the tokens from airdrop or sent by mistake. Only the
tokens that are neither vault's shares nor strategies tokens can be swept.

add_strategy() can be called by the ADD STRATEGY MANAGER to add a new strategy with
current _debt and nax_debt setto 0, which forbids the allocation of funds at creation time.

revoke_strategy() can be called by the REVOKE_STRATEGY MANAGER to revoke a strategy only
when the debt of a strategy has been fully removed.

FORCE_REVOKE MANAGER is expected to call f orce_revoke_strat egy() on a faulty strategy only in
an emergency. Because it revokes a strategy regardless of its current debt, which incurs loss to the
users. If the force revoked vault is added back later, the previously lost debt will be treated as profits.

Emergency Operations

V3 Vaults designs several mechanisms to handle different emergency situations. Withdrawals and
accounting are not paused or affected under any circumstances.

For the emergency of a single strategy:

« The MAX DEBT_MANAGER can pause future allocation to the strategy by setting the strategy
max_debt to 0.

« A strategy can be revoked by the REVOKE _STRATEGY_ MANAGER or FORCE REVCOKE MANAGER.

For the emergency of the vault:

e The M NI MUM_| DLE_MANAGER can set the mi ni num_ t ot al _i dl e to max(ui nt 256) , where the
vault will request the debt back from strategies as well as stop new strategies from getting funds.

* The DEPCSI T_LI M T_MANAGER can set the deposi t Li m t to O which pauses future deposits.

* The EMERGENCY_MANAGER can turn the vault into shutdown mode irreversibly, where it acquires the
DEBT_MANAGER role to remove debt from the strategies as soon as possible.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 Roles and Trust Model

The gover nance of VaultFactory is fully trusted that is the nsg. sender at deployment and can be
transferred in the future. As a Vault is created in a permissionless way, we expect only the legit vault to
be used by the users. Namely the underlying token should be ERC-20 compliant without weird behaviors
such as double entry points, rebase mechanism, transfer fees, irrational return values, high decimals,
unusually large supply, etc.

In addition, the r ol e_manager and all other roles of a Vault are assumed trusted to behave honestly
and correctly at all times. The strategies added to a vault are assumed to never act maliciously or against
the interest of the system users.

2.2.4 Changes in Version 2

* The QUEUE_MANAGER can not force overwrite the user specified withdraw queue anymore, and it
purely provides a default withdraw queue if the user does not specify one. Hence, users' withdrawal
from preferred strategies cannot be paused by the QUEUE_MANAGER.

* The max(ui nt 256) feature (i.e. the contract assumes the user wants to use all the balance) has
been removed.

* The deposit limit is set to 0 when shut down_vaul t () is called. In this case, the maxDeposi t ()
will return 0 to comply with the standard, and the deposit limit can no longer be changed after
shutdown.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2D-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings 2

» Gain Exceeds Max_Debt(_)
» Reentrancy and process_report()

5.1 Gain Exceeds Max_Debt
D (Low) (Version 1))

In contract Vaul t V3, any strategy gains upon process_report () will be reported by increasing the
strategy's current _debt and the vault's total _debt regardless of the strategy's max_debt
parameter. In this case, the debt of a strategy can exceed its upper bound.

CS-YVV3-001

Acknowledged:
Yearn states:

This is deemed acceptable if caused by profits. Since debt can be | owered at
any tinme after by the DEBT_ MANAGER.

5.2 Reentrancy and process_report ()

D (Low) (Version 1) (ETTETED)

process report() can reenter functions of the Vault in the external «call to
| Account ant (account ant) . report (). Note that these are trusted roles, however, if the accountant
can dispatch a call from the (FORCE) REVOKE _STRATEGY MANAGER role, a strategy could be revoked
during the process of reporting it, which breaks the correct execution flow.

CS-YVV3-002

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Furthermore, similarly a strategy may enter into proces_report () while an update of its debt is in
process (updat e_debt ()). Roles are trusted to not misbehave, the smart contract implementation
however does not prevent this scenario.

Risk accepted:
Yearn states:
Reentrancy was intentionally left off process report() so that an accountant can

reenter ‘deposit’ if need be to issue refunds. It is expected that the accountant
never be set to a role other than accountant. And be given no other perm ssions.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 2

» Disproportional Unrealized Loss on Redemption
« Inconsistent Debt Accounting on Withdrawal From Strategies

(Low)-Severity Findings 8

* Add Self as a Strategy

» Incorrect Return Type of Decimals

» Incorrect Return Value

« Incorrect and Missing Specification

» Missing Event upon Role Change
+ Non ERC-4626 Compliant Functions

« Unchecked Profit Max Unlock Time
» Unprotected Sweep Function

6.1 Disproportional Unrealized Loss on
Redemption

[Medium] [Version 1] Code Corrected

If t ot al _i dl e is insufficient to fulfill a user's withdrawal, _r edeen() attempts to retrieve assets from
the strategies a user defined or overridden by the queue_nanager. Should a queried strategy have
unrealized loss, the user will take part of the unrealized loss. However, the user may take the loss in a
disproportional way as shown in the code.

CS-YVV3-014

« First, the user's share of the unrealized loss is computed based on assets_t o_wi t hdr aw.

« Afterwards, asset s_t o_wi t hdr awis capped by its upper bound.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

unreal i sed_| osses_share: uint256 = self._assess_share_of _unrealised_| osses(strategy, assets_to_w thdraw)
if unrealised_| osses_share > O:

User now "needs" |ess assets to be unlocked (as he took sone as | osses)

assets_to_withdraw -= unreal i sed_| osses_share

request ed_assets -= unrealised_| osses_share

NOTE: done here instead of waiting for regular update of these values because it's a rare case

(so we can save mnor anounts of gas)

assets_needed -= unrealised_| osses_share
curr_total _debt -= unrealised_| osses_share
After |osses are taken, vault asks what is the max anmpunt to wi thdraw

assets_to_withdraw = mn(assets_to_wi thdraw, min(self.strategies[strategy].current_debt, |Strategy(strategy).maxWthdraw(self)))

If assets_to_withdrawis restricted to strat egy. maxW t hdr aw sel f), the user will cover more
than his proportional share of the loss. In addition, the updated cur r ent _debt of this strategy as well as
the vault's total debt will diverge from the real debt because unreal i sed_| osses_shar e has been
overestimated.

current debt: uint256 = self.strategi es[strategy].current_debt
new debt: uint256 = current_debt - (assets to withdraw + unrealised | osses _share)

Update strategi es storage
sel f.strategi es[strategy].current_debt = new debt

Code corrected:

When nax_wi t hdr aw is the limiting factor for assets_t o _wi t hdr aw, the unrealised loss the user
takes is now adjusted proportionally. As a result, the user no longer bears more than their fair share of
the loss, and the update to curr ent _debt is done using the correct value.

If max withdrawis limting the anount to pull, we need to adjust the portion of
the unrealized | oss the user should take.
if max_w thdraw < assets to withdraw - unrealised | osses_share:
How rmuch woul d we want to wi thdraw
want ed: uint256 = assets to withdraw - unrealised | osses share
Get the proportion of unrealised conparing what we want vs. what we can get
unreal i sed | osses share = unrealised | osses share * max_w t hdraw / want ed
Adjust assets to withdraw so all future calcultations work correctly
assets to withdraw = max_wi thdraw + unreali sed | osses_share

6.2 Inconsistent Debt Accounting on Withdrawal
From Strategies

[Medium] [Version 1] Code Corrected

If t ot al _idl e is insufficient to fulfill the redemption, _redeen() attempts to retrieve assets from the
strategies. Should a queried strategy have an unrealized loss, the user has to take a part of this loss,
which is regarded as realized and deducted from curr_total debt. At the end of the loop,
sel f.total debt isupdatedtocurr_total debt.

CS-YVV3-006

CHECK FOR UNREALI SED LOSSES

If unrealised |losses > 0, then the user will take the proportional share and realise it
(required to avoid users withdrawing from |l ossy strategies)
NOTE: assets_to_withdraw will be capped to strategy's current_debt within the function

NOTE: strategies need to manage the fact that realising part of the |oss can nean the realisation of 100% of the |oss !!

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

unreal i sed_| osses_share: uint256 sel f._assess_share_of _unreal i sed_| osses(strategy, assets_to_w thdraw)
if unrealised_| osses_share 0:

assets_to_withdraw unreal i sed_| osses_share
request ed_assets unreal i sed_| osses_share

asset s_needed unreal i sed_| osses_share
curr_total _debt unreal i sed_| osses_share

assets_to_withdraw = mn(assets_to_w thdraw, mn(self.strategies[strategy].current_debt, |Strategy(strategy).maxWthdraw(self)))

if assets_to_withdraw 0:
conti nue

However, in case the strategy with unrealized loss reports 0 on maxW t hdr aw() , it will jump to the next
iteration and skip the following code which updates the strategy-specific debt
(strategies.current_debt). Consequently, the sum of all strategies.current_debt will
exceed sel f. t ot al _debt and result in an accounting inconsistency.

current _debt: uint256 sel f.strategi es[strategy].current_debt
new_debt: uint256 current debt (assets to withdraw + unrealised | osses_share)

sel f.strategi es[strategy]. current_debt new_debt

| og Debt Updat ed(strategy, current_debt, new_ debt)

Code corrected:

The updated code ensures accurate accounting before proceeding to the next loop iteration when it is not
possible to withdraw funds from a strategy:

1. If funds are simply locked, the users share of the loss to cover is zero and all accounting is correct.

2. If the strategy has a complete loss, the user realiszes this loss and the strategies debt is updated.

6.3 Add Self as a Strategy
7D (Low) (Version 1) (XL

The vault should not add itself as a strategy. Otherwise, updat e_debt will revert when funds are to be
deposited into the strategy, as the recipient of the shares cannot be the vault itself.

CS-YVV3-012

Code corrected:

In the updated code it is no longer possible to add the vault itself as a strategy.

6.4 Incorrect Return Type of Decimals

(Correctness JICTOEETRY Code Corrected)

deci mal s() of contract Vaul t V3 returns an ui nt 256 which does not comply with the ERC20 standard
where an ui nt 8 is returned.

CS-YVV3-009

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:
The type of the return value has been changed to ui nt 8 which is compliant with the specification.

6.5 Incorrect Return Value

(Correctness TR Code Corrected)

m nt () returns the calculated amount of assets to deposit, instead of the actual amount of assets
deposited. If a wuser mints shares which converted into assets equal nax(uint256),
sel f. _deposit () considers this a "magic value" and will only deposit the user's balance. m nt ()
however will return max(ui nt 256) and not the actual amount of assets deposited.

CS-YVV3-011

The same issue exists for wi t hdraw() when the amount of assets converted to shares equals
max(ui nt 256) .

The possibility of these scenarios depends on the exchange rate between shares and assets. The caller
might rely on the returned values for further calculations or decision-making processes, which could lead
to unintended consequences due to the discrepancy in the returned and actual deposited or withdrawn
assets.

Code corrected:

Yearn has removed the ability to pass MAX_UINT as a "magic value" to use the full balance.

6.6 Incorrect and Missing Specification

[Low] [Version 1] Specification Changed

In contract Vaul t V3, mi nt () returns the amount of assets deposited instead of shares according to its
specification. In addition, the specifications of wi t hdr awm() and r edeen() are missing.

CS-YVV3-010

Specification changed:

The specification of m nt () has been corrected. Specification has been added for wi t hdraw() and
redeem().

6.7 Missing Event upon Role Change
(Design [(CTYCZZTIBY] Code Corrected

In contrast to other sections of the code, role management functions (with the exception of
accept _rol e_nanager) do not emit events upon these important state changes. Emitting events
would enable external parties to observe these important state changes more easily.

CS-YVV3-013

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

Events have been added to set _rol e(), set_open_rol e() and cl ose_open_rol e(). Note that
transfer _rol e_manager () does not emit an event, an event is emitted upon the completion of the
role transfer in accept _r ol e_manager () only.

6.8 Non ERC-4626 Compliant Functions
(Correctness JETINZIEITB) Code Corrected

In case the vault is in shutdown mode, no further deposit can be made. However, maxDeposi t () does
not return O when the vault is shutdown.

CS-YVV3-007

The ERC-4626 specification however requires the function to return 0 in this case:
if deposits are entirely disabled (even tenmporarily) it MJST return O.

In addition, maxW t hdr aw() assumes a full withdrawal is possible if queue_rmanager is set regardless
of the unrealized loss. This conflicts with the specification which reads:

MUST NOT be hi gher than the actual nmaxi numthat would be accepted (it should underestinmate if necessary)

Besides, convert ToShar es() does not distinguish the following cases whent ot al _asset s is O:
* This is the first deposit where price per share is 1.

» The vault is dead where there are shares remaining but no assets. The price per share is 0 because
further deposit would revertin _i ssue_shares_f or_anount.

This would be misleading for external contracts to see a non-zero value when using
convert ToShar es() but fail on deposit ().

More informational, the ERC-4626 specification is loosely defined in these corner cases for these
functions. Nevertheless we want to highlight the potentially unexpected amounts returned:

previ ewRedeen() : In case t ot al Asset s is zero, the conversion is done at a 1:1 ratio. At this point
either no shares exist () or the value of the existing shares has been diluted to 0 (Il). For (1) the returned
value of 0 is appropriate. For (ll) previ enRedeen{() does not revert while r edeen{) reverts; the
specification reads:

MAY revert due to other conditions that woul d al so cause redeemto revert.

previ ewW t hdr aw() returns the amount in a 1:1 exchange rate when asset s==0 but shar es! =0.
Again for non-zero values the amount returned may be misleading.

Strictly speaking the value returned is not breaking the specification but might be unexpected by the
caller. The caller should be aware of this and any external system should exercise caution when
integrating with these functions.

The full specification can be found here: https://eips.ethereum.org/EIPS/eip-4626

Code corrected:

The code has been changed so that the deposit limit is set to O when the vault is shutdown, thus
maxDeposi t () would return O in this case. convert ToShar es() has been adjusted to distinguish the
case when the vault is dead. The potentially misleading return value of previ ewWt hdraw() is
acknowledged.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 17

https://eips.ethereum.org/EIPS/eip-4626
https://chainsecurity.com

Yearn also acknowledged the risk of maxW t hdr aw() and states:

It is deenmed acceptable for maxWthdraw() to not take into account unrealized

| osses. Since this would be very gas intensive for a function potentially used
on chain, and is not possible to accurately account for vaults that allow custom
wi t hdraw queues.

The external system is expected to exercise caution with the features of this contract during their
integration.

6.9 Unchecked Profit Max Unlock Time
(Design [(EZITB Code Corrected)

In contract Vaul t V3, profit_max_unl ock_ti nme is not checked at initialization. A faulty value may
lead to unexpected behaviors. In case profit_nmax_unl ock_ti me==0, the profit of the vault will be
locked forever. In case profit_max_unl ock_ti e is too large, the weighted average computation of
new_profit_| ocki ng_peri od may revert, which blocks process_report () as aconsequence.

CS-YVV3-015

Code corrected:

profit_max_unl ock_time is now checked in the vault constructor and setter ensuring that it is
greater than 0 and less than 1 year.

assert profit_max_unlock_tine 0

assert profit_max_unl ock tine 31 556 952

6.10 Unprotected Sweep Function
D (Low) (Version 1) (CITYID)

sweep() is not protected by the reentrancy guard. If trusted roles misbehave it's possible to sweep
assets of the vault at a time when the value of total _idl e is stale. No direct issue has been
uncovered, however this permits excessive access which may introduce unnecessary risks.

CS-YVV3-008

eIn deposit(), one could reenter by caling sweep() in the hook of
erc20_safe_transfer _from() only if the weird underlying token calls back to the sender after
transferring the token.

« Another case is that a strategy reenters sweep() when updat e_debt () calls wi t hdraw() on the
strategy. As the balance withdrawn is determined based on the delta of the actual balance, this
shouldn't have any negative impact, apart from potentially spurious events.

Code corrected:
A guard has been added for extra safety.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Loose Token Decimal Restriction
(Informational] [Version 1]

CS-YVV3-003

The vault's share token has the same token decimal as the underlying token. The underlying token
decimal is restricted (<= 38) in the Vaul t V3 constructor.

Token decimals are only for user representation and front-end interfaces. At the smart contract level, all
balances maintain token decimal precision. Overflows could potentially occur if a token permits
sufficiently large balances, leading to an overflow when these balances are multiplied. Importantly, this
issue is unrelated to decimals, so the check in the constructor cannot prevent it.

Note that we are not aware of any meaningful token with this behavior, this is more a theoretical
consideration.

Yearn understand that overflows are still possible no matter the token decimal value used. The check
was updated, it now only ensures that the decimal value does not exceed an ui nt 8. Legitimate vaults
with a normal underlying token will not trigger any overflows.

7.2 Updating Queue_Manager

(Informational] [Version 1]

CS-YVV3-004

The queue_nmnager smart contract defines the withdrawal sequence for a vault. Whenever a new
strategy is added, the vault informs the gueue_nanager by calling
gueue_manager. new_strat egy(address strategy).

The queue manager for the vault can be updated using set _gueue_nanager (). Note that the new
gueue manager is not informed about all existing strategies of the vault; in this case the queue manager
must be configured correctly manually.

7.3 yv<Asset Symbol> Not Enforced

(Informational] [Version 1]

CS-YVV3-005

The system specification requires the shares to be named yv<Asset Symbol>. Note that this isn't
enforced by the code, the share name can be freely defined when deploying a new Vault.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Debt Rebalanced in a Linear Way

During updat e_debt (), if the target debt value cannot be reached given the vault and strategy specific
limitations on the idle and debt, it will not revert. Instead, it will rebalance the debt to the closest value
towards the target. This behavior assumes it is always better to be closer to the target. However, the
assumption may not always be true for different strategies.

8.2 No User Protection on Shares Redemption

If during redemption funds must be pulled from a strategy at a loss, the user must cover his share of this
not yet realized loss. Additionally, in case the call to strat egy. wi t hdraw() results in less than the
requested assets, the user takes the full loss.

Unaware users may redeem their shares for less of the underlying than they expect. There is no
protection e.g. in form of a parameter which allows the user to specify the minimum amount of underlying
to receive / shares to be burned he tolerates before the transaction should revert.

Yearn states:

It is expected that off chain users interact with the vaults through an ERC- 4626
router which has logic to set mninmuns and slippage tol erance for deposits and
wi t hdrawal s. And on chain users can either use the router or set their own limts.

8.3 Queue Manager Can Pause Withdrawals From

Strategies

A faulty or malicious queue_rmanager with shoul d_overri de enabled can pause users' withdrawals
from strategies by: (1) directly revert. (2) return a non-existing strategy. queue_nanager must be
properly configured and trusted if enabled.

In the shoul d_overri de option has been removed so users can always bypass the
gueue_manager if a customized withdraw queue is specified. Otherwise, the withdraw queue will be
gueried from the queue_nanager .

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

i f queue_manager enpt y(addr ess):
if len(_strategies) 0:
_strategies | QueueManager (queue_nmanager).w t hdraw_queue(sel)

8.4 Race Condition on Withdrawal From
Strategies

If t ot al _i dl e is insufficient to fulfill the redemption, _r edeen() attempts to retrieve assets from the
strategies. Should a queried strategy have unrealized loss, the user has to take a part of this loss. In case
the vault has global unrealized loss, users may engage in a race to withdraw from the optimal strategies.

*In case the queue_nanager is disabled, users will race to withdraw from the strategies without
unrealized loss. As a consequence, the tardy users will take more unrealized loss.

« In case the queue_rmanager is enabled, withdrawals may be biased across all strategies depending
on the actual construction of the wi t hdr aw_queue.

Users will only share the unrealized loss of a strategy in a fair way if it is reported by the
REPORTI NG_MANAGER.

8.5 Tokens With a Blacklist
(D) (Version 1

Tokens such as USDC maintain a blacklist that prohibits the transfer of tokens to and from the addresses
listed on it. Assuming a vault utilizes such a token, a blacklisted address would be unable to be the
recipient when funds are withdrawn. If a strategy is blacklisted, withdrawal of allocated funds would be
impossible. Furthermore, if a vault itself is blacklisted, the withdrawal of all deposited funds would be
prevented.

8.6 Trade-off in Profits Distribution
(D) (Version 1)

All profits getting paid to vault depositors are retroactive:
« New joiners of a vault will share part of the locked profits accumulated before they entered.

» The locked profits generated by their deposits will be forfeited upon their withdrawals.

This is a trade-off to improve the gameability and avoid intensive gas to track specific accounts for the
time they deposit. As long as the profits are distributed slowly and continuously, no whales are expected
to game the system by deposit right before a profit harvest and realize full gains.

8.7 User-Selected Strategies

If no queue manager is configured, when idle funds are insufficient for a withdrawal, users can specify
which strategies should be used to retrieve funds.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

This could enable users to substantially interfere with the planned allocation of assets, necessitating
frequent intervention from the debt_manager.

@ Yearn - V3 Vaults - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Vault Factory
	2.2.2 VaultV3
	2.2.3 Roles and Trust Model
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Gain Exceeds Max_Debt
	5.2 Reentrancy and process_report()

	6 Resolved Findings
	6.1 Disproportional Unrealized Loss on Redemption
	6.2 Inconsistent Debt Accounting on Withdrawal From Strategies
	6.3 Add Self as a Strategy
	6.4 Incorrect Return Type of Decimals
	6.5 Incorrect Return Value
	6.6 Incorrect and Missing Specification
	6.7 Missing Event upon Role Change
	6.8 Non ERC-4626 Compliant Functions
	6.9 Unchecked Profit Max Unlock Time
	6.10 Unprotected Sweep Function

	7 Informational
	7.1 Loose Token Decimal Restriction
	7.2 Updating Queue_Manager
	7.3 yv Not Enforced

	8 Notes
	8.1 Debt Rebalanced in a Linear Way
	8.2 No User Protection on Shares Redemption
	8.3 Queue Manager Can Pause Withdrawals From Strategies
	8.4 Race Condition on Withdrawal From Strategies
	8.5 Tokens With a Blacklist
	8.6 Trade-off in Profits Distribution
	8.7 User-Selected Strategies

