PUBLIC

Code Assessment

of the Tokenized Strategy

Smart Contracts

May 4, 2023

Yy yearn

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG

10
11
12
17
19

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Tokenized Strategy
according to Scope to support you in forming an opinion on their security risks.

Tokenized Strategy offers a framework for developers to easily create ERC-4626 compliant tokenized
strategies by implementing only the strategy-specific logic, as it provides the core accounting
functionality.

The most critical subjects covered in our audit are security and functional correctness.

During the review, no critical or high severity issues were uncovered. The report highlights a medium and
a few low severity issues, one of which highlights a significant inaccuracy in the documentation. After the
intermediate report, all issues have been addressed.

The general subjects covered are adherence to the implemented standards, code complexity and gas
efficiency.

In summary, we find that the codebase provides a good level of security. We have to emphasize that the
project reviewed is a template only, not an actual implementation of a strategy.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

¥ Specification Changed

(Low)-Severity Findings

¥ Code Corrected

¥ Specification Changed

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Tokenized Strategy repository based
on the documentation files.

The scope consists of the two solidity smart contracts:
1. ./src/BaseTokenizedStrategy.sol

2. .Isrc/TokenizedStrategy.sol

The contracts reviewed serve as building blocks only, they are not a working strategy. They
facilitate building an actual strategy: The abstract contract of BaseTokenizedStrategy is to be inherited,
the code of TokenizedStrategy handling the core accounting logic is to be executed as delegatecall.
Custom code can break core functionality, any strategy built on top should be audited separately.

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
V

21 April 2023 | 105c¢2f9340c05d661e07e36ff3acc9c75c99c0eb Initial Version

2 May 2023 71b8184d8bfcaeada74052900c58edfc0329e443 | After Intermediate Report

3 May 2023 c0da749dbe2ac0794c8086228a85c214db4045b | Updated Recipient Check
= e

For the solidity smart contracts, the compiler version 0. 8. 18 was chosen.

2.1.1 Excluded from scope

Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The project reviewed provides a template that enables developers to easily create an ERC-4626
compliant tokenized strategy by only implementing the strategy-specific logic, as the core accounting
functionality is already supplied.

In such a strategy users can mint shares of a strategy by depositing underlying tokens, with the
expectation of receiving yield yet taking on the risk of potential loss. The strategy's share is an ERC-20

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

token non-transferrable to the strategy itself or zero address. Shares can be redeemed later to withdraw
the underlying tokens. The strategy utilizes several mechanisms to mitigate price per share (pps)
fluctuations and manipulation: (1) Internal accounting is used instead of bal anceOf () to keep track of
the strategy's debt and idle. (2) A profit locking mechanism locks profits by issuing new shares to the
strategy itself that are slowly burnt over an unlock period. (3) In the event of losses or fees, the strategy
will always try to offset them by burning locked shares it owns. The price per share is expected to
decrease only when excess losses or fees occur upon processing a report. It will only increase when the
profit is slowly unlocked as time goes by.

An immutable proxy pattern is utilized to abstract the important and risky functionalities away from the
customized strategy. All customized strategies should inherit BaseTokeni zedSt r at egy and override
several simple functions that interact with the underlying yield source. It is expected that all the
standard-compliant function calls will enter the fallback to delegatecall the Tokeni zedStr at egy
implementation for essential internal accounting. In case a strategy-specific operation is required during
the execution, the implementation will callback to the customized strategy.

Note that the actual customized strategies implementations which will be built using this framework are
unknown. They must adhere to the design rules, notably they must not interfere with the accounting and
not overwrite the special storage of TokenStrategy. Otherwise functionality might be compromised.

2.2.1 BaseTokenizedStrategy

The BaseTokeni zedSt rat egy is an abstract contract. Its state variables will be initialized by the
i nitialize function, which is also executed after cloning a new instance of the strategy. Several
strategy-specific functions are left to be overridden by the strategist:

einvest (), _invest() deposit funds into the yield source.
«freeFunds(), freeFunds() withdraw funds from the yield source.

etotal I nvested, totallnvested() harvest all rewards, reinvests and returns a trusted and
accurate amount of funds currently held by the Strategy.

tendThi s(), tend() can be used by the management or the keeper to harvest and compound
rewards, deposit idle funds, perform needed position maintenance or anything else that doesn't
need a full report for. Note this call can be sandwiched if a swap is involved.

et endTri gger () returns whether tend should be called by the management and the keeper or not.
e avai |l abl eDepositLimt() returns the deposit limit for a user.

eavail abl eWt hdrawli m t () returns the withdraw limit for a user.

All the state-modifiable functions above are protected by a onl ySel f modifier to avoid a malicious user
bypassing the internal accounting. Namely none of them should be called directly on the
BaseTokeni zedStrat egy, and they should only be invoked by a callback from the
Tokeni zedSt r at egy. The customized strategy should follow this design to function in a secure and
efficient way as expected. A strategist may add customized storage variables on demand as well. Due to
the Strat egyDat a residing at storage slots with high addresses, unintentional storage collision with
variables of the custom strategy implementation are unlikely to happen.

2.2.2 TokenizedStrategy

The Tokeni zedStr at egy contract implements the core logic including the ERC-4626 functionality
which is common for all custom strategies. It is deployed only once and it's code is executed by the
individual strategies using delegatecall. To prevent unintended storage conflicts with variables of the
custom strategy, it stores all it's variable in a struct residing at a high storage address. This way, it
prevents conflicts with variables of the custom implementation with high probability.

Users Permissionless Entry Points

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The deposi t and mi nt functions would transfer funds to the strategy and issue new shares to the user
when the strategy is not shutdown and user's maxDeposi t is not reached.

Upon wi t hdr aw and r edeem the strategy burns the shares within naxRedeemand transfers the funds
to the user if i dl e is sufficient. Otherwise, a callback to BaseTokeni zedSt r at egy is invoked to free
funds from the yield source. Any discrepancy between the idle and the required assets is regarded as a
loss taken by the withdrawer. A disproportionate share of unrealized loss may exist depending on the
design of _freeFunds() . In addition, there is no slippage protection for wi t hdr awand r edeem

Note that deposi t () and nmi nt () to a dead strategy does not revert (i.e. shar es=! 0 but asset s==0).
In this case, the depositer's shares are diluted by the shares left immediately and lose part of the assets.
And this contract can receive Ether without further logic to deal with it.

Strategy Operations and Management

The following are the most important permissioned entry points to operate the strategy, which can only
be called by the keeper or the management.

t end() is called by the keeper or the management to t end the strategy if a custom t endTri gger () is
implemented.

report()” is called by the keeper or the management to record all profits and losses since last report and
charge fees accordingly:

* Protocol fee will be calculated based on the old total assets.

* An accurate account for all funds including those potentially airdropped is retrieved by a callback to
total I nvested() on BaseTokeni zedSt r at egy.

» The performance fee will be charged based on the profit. Newly locked shares will be issued to self if
there is a net profit, otherwise, previously locked shares will be burnt to cover the loss and fees.

» The new profit unlocking schedule will be computed as a weighted average of the previously locked
shares and newly locked shares.

The management role is the admin of the strategy and has privilege to call the following setters:
e set Managenent () instantly transfers the management role to another address.
* set Keeper () sets the keeper role to another address.
e set Perf or manceFee() sets the performance fee to be charged on a reported gains.
e set Per f or manceFeeReci pi ent () sets a new address to receive performance fees.
eset ProfitMaxUnl ockTi me() sets the time for profits to be unlocked over.

eshut downStrat egy() turns the strategy into shutdown mode irreversibly, where no further
deposit is allowed.

A clone function is provided to create a new clone of the calling strategy as a minimal proxy and initialize
it with the parameters passed. Note only the original strategy should be cloned as all the clones are
purely a minimal proxy without the strategy-specific runtime code.

2.2.3 Roles and Trust Model

The framework reviewed is provided to build custom strategies. The strategist is trusted to respect the
template design rules and to implement the required functionality correctly. Among others, the custom
strategy implementation must not modify the variables in Strat egyDat a nor interfere with the
accounting in other ways, otherwise the internal accounting in Tokeni zedStrategy can be
compromised.

The underlying token should be ERC-20 compliant without weird behaviors such as double entry points,
rebase mechanism, transfer fees, irrational return values, high decimals, etc.

We assume the managenent and the keeper of the strategy are fully trusted to behave honestly and
correctly at all times, and never act maliciously or against the interest of the system users.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E=)-Severity Findings 0
y g
(CI2)-Severity Findings 0
(Medium)-Severity Findings 1
 Rogue Strategy Can Override Storage
(Low)-Severity Findings 5
ty g

» Initializing TokenizedStrategy
+ Non ERC-4626 Compliant Functions

» Payable Fallback Functions
» Problematic Self-Minting When Fee Recipient Is the Contract Itself

RSy F:\i[eer:1 |} Specification Changed

6.1 Rogue Strategy Can Override Storage
D (Viedium) (Version 1) R TRITTXEIT)

Core accounting logic is done by the code of TokenizedStrategy which is executed as Delegatecall inside
the context of the strategy.

CS-YTS-004

The documentation states the following:

In order to limt the strategists need to think about their storage variabl es
all Tokeni zedStrategy specific variables are held within and controlled by the
Tokeni zedStrat egy. A BaseStrategyData struct is help at a custom storage | ocation
that is high enough that no normal inplenentation should be worried about hitting.

This nmeans all high risk storage updates will always be handl ed by the
Tokeni zedSt r at egy, can not be overriden by a rogue or reckl ess strategist
and will be entirely standardi zed across every strategy depl oyed, no matter
the chain or specific inplenentation.

A rogue or reckless strategist can overwrite any storage slot, including those at the address
keccak256("yearn. base. strat egy. storage") - 1 and subsequent addresses.

While a genuine strategy wouldn't do this and the concept to separate the storage ensures that with high
probability a specific implementation is unlikely do to so by accident, a rogue or reckless strategies can
do so intentionally.

Specification changed:

Yearn acknowledged this risk and corrected the specification.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.2 Initializing TokenizedStrategy
(Design [(EDIERITB] Code Corrected)

The deployed instance of TokenizedStrategy is only intended to be used via Delegatecall by the custom
strategies.

CS-YTS-008

However the functions of the contract are also directly callable. For example the first caller of
Tokeni zedStrat egy. i ni t() can initialize the contract. While this doesn't break it's intended use as
base for the delegatecalls, it's not desirable.

It's worth noting that after initialization, deposits will still fail due to the callback to the i nvest () function.

Other functions may execute successfully, such as approvals, role assignments, and parameter updates.

Code corrected:

A constructor has been added to Tokeni zedStrat egy which initializes the implementation with
_StrategyStorage().asset =address(1). As a result, further direct calls to i nitialize() will
revert.

6.3 Non ERC-4626 Compliant Functions
(Correctness JETIZZITB) Code Corrected

maxM nt may revert due to an overflow in a calculation, however according to the specification this
function must not revert. This may happen in an edge case the avai | abl eDepositLimt returns a
large number and pps<1, convert ToShar es may overflow.

CS-YTS-007

function maxM nt (address _owner) public view returns (uint256 maxMnt) {

_maxM nt | BaseTokeni zedStrat egy(address(this)).avail abl eDepositLimt(
_owner

IF

i f (_maxM nt type(ui nt 256) . max) {

_maxM nt convert ToShares(_maxM nt) ;

}
}

In case the strategy is in shutdown mode, no further deposit can be made. However, naxDeposi t ()
may not return O when the strategy is shutdown.

The ERC-4626 specification however requires the function to return 0 in this case:
if deposits are entirely disabled (even tenporarily) it MJST return O.

More informational, the ERC-4626 specification is loosely defined in these corner cases for these
functions. Nevertheless we want to highlight the potentially unexpected amounts returned:

previ ewRedeen() : In case t ot al Asset s is zero, the conversion is done at a 1:1 ratio. At this point
either no shares exist (1) or the value of the existing shares has been dilluted to 0 (). For (I) the returned
value of 0 is appropriate. For (ll) previ ewRedeen() does not revert while r edeen{) reverts; the
specification reads:

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

MAY revert due to other conditions that would al so cause redeemto revert.

previ ewW t hdraw() returns the amount in a 1:1 exchange rate when asset s==0 but shar es! =0.
Again for non-zero values the amount returned may be misleading.

Strictly speaking the value returned is not breaking the specification but might be unexpected by the
caller. The caller should be aware of this and any external system should exercise caution when
integrating with these functions.

Code corrected:

A comment has been added to avai |l abl eDepositLimt to alert the strategist of the potential
overflow of naxM nt () if the deposit limit is too large. In addition, maxDeposi t () and maxRedeen()
have been updated to return O when the strategy is shutdown. previ ewWthdraw() and
convert ToShares() have been adjusted to return O instead of pps=1 in case asset s==0 but
suppl y>0. Yearn also acknowledged the potential misleading non-zero return value of
previ ewRedeen() if all shares are diluted to 0. Strategists and external systems are expected to be
aware of these behaviors.

6.4 Payable Fallback Functions
CIETD) (Low) (Version 1) (CXISIEED)

The fallback function of * BaseTokeni zedSt r at egy”™ is marked as payabl e. However, the code of the
delegatecalled TokenizedStrategy contract doesn't feature any functionality able to receive Ether. Any
such call with a non zero nsg. val ue will revert.

CS-YTS-006

Furthermore, there isar ecei ve() function:

receive() external payable {}

There is no requirement to implement a receive function when incorporating a fallback function. In the
absence of a receive function, plain Ether transfers would be handled by the fallback function, which then
delegatecalls into the TokenizedStrategy. However, this would cause the call to revert since the contract
does not support Ether reception. By including a receive function, the strategy can be enabled to accept
Ether. As the comment states, Ether shouldn't be sent to the strategy unless the strategy is design for it.

For more information please refer to the Solidity documentation:
https://docs.soliditylang.org/en/v0.8.18/contracts.html#receive-ether-function

Code corrected:

The payable modifier and the receive function have been removed to avoid unintentional Ether reception.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 14

https://docs.soliditylang.org/en/v0.8.18/contracts.html#receive-ether-function
https://chainsecurity.com

6.5 Problematic Self-Minting When Fee Recipient
Is the Contract Itself

[Low] [Version lj Code Corrected | Risk Accepted

Transferring shares of the strategy to itself is prevented since it can interfere with the locked shares
mechanism which guards against abrupt price per share increases. Unlike _transfer (), _mnt()
does not feature this restriction since it is intended to mint shares for this contract as part of the profit
locking mechanism. An explicit check must be done in the function calling _m nt () . While this is done in
_deposi t (), such a check isn't done on the fee recipients.

CS-YTS-005

When the perfor manceFeeReci pi ent is set as the strategy itself, it becomes possible to mint
additional shares to the strategy, which are not intended to be locked shares.

Once enough time passes and the ful | Profit Unl ockDat e is reached, _unl ockedShar es() will
treat the entire balance of this contract, including these additional shares, as unlocked shares.

if (_fullProfitUnl ockDate bl ock. ti nmestanp) {
unchecked {
unl ockedShar es
(S. profitUnl ocki ngRat e (bl ock. ti mestanp S. | ast Report))
MAX_BPS_EXTENDED,

}
} else if (_fullProfitUnl ockDate 0) {

unl ockedShar es S. bal ances[address(this)];

}

Due to the presence of extra shares, there may be a sudden increase when querying the
unlockedShares just before and right after the f ul | Prof i t Unl ockDat e.

This effect may have an impact whenever _t ot al Suppl y() is called and may influence the the price
per share.

Additionally pr ocess_report () is affected. In case the ful | Profit Unl ockDat e has already been
reached these shares would simply get burned in _bur nUnl ockedShar es() . Otherwise these shares
will be considered as part of the pr evi ousl yLockedShar es and are locked in the new locking period.
Note as this is an increase of the previouslyLockedShares it will impact the calculation of and reduce the
newPr of i t Locki ngPeri od:

ui nt 256 newPr of i t Locki ngPeri od (previousl yLockedShar es
renai ni ngTi me
shar esToLock
_profitMaxUnl ockTi ne) t ot al LockedShar es;

The issue description focuses on the per f or manceFeeReci pi ent as fee recipient, in theory the same
situation could arise if the pr ot ocol FeesReci pi ent is set as the strategy contract.

Code corrected:

An extra check has been added in set Per f or manceFeeReci pi ent () as well as in i nit() which
prevents setting the fee recipient to addr ess(thi s) .

Risk accepted:

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The pr ot ocol FeeReci pi ent is set once for all strategies by Yearn Governance and should not be an
issue.

6.6 Staticcall
(Correctness J(ET)INZZEITB Specification Changed)

CS-YTS-009
Usi ng address(this) wll nmean any calls using this variable will |ead
to a static call to itself. Which will hit the fallback function and

del egateCall that to the actual Tokeni zedStrategy.

| Tokeni zedStrat egy i nternal Tokeni zedStr at egy;

The comment says that using addr ess(t hi s) will result in a static call to itself, but the term "static call"
might be misleading. In Ethereum, a "static call" typically refers to a STATICCALL, which is a read-only
call that cannot modify the contract state. However, in this case, the comment seems to be referring to
the fact that the call will simply be to the contract itself. Such calls can lead to state changes.

Specification changed:

Yearn has rephrased the comment to avoid misunderstandings. A legitimate strategist should not use this
variable for state-changing calls.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Uncovered Loss Not Visible in Reported Event
(Informational] [Version 1]

CS-YTS-001

An event Report ed will be emitted after r eport () is called. If an uncovered loss has been realized,
this crucial information won't be visible in the event. In case a net loss occurs, price per share decrease
(pps) instantly. Revealing this in the event may be useful.

event Reported(uint256 profit, uint256 | oss, uint256 performanceFees, ui nt 256 prot ocol Fees)

Yearn states:

The event is nmeant to match the Vaults event as close as possible and only reveal
the anobunts determined within the report call. It should be expected that nost
reports in strategies will be done after all shares have been unl ocked since the
previous reports, and therefore any loss will cause a PPS decrease. Specific
strategies can use this functionalities if desired to offset |osses but is not
normmal behavior, sinply extra functionality. PPS is not tracked on chain.

7.2 Use ADDRESS Instead of SLOAD

(Informational) (Version 1)

CS-YTS-002

BaseTokeni zedStrategy.initialize() sets the storage variable Tokeni zedSt r at egy to the
address of the executing context:

Tokeni zedSt r at egy | Tokeni zedStrat egy(address(this));

To call itself, the code of the BaseTokenizedStrategy and the custom strategy implementation would use
this variable which results in an SLOAD operation. Note that opcode ADDRESS (in solidity
address(this)) would return the same address (the address of the executing account) and is
significantly cheaper.

Yearn states:

The setting of the "~Tokeni zedStrategy variable in initialization is
neant to nmake it as sinple as possible for a strategi st to access
readabl e data fromthe StrategybData struct so having an extra SLOAD is

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

worth the reduced conplexity of not having to understand what is being
called, just that the variable will work.

7.3 tendTrigger

(Informational] [Version 1]

CS-YTS-003
The description of Tokeni zedSt r at egy. t end() reads:

* @ev Both "tendTrigger' and ' _tend wll need to be overridden
* for this to be used.

However this is not enforced in the code, where t endTr i gger () has no effectont end(), e.g. it could
return f al se and t end() may still execute successfully.

Yearn states:

“tendtrigger is only to be used off chain, by a keeper bot or managenent to
easily determne if tend should be called, not a requirenent for it to be.
Tend is able to be called at any point even if the trigger does not say it
shoul d.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Withdraw With Unrealized Loss
(D (Version 1)

In case there is an unrealized loss, the most vigilant users will come to withdraw funds directly from the
i dl e to avoid the loss. As a result, the tardy users will take the unrealized loss. Besides, tardy users may
take an unrealized loss in different ways depending on the actual implementation of _f r eeFunds() .

* If custom strategy implementation simply tries to free the funds from the yield source as closer to the
requested amount as possible or simply reverts due to insufficient funds, the remaining funds will be
withdrawn in a FCFS way where the last users will take all of the unrealized loss and get nothing
back.

« If custom strategy implementation distributes the unrealized loss according to the accounting
variables in St r at egyDat a, then all tardy user will share the unrealized loss proportionally.

Different strategists may take different choices, whereas the vigilant users can always drain the i dl e
regardless of the unrealized loss in both cases.

Yearn states:

So for the nost part those types of decisions are to be left to the strategist to
determne what to do in freeFunds(). The majority of strategies will likely sinply
wi t hdraw t he anpbunt requested, since its 1. not applicable and 2. would require a

|l ot nore gas and code to check the actual current state and cal cul ate the ful
unrealized |l oss etc. Though if a strategy expects to have this be a conmpbn case
(like with an options strategy) that specific strategi st can add whatever they

wish to freeFunds. It is recomended that _freeFunds revert if |osses would be
realized by tenporary situations. Such as liquidity constraints, that are not
expected to last, rather than count it as a |oss.

VWhile its possible there are unrealized | osses, normal behavior is to not account
for those in between reports, but rather |osses are handl ed withdraw by w t hdraw.
Though that can | ead to di sproportionate anounts dependi ng on when funds are

wi thdrawn its much cheaper and sinpler considering its a non-issue for the majority
of strategies and the ones it is can choose howto deal with it.

@ Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 BaseTokenizedStrategy
	2.2.2 TokenizedStrategy
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Rogue Strategy Can Override Storage
	6.2 Initializing TokenizedStrategy
	6.3 Non ERC-4626 Compliant Functions
	6.4 Payable Fallback Functions
	6.5 Problematic Self-Minting When Fee Recipient Is the Contract Itself
	6.6 Staticcall

	7 Informational
	7.1 Uncovered Loss Not Visible in Reported Event
	7.2 Use ADDRESS Instead of SLOAD
	7.3 tendTrigger

	8 Notes
	8.1 Withdraw With Unrealized Loss

