

PUBLIC

Code Assessment

of the Tokenized Strategy

Smart Contracts

May 4, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 17

8 Notes 19

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Yearn with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Tokenized Strategy
according to Scope to support you in forming an opinion on their security risks.

Tokenized Strategy offers a framework for developers to easily create ERC-4626 compliant tokenized
strategies by implementing only the strategy-specific logic, as it provides the core accounting
functionality.

The most critical subjects covered in our audit are security and functional correctness.

During the review, no critical or high severity issues were uncovered. The report highlights a medium and
a few low severity issues, one of which highlights a significant inaccuracy in the documentation. After the
intermediate report, all issues have been addressed.

The general subjects covered are adherence to the implemented standards, code complexity and gas
efficiency.

In summary, we find that the codebase provides a good level of security. We have to emphasize that the
project reviewed is a template only, not an actual implementation of a strategy.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification Changed 1

Low -Severity Findings 5

• Code Corrected 4

• Specification Changed 1

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Tokenized Strategy repository based
on the documentation files.

The scope consists of the two solidity smart contracts:

1. ./src/BaseTokenizedStrategy.sol

2. ./src/TokenizedStrategy.sol

The contracts reviewed serve as building blocks only, they are not a working strategy. They
facilitate building an actual strategy: The abstract contract of BaseTokenizedStrategy is to be inherited,
the code of TokenizedStrategy handling the core accounting logic is to be executed as delegatecall.
Custom code can break core functionality, any strategy built on top should be audited separately.

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
21 April 2023 105c2f9340c05d661e07e36ff3acc9c75c99c0eb Initial Version

2
2 May 2023 71b8184d8bfcaeada74052900c58edfc0329e443 After Intermediate Report

3
3 May 2023 c0da749dbe2ac0794c8086228a85c214db4045b

e
Updated Recipient Check

For the solidity smart contracts, the compiler version 0.8.18 was chosen.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The project reviewed provides a template that enables developers to easily create an ERC-4626
compliant tokenized strategy by only implementing the strategy-specific logic, as the core accounting
functionality is already supplied.

In such a strategy users can mint shares of a strategy by depositing underlying tokens, with the
expectation of receiving yield yet taking on the risk of potential loss. The strategy's share is an ERC-20

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

token non-transferrable to the strategy itself or zero address. Shares can be redeemed later to withdraw
the underlying tokens. The strategy utilizes several mechanisms to mitigate price per share (pps)
fluctuations and manipulation: (1) Internal accounting is used instead of balanceOf() to keep track of
the strategy's debt and idle. (2) A profit locking mechanism locks profits by issuing new shares to the
strategy itself that are slowly burnt over an unlock period. (3) In the event of losses or fees, the strategy
will always try to offset them by burning locked shares it owns. The price per share is expected to
decrease only when excess losses or fees occur upon processing a report. It will only increase when the
profit is slowly unlocked as time goes by.

An immutable proxy pattern is utilized to abstract the important and risky functionalities away from the
customized strategy. All customized strategies should inherit BaseTokenizedStrategy and override
several simple functions that interact with the underlying yield source. It is expected that all the
standard-compliant function calls will enter the fallback to delegatecall the TokenizedStrategy
implementation for essential internal accounting. In case a strategy-specific operation is required during
the execution, the implementation will callback to the customized strategy.

Note that the actual customized strategies implementations which will be built using this framework are
unknown. They must adhere to the design rules, notably they must not interfere with the accounting and
not overwrite the special storage of TokenStrategy. Otherwise functionality might be compromised.

2.2.1 BaseTokenizedStrategy
The BaseTokenizedStrategy is an abstract contract. Its state variables will be initialized by the
initialize function, which is also executed after cloning a new instance of the strategy. Several
strategy-specific functions are left to be overridden by the strategist:

• invest(), _invest() deposit funds into the yield source.

• freeFunds(), _freeFunds() withdraw funds from the yield source.

• totalInvested, _totalInvested() harvest all rewards, reinvests and returns a trusted and
accurate amount of funds currently held by the Strategy.

• tendThis(), _tend() can be used by the management or the keeper to harvest and compound
rewards, deposit idle funds, perform needed position maintenance or anything else that doesn't
need a full report for. Note this call can be sandwiched if a swap is involved.

• tendTrigger() returns whether tend should be called by the management and the keeper or not.

• availableDepositLimit() returns the deposit limit for a user.

• availableWithdrawLimit() returns the withdraw limit for a user.

All the state-modifiable functions above are protected by a onlySelf modifier to avoid a malicious user
bypassing the internal accounting. Namely none of them should be called directly on the
BaseTokenizedStrategy, and they should only be invoked by a callback from the
TokenizedStrategy. The customized strategy should follow this design to function in a secure and
efficient way as expected. A strategist may add customized storage variables on demand as well. Due to
the StrategyData residing at storage slots with high addresses, unintentional storage collision with
variables of the custom strategy implementation are unlikely to happen.

2.2.2 TokenizedStrategy
The TokenizedStrategy contract implements the core logic including the ERC-4626 functionality
which is common for all custom strategies. It is deployed only once and it's code is executed by the
individual strategies using delegatecall. To prevent unintended storage conflicts with variables of the
custom strategy, it stores all it's variable in a struct residing at a high storage address. This way, it
prevents conflicts with variables of the custom implementation with high probability.

Users Permissionless Entry Points

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The deposit and mint functions would transfer funds to the strategy and issue new shares to the user
when the strategy is not shutdown and user's maxDeposit is not reached.

Upon withdraw and redeem, the strategy burns the shares within maxRedeem and transfers the funds
to the user if idle is sufficient. Otherwise, a callback to BaseTokenizedStrategy is invoked to free
funds from the yield source. Any discrepancy between the idle and the required assets is regarded as a
loss taken by the withdrawer. A disproportionate share of unrealized loss may exist depending on the
design of _freeFunds(). In addition, there is no slippage protection for withdraw and redeem.

Note that deposit() and mint() to a dead strategy does not revert (i.e. shares=!0 but assets==0).
In this case, the depositer's shares are diluted by the shares left immediately and lose part of the assets.
And this contract can receive Ether without further logic to deal with it.

Strategy Operations and Management

The following are the most important permissioned entry points to operate the strategy, which can only
be called by the keeper or the management.

tend() is called by the keeper or the management to tend the strategy if a custom tendTrigger() is
implemented.

report()` is called by the keeper or the management to record all profits and losses since last report and
charge fees accordingly:

• Protocol fee will be calculated based on the old total assets.

• An accurate account for all funds including those potentially airdropped is retrieved by a callback to
totalInvested() on BaseTokenizedStrategy.

• The performance fee will be charged based on the profit. Newly locked shares will be issued to self if
there is a net profit, otherwise, previously locked shares will be burnt to cover the loss and fees.

• The new profit unlocking schedule will be computed as a weighted average of the previously locked
shares and newly locked shares.

The management role is the admin of the strategy and has privilege to call the following setters:

• setManagement() instantly transfers the management role to another address.

• setKeeper() sets the keeper role to another address.

• setPerformanceFee() sets the performance fee to be charged on a reported gains.

• setPerformanceFeeRecipient() sets a new address to receive performance fees.

• setProfitMaxUnlockTime() sets the time for profits to be unlocked over.

• shutdownStrategy() turns the strategy into shutdown mode irreversibly, where no further
deposit is allowed.

A clone function is provided to create a new clone of the calling strategy as a minimal proxy and initialize
it with the parameters passed. Note only the original strategy should be cloned as all the clones are
purely a minimal proxy without the strategy-specific runtime code.

2.2.3 Roles and Trust Model
The framework reviewed is provided to build custom strategies. The strategist is trusted to respect the
template design rules and to implement the required functionality correctly. Among others, the custom
strategy implementation must not modify the variables in StrategyData nor interfere with the
accounting in other ways, otherwise the internal accounting in TokenizedStrategy can be
compromised.

The underlying token should be ERC-20 compliant without weird behaviors such as double entry points,
rebase mechanism, transfer fees, irrational return values, high decimals, etc.

We assume the management and the keeper of the strategy are fully trusted to behave honestly and
correctly at all times, and never act maliciously or against the interest of the system users.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Specification ChangedRogue Strategy Can Override Storage

Low -Severity Findings 5

• Code CorrectedInitializing TokenizedStrategy

• Code CorrectedNon ERC-4626 Compliant Functions

• Code CorrectedPayable Fallback Functions

• Code Corrected Risk AcceptedProblematic Self-Minting When Fee Recipient Is the Contract Itself

• Specification ChangedStaticcall

6.1 Rogue Strategy Can Override Storage
Correctness Medium Version 1 Specification Changed

CS-YTS-004

Core accounting logic is done by the code of TokenizedStrategy which is executed as Delegatecall inside
the context of the strategy.

The documentation states the following:

In order to limit the strategists need to think about their storage variables
all TokenizedStrategy specific variables are held within and controlled by the
TokenizedStrategy. A BaseStrategyData struct is help at a custom storage location
that is high enough that no normal implementation should be worried about hitting.

This means all high risk storage updates will always be handled by the
TokenizedStrategy, can not be overriden by a rogue or reckless strategist
and will be entirely standardized across every strategy deployed, no matter
the chain or specific implementation.

A rogue or reckless strategist can overwrite any storage slot, including those at the address
keccak256("yearn.base.strategy.storage") - 1 and subsequent addresses.

While a genuine strategy wouldn't do this and the concept to separate the storage ensures that with high
probability a specific implementation is unlikely do to so by accident, a rogue or reckless strategies can
do so intentionally.

Specification changed:

Yearn acknowledged this risk and corrected the specification.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.2 Initializing TokenizedStrategy
Design Low Version 1 Code Corrected

CS-YTS-008

The deployed instance of TokenizedStrategy is only intended to be used via Delegatecall by the custom
strategies.

However the functions of the contract are also directly callable. For example the first caller of
TokenizedStrategy.init() can initialize the contract. While this doesn't break it's intended use as
base for the delegatecalls, it's not desirable.

It's worth noting that after initialization, deposits will still fail due to the callback to the invest() function.

Other functions may execute successfully, such as approvals, role assignments, and parameter updates.

Code corrected:

A constructor has been added to TokenizedStrategy which initializes the implementation with
_strategyStorage().asset=address(1). As a result, further direct calls to initialize() will
revert.

6.3 Non ERC-4626 Compliant Functions
Correctness Low Version 1 Code Corrected

CS-YTS-007

maxMint may revert due to an overflow in a calculation, however according to the specification this
function must not revert. This may happen in an edge case the availableDepositLimit returns a
large number and pps<1, convertToShares may overflow.

function maxMint(address _owner) public view returns (uint256 _maxMint) {
 _maxMint = IBaseTokenizedStrategy(address(this)).availableDepositLimit(
 _owner
);
 if (_maxMint != type(uint256).max) {
 _maxMint = convertToShares(_maxMint);
 }
}

In case the strategy is in shutdown mode, no further deposit can be made. However, maxDeposit()
may not return 0 when the strategy is shutdown.

The ERC-4626 specification however requires the function to return 0 in this case:

... if deposits are entirely disabled (even temporarily) it MUST return 0.

More informational, the ERC-4626 specification is loosely defined in these corner cases for these
functions. Nevertheless we want to highlight the potentially unexpected amounts returned:

previewRedeem(): In case totalAssets is zero, the conversion is done at a 1:1 ratio. At this point
either no shares exist (I) or the value of the existing shares has been dilluted to 0 (II). For (I) the returned
value of 0 is appropriate. For (II) previewRedeem() does not revert while redeem() reverts; the
specification reads:

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

MAY revert due to other conditions that would also cause redeem to revert.

previewWithdraw() returns the amount in a 1:1 exchange rate when assets==0 but shares!=0.
Again for non-zero values the amount returned may be misleading.

Strictly speaking the value returned is not breaking the specification but might be unexpected by the
caller. The caller should be aware of this and any external system should exercise caution when
integrating with these functions.

Code corrected:

A comment has been added to availableDepositLimit to alert the strategist of the potential
overflow of maxMint() if the deposit limit is too large. In addition, maxDeposit() and maxRedeem()
have been updated to return 0 when the strategy is shutdown. previewWithdraw() and
convertToShares() have been adjusted to return 0 instead of pps=1 in case assets==0 but
supply>0. Yearn also acknowledged the potential misleading non-zero return value of
previewRedeem() if all shares are diluted to 0. Strategists and external systems are expected to be
aware of these behaviors.

6.4 Payable Fallback Functions
Design Low Version 1 Code Corrected

CS-YTS-006

The fallback function of `BaseTokenizedStrategy` is marked as payable. However, the code of the
delegatecalled TokenizedStrategy contract doesn't feature any functionality able to receive Ether. Any
such call with a non zero msg.value will revert.

Furthermore, there is a receive() function:

/**
 * We are forced to have a receive function do to
 * implementing a fallback function.
 *
 * NOTE: ETH should not be sent to the strategy unless
 * designed for within the Strategy. There is no defualt
 * way to remove eth incorrectly sent to a strategy.
 */
receive() external payable {}

There is no requirement to implement a receive function when incorporating a fallback function. In the
absence of a receive function, plain Ether transfers would be handled by the fallback function, which then
delegatecalls into the TokenizedStrategy. However, this would cause the call to revert since the contract
does not support Ether reception. By including a receive function, the strategy can be enabled to accept
Ether. As the comment states, Ether shouldn't be sent to the strategy unless the strategy is design for it.

For more information please refer to the Solidity documentation:
https://docs.soliditylang.org/en/v0.8.18/contracts.html#receive-ether-function

Code corrected:

The payable modifier and the receive function have been removed to avoid unintentional Ether reception.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 14

https://docs.soliditylang.org/en/v0.8.18/contracts.html#receive-ether-function
https://chainsecurity.com

6.5 Problematic Self-Minting When Fee Recipient
Is the Contract Itself
Correctness Low Version 1 Code Corrected Risk Accepted

CS-YTS-005

Transferring shares of the strategy to itself is prevented since it can interfere with the locked shares
mechanism which guards against abrupt price per share increases. Unlike _transfer(), _mint()
does not feature this restriction since it is intended to mint shares for this contract as part of the profit
locking mechanism. An explicit check must be done in the function calling _mint(). While this is done in
_deposit(), such a check isn't done on the fee recipients.

When the performanceFeeRecipient is set as the strategy itself, it becomes possible to mint
additional shares to the strategy, which are not intended to be locked shares.

Once enough time passes and the fullProfitUnlockDate is reached, _unlockedShares() will
treat the entire balance of this contract, including these additional shares, as unlocked shares.

if (_fullProfitUnlockDate > block.timestamp) {
 unchecked {
 unlockedShares =
 (S.profitUnlockingRate * (block.timestamp - S.lastReport)) /
 MAX_BPS_EXTENDED;
 }
} else if (_fullProfitUnlockDate != 0) {
 // All shares have been unlocked.
 unlockedShares = S.balances[address(this)];
}

Due to the presence of extra shares, there may be a sudden increase when querying the
unlockedShares just before and right after the fullProfitUnlockDate.

This effect may have an impact whenever _totalSupply() is called and may influence the the price
per share.

Additionally process_report() is affected. In case the fullProfitUnlockDate has already been
reached these shares would simply get burned in _burnUnlockedShares(). Otherwise these shares
will be considered as part of the previouslyLockedShares and are locked in the new locking period.
Note as this is an increase of the previouslyLockedShares it will impact the calculation of and reduce the
newProfitLockingPeriod:

// new_profit_locking_period is a weighted average between the remaining
 // time of the previously locked shares and the PROFIT_MAX_UNLOCK_TIME
 uint256 newProfitLockingPeriod = (previouslyLockedShares *
 remainingTime +
 sharesToLock *
 _profitMaxUnlockTime) / totalLockedShares;

The issue description focuses on the performanceFeeRecipient as fee recipient, in theory the same
situation could arise if the protocolFeesRecipient is set as the strategy contract.

Code corrected:

An extra check has been added in setPerformanceFeeRecipient() as well as in init() which
prevents setting the fee recipient to address(this).

Risk accepted:

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The protocolFeeRecipient is set once for all strategies by Yearn Governance and should not be an
issue.

6.6 Staticcall
Correctness Low Version 1 Specification Changed

CS-YTS-009

 * Using address(this) will mean any calls using this variable will lead
 * to a static call to itself. Which will hit the fallback function and
 * delegateCall that to the actual TokenizedStrategy.

ITokenizedStrategy internal TokenizedStrategy;

The comment says that using address(this) will result in a static call to itself, but the term "static call"
might be misleading. In Ethereum, a "static call" typically refers to a STATICCALL, which is a read-only
call that cannot modify the contract state. However, in this case, the comment seems to be referring to
the fact that the call will simply be to the contract itself. Such calls can lead to state changes.

Specification changed:

Yearn has rephrased the comment to avoid misunderstandings. A legitimate strategist should not use this
variable for state-changing calls.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Uncovered Loss Not Visible in Reported Event
Informational Version 1

CS-YTS-001

An event Reported will be emitted after report() is called. If an uncovered loss has been realized,
this crucial information won't be visible in the event. In case a net loss occurs, price per share decrease
(pps) instantly. Revealing this in the event may be useful.

event Reported(uint256 profit,uint256 loss,uint256 performanceFees,uint256 protocolFees)

Yearn states:

The event is meant to match the Vaults event as close as possible and only reveal
the amounts determined within the report call. It should be expected that most
reports in strategies will be done after all shares have been unlocked since the
previous reports, and therefore any loss will cause a PPS decrease. Specific
strategies can use this functionalities if desired to offset losses but is not
normal behavior, simply extra functionality. PPS is not tracked on chain.

7.2 Use ADDRESS Instead of SLOAD
Informational Version 1

CS-YTS-002

BaseTokenizedStrategy.initialize() sets the storage variable TokenizedStrategy to the
address of the executing context:

// Set instance of the implementation for internal use.
TokenizedStrategy = ITokenizedStrategy(address(this));

To call itself, the code of the BaseTokenizedStrategy and the custom strategy implementation would use
this variable which results in an SLOAD operation. Note that opcode ADDRESS (in solidity
address(this)) would return the same address (the address of the executing account) and is
significantly cheaper.

Yearn states:

The setting of the `TokenizedStrategy` variable in initialization is
meant to make it as simple as possible for a strategist to access
readable data from the StrategyData struct so having an extra SLOAD is

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

worth the reduced complexity of not having to understand what is being
called, just that the variable will work.

7.3 tendTrigger
Informational Version 1

CS-YTS-003

The description of TokenizedStrategy.tend() reads:

* @dev Both 'tendTrigger' and '_tend' will need to be overridden
* for this to be used.

However this is not enforced in the code, where tendTrigger() has no effect on tend(), e.g. it could
return false and tend() may still execute successfully.

Yearn states:

`tendtrigger` is only to be used off chain, by a keeper bot or management to
easily determine if tend should be called, not a requirement for it to be.
Tend is able to be called at any point even if the trigger does not say it
should.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Withdraw With Unrealized Loss
Note Version 1

In case there is an unrealized loss, the most vigilant users will come to withdraw funds directly from the
idle to avoid the loss. As a result, the tardy users will take the unrealized loss. Besides, tardy users may
take an unrealized loss in different ways depending on the actual implementation of _freeFunds().

• If custom strategy implementation simply tries to free the funds from the yield source as closer to the
requested amount as possible or simply reverts due to insufficient funds, the remaining funds will be
withdrawn in a FCFS way where the last users will take all of the unrealized loss and get nothing
back.

• If custom strategy implementation distributes the unrealized loss according to the accounting
variables in StrategyData, then all tardy user will share the unrealized loss proportionally.

Different strategists may take different choices, whereas the vigilant users can always drain the idle
regardless of the unrealized loss in both cases.

Yearn states:

So for the most part those types of decisions are to be left to the strategist to
determine what to do in _freeFunds(). The majority of strategies will likely simply
withdraw the amount requested, since its 1. not applicable and 2. would require a
lot more gas and code to check the actual current state and calculate the full
unrealized loss etc. Though if a strategy expects to have this be a common case
(like with an options strategy) that specific strategist can add whatever they
wish to _freeFunds. It is recommended that _freeFunds revert if losses would be
realized by temporary situations. Such as liquidity constraints, that are not
expected to last, rather than count it as a loss.

While its possible there are unrealized losses, normal behavior is to not account
for those in between reports, but rather losses are handled withdraw by withdraw.
Though that can lead to disproportionate amounts depending on when funds are
withdrawn its much cheaper and simpler considering its a non-issue for the majority
of strategies and the ones it is can choose how to deal with it.

Yearn - Tokenized Strategy - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 BaseTokenizedStrategy
	2.2.2 TokenizedStrategy
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Rogue Strategy Can Override Storage
	6.2 Initializing TokenizedStrategy
	6.3 Non ERC-4626 Compliant Functions
	6.4 Payable Fallback Functions
	6.5 Problematic Self-Minting When Fee Recipient Is the Contract Itself
	6.6 Staticcall

	7 Informational
	7.1 Uncovered Loss Not Visible in Reported Event
	7.2 Use ADDRESS Instead of SLOAD
	7.3 tendTrigger

	8 Notes
	8.1 Withdraw With Unrealized Loss

