PUBLIC

Code Assessment

of the Xena

Smart Contracts

October 3, 2023

Produced for

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG

12
13
14
20
26
29

https://chainsecurity.com

1 Executive Summary

Dear Xena Finance team,

Thank you for trusting us to help Xena Finance with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Xena according to Scope
to support you in forming an opinion on their security risks.

Xena Finance implements a decentralized, non-custodial perpetual exchange. It aims to provide users
with zero price-impact trades.

The most critical subjects covered in our review are asset solvency and functional correctness. Security
regarding the aforementioned subjects is improvable. The most important issues uncovered are:

*» Asset solvency is low due to wrongly maintained internal accounting, see Wrong Accounting upon
Margin Account Top up.

 Functional correctness is low due to the value the tranches not including unrealized LP fees, see
Accrued Interest Is Not Accounted in trancheValue.

The first issue has been fixed by a change of specification. Xena Finance has decided they only want to
use a single tranche. The issue remains valid if Xena Finance decides to add more tranches. This leaves
the codebase complex, while the functionality that will be used is simpler. The second issue related to
accrued interest remains unfixed.

Additionally, there are a number of issues that Xena Finance decided not to fix, which could cause
problems in the edge cases outlined in those issues.

The general subjects covered are documentation and specification. Security regarding all the
aforementioned subjects is improvable. Documentation and specification are not sufficient due to the
overall lack of documentation and unclear specification, see Missing Documentation.

In summary, we find that the codebase currently provides an improvable level of security.

Users of the system should check the Notes section for important information to consider before using
the system.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
()-Severity Findings 1
W'soeciication Changed) 1
(Medium)-Severity Findings 6
N Code Corrcted) 2
B Risc Accepted 3
W Acknowiedged 1
(Low)-Severity Findings 12
¥ Code Corrected 4
'Sbecication Changed) 1
o) 1
i Accepted 4
¥ Ackoowiedged 2
@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Xena repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they

were received.
V | Date Commit Hash Note
1 | 21 Aug 2023 | be87d8a5c0dbc03fa801e69b0b3a87bb863ch43c Initial Version
2 | 28 Aug 2023 | €2958010572483509bf3c6ael0f48cl7f7ald25¢c Updated Version
3 | 20ct 2023 e2ac43efb81687360d8b36f1bda637ee1d84f281 Version 3 with fixes

For the solidity smart contracts, the compiler version 0. 8. 18 was chosen.

The following contracts are in the scope of the review:

i nt

i nt

| en

erest:

Si mpl el nt er est Rat eMbdel . sol

erfaces:

Aggr egat or V3I nterf ace. sol
| LPToken. sol

| Oracl e. sol

| O der Manager Wt hSt or age. sol

| Pool Wt hSt or age. sol

| Tr adi ngl ncenti veControll er. sol
| ETHUnwr apper . sol

I Li qui di tyCal cul ator. sol

| Or der Hook. sol

| Pool . sol

| Ref erral Controll er. sol

| VETH. sol

I I nt er est Rat eMbdel . sol
| M nt abl eEr c20. sol

| O der Manager . sol

| Pool Hook. sol

| Tr adi ngCont est . sol

S:

Or der Lens. sol
Pool Lens. sol

l'i b:

Const ant s. sol

Dat aTypes. sol

Mat hUtil s. sol

Posi ti onLogi c. sol
Saf eCast . sol

Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Saf eERC20. sol
Si gnedl nt Mat h. sol

oracl e:
Or acl e. sol
PriceReporter. sol

orders:
Or der Manager . sol
Or der Manager St or age. sol

pool :
Li qui di tyCal cul at or. sol
Pool . sol
Pool St or age. sol

t okens:
LPToken. sol
util s:

ETHUnwr apper . sol

Li qui di tyRout er. sol
Or der Hook. sol

Pool Hook. sol

2.1.1 Excluded from scope

Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries (e.g.,
Fi xedPoi nt Mat hLi b, Saf eTr ansf er Li b, etc.) are out of the scope of this review.

O der Hook and Pool Hook make calls to | Tradi ngl ncentiveController,
| Referral Control |l er and | Tr adi ngCont est, for which no implementation is given. As a result,
any calls to these contracts are assumed to be correct.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Xena Finance offers Xena, a decentralized, non-custodial perpetual exchange. It aims to provide users
with zero price-impact trades.

The system allows to open long positions where the index and the collateral tokens are the same and
cannot be stablecoins, short positions where the index token is not a stablecoin and the collateral token
is a stablecoin, and swaps between the assets in the pool. Stablecoins in Xena are USD-pegged
stablecoins. The main components are the Pool , the Or der Manager , and the Or acl e.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1 Pool

The Pool holds the Liquidity providers' assets. These assets can be used to trade against, where the LPs
always take exact opposite trade to the traders. If the trader goes long on an asset, the LPs go short.
Trades can either be normal swaps, or leveraged positions requiring collateral. The Pool also holds the
collateral of users that have a leveraged position, as well as any accrued DAO fees that have not been
claimed.

There is only one Pool, which can hold many different tokens. Each token has a target weight, which is
set by the pool controller. Prices of tokens depend solely on an external oracle. Unlike AMM-style
DEXes, the ratio of tokens in the pool does not determine the price. This means that there is no
price-impact from trades, no matter their size. The fees charged for a trade, however, are dependent on
the token ratios in the pool. A trade that brings the ratio closer to the target weight will receive a fee
discount, while a trade that moves the pool away from the target weight will be charged additional fees.

Tranches:

The Pool is split into different "tranches". According to the documentation, these tranches should allow
LPs to choose their desired level of risk vs reward. The tranches are differentiated by having a different
ri skFact or, which is set per token. The ri skFact or determines the proportions with which the
different tranches participate in fulfilling swaps and leverage orders. For example, assume there are two
tranches A and B, with risk factors for ETH set to 10 and 5. When a swap occurs, 2/ 3 of the t okenl n
will go to tranche A and 2/ 3 of the t okenQut will be taken from tranche A. The rest of the tokens will be
swapped through tranche B. The fees generated from the swap will also be attributed to the tranches in
the same proportions. If, however, tranche A did not have enough t okenCQut to cover 2/ 3 of the
swapAnount , then the maximum number of tokens available will be used from tranche A, and the rest
will be used from tranche B. In this case, more than 1/ 3 of the swap would be fulfilled by tranche B,
leading to a utilization that is higher than its r i skFact or . However, tranche A will still receive 2/ 3 of the
fees, according to its ri skFact or. The reduced risk from tranche B being a "more senior" tranche
(lower ri skFact or) only comes from reduced utilization. The ri sk/ utili zati on ratio is equal to the
other tranches in the normal case. However, if the other tranches are already fully utilized, the more
senior tranches can also be fully utilized, which leads to full risk exposure, without receiving any
additional fees. Full utilization may be most likely in scenarios with high volatility. This can cause large
losses to LPs due to price movements, which could be inflicted to senior and junior tranches. In some
cases, the senior tranche loss percentage could even outweigh that of junior tranches.

User functions:
The following functions can be called by users:

e addLi qui di t y: LPs can add liquidity to a tranche for one token listed in the pool at a time. An entry
fee is taken when adding liquidity. It behaves in the same way as the dynamic trading fee described
above, rewarding the addition of assets for which the pool is below the target weight. The amount of
LP tokens is computed from the USD value added after fees and follows the formula
val ueAddedUSD / trancheVal ueUsSD * total Suppl yTrancheLPTokens. LPs can add
liquidity in a token up until the token's max liquidity in the pool is reached. There is one LP token per
tranche, they are burnable and transferable. LPs can set slippage protection. The pool value is
recomputed upon liquidity provision.

erenoveli qui di ty: LPs can remove their liquidity in any of the asset tokens, no matter which
token they provided liquidity in. An exit fee is taken when removing liquidity, it behaves in the same
way as the dynamic trading fee described above. The specified amount of LP tokens will be burned
and the corresponding USD value in the exiting token will be sent back to the LP. LPs can set
slippage protection. The pool value is recomputed upon liquidity deprovision.

e swap: users can swap any listed token for any asset token without price impact, at the most recent
price reported by the Oracle. Dynamic trading fees are computed on both tokens and the highest
one will be applied. For non-stable tokens, there is a minimum fee of 0.1% on all swaps. The fee is
taken in input token. Swaps can happen as long as there is enough unreserved liquidity in the pool
and the input token's max liquidity in the pool is not reached. After the swap, the post Swap function
is called on the pool Hook if the address is configured.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

| i qui dat ePosi ti on: allows anyone to liquidate an unhealthy leveraged position. A position is
liquidatable if one of the following conditions is met:

1. The collateral value cannot cover the trader's loss.

2. The (col | ateral Val ue + unrealizedPnlL) is smaller than the maintenance margin,
which is a percentage of a position's size.

3. The (col |l ateral Val ue + unrealizedPnlL) is smaller than the sum of the due fees
and liquidation fee.

Note that unr eal i zedPnL is negative if the trader is making a loss. If a position is liquidated without
loss for the pool, the position is closed (exit fee is taken), the collateral value minus the trader's loss is
sent back to the position's owner, and the liquidator receives a reward. If the collateral of the position is
not enough to cover the loss, the accounting is updated such that the excess loss is taken by LPs. The
trader does not receive back any collateral, and the liquidator receives a reward.

Note that by default, the fee distribution is 100% to the DAO after the pool initialization. This can be
changed later by the pool owner .

2.2.2 OrderManager

The Or der Manager is responsible for managing leveraged position updates and swap orders. Both are
placed by traders, but only a special whitelisted address, the execut or, can execute them in the pool,
unless "public execution" is enabled. If it is enabled, the owner of the order can execute it as well. Note
that swaps can be executed directly through the Or der Manager without creating an order, which is
equivalent to a "market order" order type, or by placing a swap order, which is equivalent to a "limit
order". The Or der Manager will hold all the funds related to pending orders and execution fees.

Swaps:
The following functions are available to users for managing swaps:

e swap: executes a swap on the pool at the current market price. If the or der Hook address is
configured, pr eSwap is called at the start of the function. For swap, the Pool assumes that tokens
are sent to the Pool beforehand. It does not transfer Fr om the caller. The swap function of
O der Manager helps users first transfer tokens, then call swap in the Pool, within the same
transaction.

e pl aceSwapCr der : creates a swap order that can be executed later by the execut or, or the
order's owner if public execution is allowed. Users can specify the input/output tokens, the amount
in, the minimum amount out for slippage protection, a price that is never used, and some extra data
for the or der Hook. When a new order is created, the amount of t okenl n is transferred from the
caller to the Or der Manager , and an execution fee is retained in ETH. Then it is assigned a unique
id, and or der Hook. post Pl aceSwapOr der is called if the or der Hook address was configured.
When executed, the Or der Manager will call Pool . swap and send the execution fee to an address
provided by the caller. If the t okenQut was ETH, the first recipient is the Or der Manager , that will
unwrap the received WETH and send it to the order's owner. By default, the status of an order is
OPEN, once executed it is FI LLED. Only OPEN orders with an owner can be executed.

» cancel SwapO der : the owner of an order can cancel it. The token amount as well as the execution
fee will be returned to the order's owner and the order's status is set to CANCELLED. Only OPEN
orders can be cancelled.

Leverage orders:

Leverage orders in Xena are "synthetic". No assets are bought or sold when opening or closing a
leverage order. Instead, the position si ze of assets is reserved from the LP pool. This ensures that no
matter the future price, there will always be enough reserved assets to pay the trader the payoff of their
long or short. For longs, an amount of index token is reserved. This means that even if the price went to
infinity, the system would have enough to pay the trader. For shorts, an amount of stablecoin is reserved.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

This means that even if the index token's price went to zero, the system would be able to pay the trader
for the maximum payoff of a short (+100%). It is not possible to open long or short positions with a
stablecoin as index token.

The following functions are available to users for managing leverage orders:

*pl aceLever ageOr der : creates a leverage order that can be executed later by the execut or, or
the order's owner if public execution is allowed. Users can specify whether they want to | NCREASE
or DECREASE the position's size or collateral, the type of position (LONG or SHORT), the index and
collateral tokens, whether the order is a market order or not, and some data. Upon increasing a
position, the data encodes the limit price for the order, which token the trader wants to pay
(payToken), the amount of collateral, the size of the increase in USD, and some extra data for the
or der Hook. When a new order is created, the amount of pay Token is transferred from the caller to
the Or der Manager , and an execution fee is retained in ETH. Then it is assigned a unique id, and
or der Hook. post Pl aceOrder is called if the orderHook address was configured. When
executed, the Or der Manager will first check the validity of the order, as well as the expiration
timestamp and compare the order's price with the market price. If the order has expired, the token
amount and execution fee are returned to the order's owner. Otherwise, it will swap the payToken
into the col | at eral Token if they are different. Depending on the position update type,
Pool . i ncreasePosition() orPool . decreasePosi ti on() will be called:

* Pool . increasePosition(): interest is accrued on the collateral token and the
position's fee is computed. The position fee consists of a fee based on the size of the
change, plus the dynamic fee described above. Then, the asset will be reserved. If the
position size is increased, the collateral and reserved amount will be distributed according
to the index token's risk factor of each tranche. For shorts, the full available liquidity can be
reserved. For longs, a certain amount always stays unreserved, in order to allow LP
withdrawals. The DAO fee is deducted, then the LP fee is distributed according to the risk
factor of each tranche. The reserved amount is updated according to the distribution
computed above. For a long position, the collateral is added to the pool Anmount of the
tranche, and the guaranteed value is increased by the reserved amount that belongs to the
LP, plus fees. In the case of a short position, the new short is added to the global short
position, and it is enforced to be within the maximum size for the token. At the end, a check
is done to ensure the position does not use more than the maximum allowed leverage and
that it is not immediately liquidatable. It is also not allowed to have a position with less than
1x leverage. The pool Hook. post | ncr easePosi ti on function will be called at the end
of the execution if the pool Hook address is configured.

Pool . decreasePosition(): interest is accrued on the collateral token and the
position's fee is computed. The payout is computed, and the fees are taken from the PnL in
case of a gain from the trader, or from the remaining collateral in the case of a loss. The
PnL and fees are taken proportional to the position' size change. Then the assets are
released. The DAO fee is added in a special mapping, then the LP fee is distributed
according to the risk factor of each tranche. The reserved amount is released in the same
proportions it has been recorded to be reserved across the tranches. The pool amount is
reduced or increased depending on whether the trader made a gain or a loss, according to
the distribution computed above. If the position is a long, the guaranteed value is decreased
and if it is a short, the global short position is decreased. At the end, a check is done to
ensure the position does not use more than the maximum allowed leverage and that it is
not liquidatable. Also, it is not allowed to overcollateralize a position. The
pool Hook. post | ncr easePosi ti on function will be called at the end of the execution if
the pool Hook address is configured.

By default, the status of an order is OPEN, once executed it is FI LLED. Only OPEN orders with an owner
can be executed.

ecancel Lever ageOr der : the owner of an order can cancel it. The token amount as well as the
execution fee will be returned to the order's owner and the order's status is set to CANCELLED. Only
OPEN orders can be cancelled.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

Note that due to the way that leverage orders are implemented (synthetic leverage through LP asset
reservation), it is not relevant for the overall pool value whether or not a position is liquidated in time.
Liguidations merely update the internal accounting.

Note that interest is accrued for a token every time its utilization in the pool changes, i.e., upon
add/remove liquidity, swaps, and position management. The interest is non-compounding and is accrued
per periods of 1 hour.

2.2.3 Oracle

The Or acl e is used to get the USD price of tokens. The primary source of prices is the r eport er role,
which is assumed to be held by the Pri ceReport er contract, controlled by a Keeper. The Keeper posts
prices, which are then compared with a reference price (Chainlink). If the Keeper's price is within
chai nl i nkDevi at i on of the Chainlink price and has been updated within the last 5 minutes, then the
Keeper's price is used. The chai nl i nkDevi at i on is configured separately per token. If the Keeper's
price is not within chai nl i nkDevi at i on, then the Keeper or Chainlink price will be used, whichever is
more favorable for the protocol (for example, t okenl n will be undervalued and t okenQut will be
overvalued). At most, the price used can be 3 * chai nl i nkDevi at i on away from the Chainlink price.
If the Keeper's last price is more than 5 minutes old, the Chainlink price will be used with a 0. 2%extra
margin in favor of the protocol. If the Keeper's last price is more than 1 hour old, the Chainlink price with
an extra 5%will be used. Orders can only be executed if the last Keeper update is more recent than the
order creation time.

2.2.4 Trust Model

Users: not trusted

Pool's owner: trusted to correctly set/manage the different parameters and addresses of the pool, as well
as the tokens that are listed in the pool and the different tranches and their parameters in a
non-adversarial manner. Can pause and unpause the Pool. Note that while paused, LPs cannot withdraw
liquidity and open positions cannot be closed. For considerations on tokens and parameters, see Market
Manipulation Of Listed Assets Must Not Be Profitable.

Order manager's owner: trusted to correctly set/manage the different parameters and addresses of the
Or der Manager in a non-adversarial manner.

Order manager's controller: trusted to correctly set/manage the minimum execution delay time and public
execution flag of the Or der Manager in a non-adversarial manner.

Executor: See Transaction Ordering MEV. Assumed to be the Pri ceReport er contract.

Liquidity calculator's owner: trusted to correctly set/manage the different fee parameters of the
Li qui di t yCal cul at or in a non-adversarial manner.

Oracle's owner: trusted to correctly set/manage the different price reporters in a non-adversarial manner.

Oracle's whitelisted reporters: trusted to provide correct prices and have a very high uptime. Price
reporter's owner: trusted to correctly set/manage the different price reporters in a non-adversarial
manner.

Price reporter's whitelisted reporters: trusted to provide correct prices, and to not censor or unfairly
reorder orders.

Pool hook's owner: trusted to correctly set/manage the trading contest and trading incentive controller of
the Pool Hook in a non-adversarial manner.

For any contracts that are deployed using proxies: The proxy's owner is fully trusted and could take
control of any tokens the proxy controls at any time, including all user funds.

Tokens: any tokens with non-standard ERC20 behaviors (e.g., rebasing, with fee on transfer, reentrant
(e.g., ERC-777)) should not be used in Xena. Tokens with 0 decimals and tokens with a large number of
decimals (close to 30 or more), should not be used in Xena.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.5 Changesin V3

*ln it was specified that the system is intended to be used with only one tranche, not
multiple as was initially intended.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C)-Severity Findings 0
(Medium)-Severity Findings &

» Accrued Interest Is Not Accounted in trancheValue
» Hardcoded Stablecoin Price

* LP Fee Distribution Is Unfair (-)

+ Missing Documentation

(Low)-Severity Findings 7
« Contracts Not Implementing Their Interface
» Free Leverage Within Accrual Interval
» Incorrect Fee Calculation When Oracles Disagree
« Missing Reentrancy Protection ()
» No Slippage Protection on poolSwap
« OrderLens Marks Inexistent Swap Orders as Executable ()
« OrderLens Missing Checks for Executable Leverage Orders (-)

5.1 Accrued Interest Is Not Accounted in
t rancheVal ue

(Design JCT DV Risk Accepted

The interest that is owed to LPs by an open leveraged position is only accounted for when that position is
updated (increased or reduced), in _cal cPosi ti onFee() .

CS-XENA-002

If a position is opened, but then no longer updated for a long time, a significant amount of interest may
accrue. This pending interest will not be calculated in _get TrancheVal ue(), leading to an
undervaluation of LP shares.

Consider the following situation:

There are 2 LPs, both with an equal amount of liquidity. A trader opens a position. The position is open
for 1 year and is paying 50% APR in interest. After a year, one of the LPs leaves. One minute later, the
trader closes their position. Now, the trader will pay the full interest amount to the remaining LP, even
though the risk of the position was shared equally among both LPs.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

A third LP could even front-run the transaction which closes the position, depositing an equal amount as
the remaining LP to the pool. The trader will now pay half of their accrued interest to the third LP, even
though they did not take any risk. The third LP could immediately withdraw their liquidity afterward,
receiving a risk-free profit.

The effect of this will be larger, the longer positions remain open without being updated. If positions
typically do not stay open for a long time, the accrued interest will likely be small enough that the
undervaluation of LP shares is negligible.

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a code
change.

5.2 Hardcoded Stablecoin Price
(Correctness LTI \ZETT] Risk Accepted)

In _get Col | ateral Price(), if the collateral asset is marked as a stablecoin, the value is hardcoded
to 1 USD. The configured oracle is not queried.

CS-XENA-004

In case a stablecoin loses peg, this price will not match the oracle price.

The PnL (against USD) of shorts is always paid out as if the stablecoin was worth 1 USD, no matter the
actual value. The collateral is valued consistenly between increasing and decreasing a position.

However, in _get TrancheVal ue() of Li qui di t yCal cul at or, the stablecoins are valued at their
oracle price. The PnL of shorts is calculated in USD, independently of the current stablecoin price.

Consider the following illustrative situation:

1. A pool has one tranche and no opening and trading fee, with 2000 USDC liquidity. A trader has an
open short position with 100 USDC collateral. They currently have a positive PnL of 100 USD. The
tranche has reserved 1000 USDC of col | at er al Token from LPs. The oracle price of USDC is
1 USD. The t rancheVal ue will be calculated as (2000 - 1000) * 1 - 100 = 900.

2. The oracle price of USDC collapses to zero.

3. Now, the t rancheVal ue will be calculated as (2000 - 1000) * 0 - 100 = -100.

4. The trader closes their short. They will be paid out their collateral and 100 USDC (worth 0 USD).
5. Now, the t r ancheVal ue will be calculated as (1900 * 0) = 0.

In this extreme (and unlikely) example, the system invariant that AUM (t r ancheVal ue) must always be
positive, can be broken. This would lead to _get TrancheVal ue always reverting when casting
t oUi nt 256() , which will make it impossible to add or remove liquidity from that tranche.

return aumtoU nt 256() ;

A price collapse of the stablecoin to zero is the most extreme case, but the same effect on
t rancheVal ue happens in a smaller way as soon as the oracle price of the stablecoin is not exactly
1 USD.

The incorrect t rancheVal ue will lead to LP shares being over- or undervalued, which can lead to
losses for LPs.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a code
change.

5.3 LP Fee Distribution Is Unfair
() (Medium) (Version 1)()

Upon position increase/decrease/liquidation, the LP fee is scaled and distributed according to the risk
factor, and not according to the distribution of the reserve amount across the tranches. In the case where
the system has three tranches (junior, mezzanine, and senior) and the junior tranche is full, the risk for
newly opened positions will only be distributed across the mezzanine and senior tranches. But in this
case, the junior tranche will still receive a share of the LP fee, although it does not participate in the risk,
and the mezzanine and senior tranches will not get rewarded according to the new risk.

CS-XENA-018

Consider the following situation:

1. There is a pool with two tranches. Tranche A has 2/ 3 of the total r i skFact or, tranche B has 1/ 3.
Tranche A has only one LP, Alice.

2. Each time a trader wants to take leverage, Alice front-runs the i ncr easePosi ti on call of the
execut or with r enovelLi qui di ty, removing her entire balance.

3. When i ncr easePosi ti on is executed, there is no unreserved liquidity in tranche A, so the full
amount is reserved in tranche B.

4. Alice deposits her balance again.

5. When the trader closes their leveraged position, Alice receives 2/ 3 of the posi ti onFee, as well
as the bor r owfee (interest), even though she did not provide any leverage to the trader.

Upon a swap, the LP fee is similarly scaled and distributed according to the risk factor, and not according
to the distribution of the anount Cut . So, the LP fee does not reflect the liquidity utilization.

Acknowledged:

Xena Finance acknowledged the issue with the following response:

This is intended behavi or

5.4 Missing Documentation

(D) (Vistium) (Version 1) (D)

The codebase is poorly documented and almost no natspec has been written.

CS-XENA-005

Xena Finance did not supply any code-external documentation. Only a reference to a third-party project's
documentation website with similar functionality was given.

A well-documented codebase helps integrators and improves the overall security by allowing readers to
better understand the role of a piece of code, as well as any assumptions that are made.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a
change.

5.5 Contracts Not Implementing Their Interface

D (Cow) (Version 1) (ETEETED)

Some contracts do not implement their interface, which could lead to problems when integrated.

CS-XENA-008

* Pool should implement | Pool Wt hSt or age

* LPToken should implement | LPToken

* O acl e should implement | Pri ceFeed

* Or der Manager should implement | Or der Manager Wt hSt or age

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a code
change.

5.6 Free Leverage Within Accrual Interval

(D (Low) (Version 1) (ETIETED)

The interest for leveraged positions accrues once per accr ual | nt erval .

CS-XENA-009

As a result, a trader could avoid paying any interest by creating a leveraged position after interest has
been accrued, then closing the position again before the next accrual. The posi ti onFee will still be
paid.

Risk accepted:

Xena Finance understands and acknowledges this issue, but has decided not to make a code change.

5.7 Incorrect Fee Calculation When Oracles
Disagree

Correctness JETINEZTTR] Risk Accepted

In Li qui di tyCal cul at or, cal cFeeRat e() calculates the fees for a swap based on if the swap
moves the pool towards the t ar get Wei ght or away from it. For this, the value of the token is calculated
based ont okenPri ce. The t ar get Wi ght is calculated based on the Pool . vi rt ual Pool Val ue.

CS-XENA-011

In the normal case, these values are correct. However, in special conditions, the Or acl e does not return
the Keeper's posted price, but instead gives a price that is more favorable to the protocol. For example,
the t okenPri ce of t okenl n for a swap will be undervalued.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The Pool . vi rt ual Pool Val ue is calculated as an average of undervaluing and overvaluing all tokens.
This means that in vi r t ual Pool Val ue, the t okenl n will not be undervalued in the same way.

Mat hUti | s. average(liquidityCal cul ator. get Pool Val ue(true), |iquidityCalcul ator.getPool Val ue(false));

As a result, the weights are computed incorrectly, as values that have different "rounding” applied to
them are compared as if they were rounded the same.

Ultimately, this will lead to the fee calculated by cal cFeeRat e() to be either too high or too low.

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a code
change.

5.8 Missing Reentrancy Protection
[Low] [Version 1][]

Although no attack vector for reentrancy or read-only reentrancy was found, the functions
Pool . 1'i qui dat ePosi ti on and view function virtual Pool Val ue should implement reentrancy
protection to avoid any potential issue.

CS-XENA-014

Code partially corrected:
A reentrancy guard has been added to Pool . | i qui dat ePosi ti on.
vi rt ual Pool Val ue() has not been changed, so integrators must be careful when calling this function.

5.9 No Slippage Protection on pool Swap
(Design [(EERTTR| Risk Accepted

The _pool Swap function in Or der Manager has a _m nAmpunt Qut argument, which can be used for
slippage protection.

CS-XENA-015

However, when _pool Swap() is called from _executelLeveragePositionRequest(), this
functionality is not used, always passing a _ni nAnmount Qut of 0.

Risk accepted:

Xena Finance understands and accepts the risk posed by this issue, but has decided not to make a code
change.

5.10 Order Lens Marks Inexistent Swap Orders as
Executable

D (Low) (Version 1))

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

CS-XENA-019

The default status of an order is OPEN and the values of an uninitialized order's anpunt|ln and
m nAnount Qut will be 0. So, the function OrderLens.canExecut eSwapOrders will mark
non-existent orders as non-rejected, but they will fail if submitted to the Or der Manager .

Acknowledged:

Xena Finance answered:

W are aware of this.
Contracts don't use this function so we keep that for convenience.

5.11 Order Lens Missing Checks for Executable

Leverage Orders
(Low] (Version 1)[j

The function OrderLens. canExecut eLeverageOrders does not do any check for | NCREASE
requests and only does minimal checks for DECREASE requests, e.g., the fee is not fully computed.
Therefore, it may happen that an order marked as executable by the function will fail if submitted to the
Or der Manager .

CS-XENA-017

Acknowledged:

Xena Finance acknowledged this issue and has decided not to make a code change. Xena Finance
states:

Contracts don't use this function. W keep it for conpatibility with backend/frontend | ogic.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 1

» Wrong Accounting upon Margin Account Top up ELEEITEECIRSIEN-CL)

(Medium)-Severity Findings 2
« Hardcoded Contract Addresses
» PriceReporter Will Not Execute Every Second Swap Order

(Low)-Severity Findings 5
ty g

* CEl Pattern Not Applied (LR
e Incorrect Comments E=el e Ete W ol BTy =l

* Interest Rate Is Not Constrained (@l eI =lerd:T

 Missing Events (LERSIEET

« IPool Is Missing Signature for liquidatePosition()

6.1 Wrong Accounting upon Margin Account Top

up
Correctness [HIERYERTIEY] Specification Changed

When collateral is added to a long position without changing the position's size, the function
_reservePool Asset distributes the collateral in the tranches' pool Amount and guar ant eedVal ue.
The distribution is done according to the risk factor and current utilization of each tranche, calculated in
_cal cReduceTr anchesPool Armount ().

CS-XENA-001

Note that the amount of collateral that can be added to a tranche is limited to the unreserved amount
available in that tranche. In an extreme case where all tranches have a high utilization, it will be
impossible to add a large amount of collateral while keeping position size equal, as
_cal cReduceTr anchesPool Amount () will revert if the amount of collateral to add is higher than the
total unreserved amount in all tranches.

When releasing the asset, the distribution is done according to the ratio of reserved amounts across the
tranches. In the case of a collateral top-up, collateral will be distributed among the tranches, but no
additional amount is reserved. This means the distribution of the collateral and reserved amount may not
match. This may lead to a wrong accounting, incorrect pricing of LP shares, and reverting transactions.

Consider the following example:

There are 2 tranches, each with the same risk factor for a given asset. When a long position is opened,
tranche 0 is at full utilization, so the entire collateralAmount and reserveAmount will be given to tranche
1. Time passes and now the trader wants to increase their collateral, while keeping the size the same. At
this point in time, tranche 1 has full utilization, so all the extra collateral will be given to tranche 0. No

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

additional amount is reserved. Now, the trader closes their position. The full amount of collateral (that
they deposited over 2 transactions) will be withdrawn from tranche 1's poolAmount, as only the ratio of
reserveAmount is taken into account when closing a position. This is incorrect, as a part of the collateral
was actually attributed to tranche 0. Tranche 1 will have fewer funds than it should, while tranche 0 will
have more.

The guar ant eedVal ue for the tranches will also be incorrect.

Specification changed:

Xena Finance acknowledged the issue and changed the spec to use only one tranche, which resolves
the issue. Xena Finance stated:

W will use 1 tranche nodel for this version.

6.2 Hardcoded Contract Addresses
D (Viedium) (Version 1) (CXISIIRTD)

In Li qui di t yRout er, the address of the wrapped ether contract is hardcoded.

CS-XENA-003

| WVETH public constant weth | WETH(0x82aF49447D8a07e3bd95BD0d56f 35241523f Babl) ;
The same is true in Or der Lens:
addr ess constant WETH 0x82aF49447D8a07e3bd95BD0d56f 35241523f Bab1;

While this would be correct on Arbitrum One, this project is intended to deploy on Base Mainnet. On Base
Mainnet, this address does not contain a deployment of WETH. As a result, the router will not work with
WETH since the call to deposi t () will fail and make the transaction revert.

Similarly, in Or acl e, an address for a sequencer uptime feed is hardcoded.

Aggr egat or V3l nterface public constant sequencer Upti neFeed
Aggregat or V3l nt erf ace(OxFdB631F5EE196F0ed6FAa767959853A9F217697D) ;

This feed is specific to Arbitrum One and does not function on Base Mainnet.

If the codebase is deployed with the current hardcoded addresses, no funds will be at risk since the
system will not work at all.

Furthermore, in Or der Manager an address for Et hUnwr apper is hardcoded.

address public constant ETH UNWRAPPER = 0x1730CdEe8f 86272eBae2eFD83f 94dd9D5D855EeD;

A contract exists at this address on Base Goerli. Since no contract has been deployed at this address on
Base Mainnet, we cannot determine whether it is correct.

Code corrected:

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The addresses are now given as an argument in the constructor, orini ni ti al i ze() for contracts that
will be used behind a proxy.

6.3 PriceReporter Will Not Execute Every Second
Swap Order
(Correctness | ITTINVIETIRY Code Corrected)

In post Pri ceAndExecut eOr der s(), when looping over swap orders, i is incremented twice. Once in
the post-loop expression, and once in the loop body.

CS-XENA-006

As a result, half the orders will be skipped.

for (uint256 i 0; i swapOrders. length; i++) {
try order Manager . execut eSwapOr der (swapOrders[i], payable(nsg.sender)) {} catch {}
unchecked {
i

}

Code corrected:

i is now only incremented once per loop.

6.4 CEI Pattern Not Applied
7D (Low) (Version 1) (XTI

The checks-effects-interactions pattern that prevents reentrancy attacks is not followed in the function
execut eLeverageOrder (). The status of the order is set to FI LLED only after the call to
_execut eLever agePosi ti onRequest (), which may send ETHto the owner with full gas() .

CS-XENA-007

We do not see a direct attack vector through this reentrancy, but we recommend fixing this as a
preventative measure.

Code corrected:

The code has been updated to first mark the order as FILLED, and then make the call to
_execut eLever agePosi ti onRequest ().

6.5 Incorrect Comments

(Design {(ETDJUZZETRY] Specifcation Changed)

1. The comment above the function Or der Manager . _cr eat el ncr easePosi ti onOr der specifies
the construction of the _dat a field. It mentions a ui nt 256 col | at eral , but no such field is
decoded from the _dat a.

CS-XENA-010

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

2. In the struct Dat aTypes. Posi ti on, the comment on the member r eser veAnount says the
amount is in i ndexToken, but the amount is denominated in col | at er al Token.

3.1n Pool V1. nd, the formula for long-side ManagedValue reads
(poolAmount — reserve) X indexPrice — guaranteedValue it should read
(poolAmount — reserve) X indexPrice + guaranteedValue

4. Some of the comments describing the constants in Or acl e. sol do not represent the correct units.
For example:

MAX_CHAI NLI NK_TI MEQUT = 1 days;

Specification changed:

All mentioned comments have been corrected.

6.6 Interest Rate Is Not Constrained

(Correctness JEMINEZZTR] Code Corrected

In Const ant s, an upper bound for the interest rate is provided:

CS-XENA-012

ui nt 256 public constant MAX | NTEREST_RATE le7;

However, this value is not used anywhere. In particular, in | nt er est Rat eModel , there is no constraint
on the interest rate parameter.

Code corrected:

The interest rate in Si npl el nt er est Rat eModel is now constrained to be strictly smaller than
MAX_| NTEREST _RATE in the constructor.

6.7 Missing Events
7D (Low) (Version 1) (CXSIZET)

1. When the Or der Manager is initialized, the oracle is also set but no related event is emitted. This is
not consistent with the set Or acl e() function, which emits an event.

CS-XENA-013

2. When the Pri ceReport er adds and removes reporters, no event is emitted. This is not consistent
with the similar functionality in Or acl e, which emits events.

Code corrected:
1. The Or acl eChanged event is emitted atthe end ofi niti al i ze.

2. The events Reporter Added and ReporterRenpved are emitted when a reporter is
added/removed.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.8 | Pool Is Missing Signature for
| 1 qui dat ePosi tion()

Desig {(FTOZZZTRY] Code Corrected

The interface of the Pool , | Pool , contains the events and errors relative to a liquidation, but is missing
the signature of the function | i qui dat ePosi ti on.

CS-XENA-016

Code corrected:
The missing function was added to the interface.

6.9 Duplicate Code
[Informational] [Version 1]

Li qui di tyCal cul at or. _cal cDaoFee() is never called and is a copy of Pool . _cal cDaoFee().

CS-XENA-020

Code corrected:
The function Li qui di t yCal cul at or. _cal cDaoFee() has been removed from the codebase.

6.10 Oracle Reporter Address Consistency

[Informational] [Version 1]

The function Or acl e. addReport er allows the owner to add the addr ess(0) as a reporter, but the
function Or acl e. renoveReport er does not allow to remove the addr ess(0) . This is not consistent
with the behavior of the same functionality in PriceReporter, which does not allow adding
address(0).

CS-XENA-025

Code corrected:

O acl e. addReport er no longer allows the addr ess(0) to be added as a reporter.

6.11 Use of assert ()
[Informational] [Version 1]

The function Pool . set Tar get Wi ght () is using assert (i sAsset[itemtoken]); to ensure that
a token is in the mapping of assets.

CS-XENA-028

The Solidity documentation states the following:

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Assert should only be used to test for internal errors, and to check invariants.
Properly functioning code shoul d never create a Panic, not even on invalid external input.

Moreover, failing assertions will consume all the remaining gas. This is why a r equi re() statement
should be used instead.

Code corrected:
The assert has been replaced by a r equi r e statement;

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 EVM Version
(Informational) (Version 1)()

CS-XENA-021

When deploying on non-Ethereum chains, compatibility with the different EVM versions should be
considered. It must be checked that the target chain supports the used Solidity version. For example, not
every chain supports the PUSHO opcode, introduced in Solidity 0.8.20. If the Solidity version used is
changed to something other than 0. 8. 18 in the future, these differences between chains should be
considered.

7.2 Gas Optimizations
(Informational] [Version 1](]

CS-XENA-022
The following is an incomplete list of possible gas optimizations:

1. Duplicated slippage protection: Or der Manager . execut eSwapOr der () implements slippage
protection, but Pool . swap() already has the same functionality.

2. The field SwapOrder. price is assigned in Order Manager . pl aceSwapOr der () but never
used.

3. The mappings user Lever ageOr der Count and user SwapOr der Count are redundant, as a
getter returning the length of the user Lever ageOrders and user SwapOr der s arrays would
accomplish the same thing with higher gas efficiency.

4. The storage slot Si npl el nt er est Rat eModel . i nt er est Rat e can be immutable.

5. The parameters _m nAnount Qut andr ecei ver of the function Or der Manager . _pool Swap are
always 0 and addr ess(t hi s). They could be replaced by their fixed value to decrease the length
of the calldata.

6. The check done in Order Manager. requireControllerO Omer could be transformed
following De Morgan's law to be more gas efficient and leverage the lazy evaluation of the
parameters.

7. The function Or der Manager . cancel SwapOr der could load only the specific fields of or der that
are needed into memory, instead of the whole struct, since not all the fields will be read. The same
applies for r equest in Or der Manager. _expiresOrder ().

8.In Order Lens. get OpenLever ageOr der s(), an array of constant size is first filled, then another
array is created which contains the same elements, except that empty items are removed. Instead,
only non-empty could be added to a dynamic size array using arr ay. push() . This could avoid
needing the second array. The same applies for Or der Lens. get QpenSwapOr der s() .

9.In most for() loops, incrementing the counter can be marked as unchecked to avoid an
unnecessary overflow check. This is done in some places, but not systematically.

10. In certain callpaths, the oracle is queried multiple times for the same price. Caching certain prices
could save gas. An example is the addLi qui di ty callpath, where the oracle is queried once for

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

each supported token from cal cAddLiquidity(), then twice more from
ref reshVi rt ual Pool Val ue().

11. Most ui nt 256 storage slots in Pool St or age have a known maximum size. For example, fee
values or the accrual interval. These values could use smaller data types, which would allow
packing them with other values to save gas.

12. The SwapOr der and Lever ageOr der structs could be optimized by choosing a smaller data type
for some of the fields, e.g., subni ssi onBl ock, submni ssi onTi mest anp, or expi r esAt .

13. Upon interest accrual, it could save gas to check whether the interest has already been accrued for
the current interval and return early if it has, avoiding the interest rate computation.

Acknowledged:
Xena Finance acknowledged this issue and has decided not to make a code change.

7.3 Hardcoded Contract Address

[Informational] [Version 1]

CS-XENA-023
In OrderManager, an address for EthUnwrapper is hardcoded.

address public constant ETH UNWRAPPER = 0x1730CdEe8f 86272eBae2eFD83f 94dd9D5D855EeD;

A contract exists at this address on Base Goerli. Since no contract has been deployed at this address on
Base Mainnet, we cannot determine whether it is correct.

7.4 Misleading onl yControl | er Name
[Informationalj[Version 1][]

CS-XENA-024

The onl yControl | er/ _onl yControl | er modifier/function's name is misleading, as they will accept
the owner address as well, not only the control | er.

Acknowledged:

Xena Finance understands and acknowledges the issue.

7.5 Tokens With Low Decimals
(Informational) (Version 1)()

CS-XENA-026

All computations that split token amounts into different ratios are rounded down, which is safer for the
system. While it is not a problem for tokens with enough decimals, it could impact tokens with low
decimals (e.g., GUSD has 2 decimals) or relatively low decimals compared to its value (e.g., WBTC has
8 decimals). Such rounding could result in value being locked in the contract.

Tokens used must be carefully chosen so the value lost in precision errors is not too high.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Acknowledged:
Xena Finance understands and acknowledges the issue.

7.6 Tokens With Many Decimals
[Informational] [Version 1][]

CS-XENA-027

As the normalized price in Or acl e is stored as a 30 decimal USD value, tokens used must be carefully
chosen so their price will have enough precision.

For example, a token with a number of decimals close to 30 will have a low price precision.

Acknowledged:

Xena Finance understands and acknowledges the issue.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Add Then Remove Liquidity May Be Cheaper
Than Swap

Adding or removing liquidity, as well as swapping, has a fee. These fees are separately configured.

For a swap, the fees for in and out token are calculated and the higher fee is used. For liquidity, there is a
fee on add as well as on remove.

If the fees for liquidity adding/removing are sufficiently low, it may be cheaper to emulate a swap by first
adding and then removing liquidity in another token, than it is to do a direct swap. In particular, there is a
minimum fee that is enforced on swaps, but this minimum is not enforced on add/remove liquidity.

8.2 LPs Are Not Always Able to Remove Liquidity

Liquidity removal from a tranche is only possible within the unreserved amount, i.e.
pool Amount - reservedAnount, so if the tranche is fully reserved or the LP has a position in a
tranche greater than the unreserved amount, removal of liquidity will be limited to that amount.

LPs do not have a way to force the closure of open positions, so they may be unable to withdraw for a
long time in this situation. However, they will also be earning a high interest rate.

8.3 Market Manipulation of Listed Assets Must
Not Be Profitable

Xena relies fully on an external oracle to determine the prices it offers to traders. This is what enables the
zero-price-impact trading feature.

However, it also comes with significant risks. Unlike spot markets, large positions can be opened and
closed without affecting the market price. This means that it is important that the price on the market from
which the external oracle gets its prices must not be manipulatable by an attacker.

If an attacker is able to move the external market price by an amount larger than the fee paid to swap or
open and then close a position in Xena combined with the cost of the manipulation, this could be a
profitable attack. The loss from such an attack would be taken by LPs. The profit for the attacker is limited
by the percentage they manipulate the market and the maximum size of a position (or swap) the attacker
can create.

If the attacker keeps their position open for less than accr ual | nt er val , they may not need to pay any
interest. See Free Leverage Within Accrual Interval.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

To mitigate this attack vector, Xena has 2 features: A maxLi qui di ty, which limits the size of longs and
swaps, and a maxd obal Short Si ze, which limits the size of shorts. Each of these can be configured
per token.

These values must be configured carefully, in such a way that the cost of manipulating the external
market is always larger than the profit that can be made from exploiting projects relying on that market's
price. Only assets with highly liquid markets should be listed on Xena. The less liquid the external market
is, the lower the maxLi qui di ty and maxd obal Short Si ze must be. If an asset becomes less liquid
over time, it should be delisted, or the limits should be lowered. Additionally, the limits should be lowered
if there is another project (for example another deployment of Xena) that also relies on the same asset's
price. In this case, the limits must be coordinated such that the total profit among all projects from
manipulating the price is still smaller than the cost of manipulation.

A historical example of such an attack on another zero-price-impact DEX (GMX) can be found here: http
s:/lweb.archive.org/web/20221015123657/https://twitter.com/joshua_j_lim/status/1571554171395923968

8.4 Outdated Virtual Pool Value
(D) (Version 1

If liquidity is not added or removed frequently, the virtual pool value may be outdated. Integrators relying
on the virtual pool value should call r ef r eshVi r t ual Pool Val ue before using the value.

8.5 Pay Token and Returned Token May Differ
(D) (Version 1

When using ETH or VETH, users must be aware of the following behaviors:

« If the t okenl n of a swap order was ETH, then WETH will be transferred back to the owner if the
order is cancelled.

* If the payToken of a leveraged order was WETH, then ETH will be transferred back to the owner if
the order is cancelled.

* If the payToken of a leveraged order was WETH, then ETH will be transferred back to the owner if
the order expires.

8.6 Public Execution of Leverage Orders Does

Not Work if Keeper Is Down

The publ i cExecuti on flag should allow order owners to execute their own orders, even when the
executor is inactive.

However, public execution of leverage orders will not work if the Keeper does not post prices anymore.
Leverage orders can only be executed if a price update happened after it was placed.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 30

https://web.archive.org/web/20221015123657/https://twitter.com/joshua_j_lim/status/1571554171395923968
https://web.archive.org/web/20221015123657/https://twitter.com/joshua_j_lim/status/1571554171395923968
https://chainsecurity.com

8.7 Senior Tranche Assumes Full Risk in Extreme
Situations

(D) (Version 1)

Different tranches have different risk exposures, which are dependent on the ri skFact or of the
tranche.

In normal circumstances, a tranche will only assume a percentage of risk of each trade according to their
ri skFact or. However, in extreme scenarios where the other tranches are already fully utilized, the
senior tranche can be exposed to 100%of the risk of a trade. These extreme situations likely have a
higher risk to the LP compared to "normal conditions". This leads to senior tranches having lower risk
exposure (and lower fee revenue) during "normal conditions” and full risk exposure during "extreme
conditions". This may lead to the overall ri sk/ rewar d ratio for senior tranches to be worse than for
junior tranches.

Users should take this into account when deciding which tranche they want to participate in.

Xena Finance affirmed that they are aware of this and that it is the intended behavior.

8.8 Swaps on Pool Should Be Done Atomically
(D) (Version 1

When users are directly using the swap function of the Pool , it must be done within one transaction. The
swap function expects the user's funds to already have been transferred to the contract before the call. If
users were to first send the funds and then call swap() in two separate transactions, they will likely be
front-run and lose their funds.

The Or der Manager and Li qui di t yRout er provide helper functions to transfer and swap in the same
transaction.

8.9 System Is Paused if Chainlink Is Down
(D) (Version 1

The system relies on Chainlink prices for every user action. Users must be aware that the system will not
work if one of the following conditions is met:

» the Chainlink price has not been updated for some time and is stale (every token has a configurable
timeout)

» The chain's (initially Base) sequencer is down according to the Chainlink sequencer uptime feed

» The chain's sequencer restarted less than 1 hour ago according to the Chainlink sequencer uptime
feed

8.10 Transaction Ordering MEV

Transaction ordering in Xena is very important. Similarly to other markets, the execution of a transaction
depends on the transactions before it. For example, the fees charged for a swap are dependent on the
current token ratios in the pool. This is also known in the context of Ethereum as MEV.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

In Xena, any user can make a swap at any time. However, other order types can only be executed by the
execut or role while publicExecution is disabled. The smart contracts do not enforce any
transaction order, so the execut or is free to decide in which order they execute orders. It can also
decide to censor some orders, never executing them. This is comparable to the role of block builders in
Ethereum.

The execut or has the potential to use its privileged position to extract some of this MEV-comparable
value that is present for itself. Additionally, it seems to be intended that the execut or role is held by the
Pri ceReporter, which also has the powerful role of providing asset prices to the Oracl e. Using
post Pri ceAndExecut eOrders, the PriceReporter can update the oracle price and then
immediately execute orders. In particular, it can execute swap orders immediately, before other
addresses have a chance to swap using the updated prices.

Users must ensure that the execut or and Pri ceReporter are behaving as expected and are not
using their privileged position to extract value for themselves, for example by taking payments for quicker
execution, censorship, or by executing their own transactions first.

The execut or should publish its transaction ordering methodology, so that users can hold it
accountable if it does not behave accordingly. It would also be possible to enforce some ordering rules
on the smart contract level.

@ Xena Finance - Xena - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Pool
	2.2.2 OrderManager
	2.2.3 Oracle
	2.2.4 Trust Model
	2.2.5 Changes in V3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Accrued Interest Is Not Accounted in trancheValue
	5.2 Hardcoded Stablecoin Price
	5.3 LP Fee Distribution Is Unfair
	5.4 Missing Documentation
	5.5 Contracts Not Implementing Their Interface
	5.6 Free Leverage Within Accrual Interval
	5.7 Incorrect Fee Calculation When Oracles Disagree
	5.8 Missing Reentrancy Protection
	5.9 No Slippage Protection on poolSwap
	5.10 OrderLens Marks Inexistent Swap Orders as Executable
	5.11 OrderLens Missing Checks for Executable Leverage Orders

	6 Resolved Findings
	6.1 Wrong Accounting upon Margin Account Top up
	6.2 Hardcoded Contract Addresses
	6.3 PriceReporter Will Not Execute Every Second Swap Order
	6.4 CEI Pattern Not Applied
	6.5 Incorrect Comments
	6.6 Interest Rate Is Not Constrained
	6.7 Missing Events
	6.8 IPool Is Missing Signature for liquidatePosition()
	6.9 Duplicate Code
	6.10 Oracle Reporter Address Consistency
	6.11 Use of assert()

	7 Informational
	7.1 EVM Version
	7.2 Gas Optimizations
	7.3 Hardcoded Contract Address
	7.4 Misleading onlyController Name
	7.5 Tokens With Low Decimals
	7.6 Tokens With Many Decimals

	8 Notes
	8.1 Add Then Remove Liquidity May Be Cheaper Than Swap
	8.2 LPs Are Not Always Able to Remove Liquidity
	8.3 Market Manipulation of Listed Assets Must Not Be Profitable
	8.4 Outdated Virtual Pool Value
	8.5 Pay Token and Returned Token May Differ
	8.6 Public Execution of Leverage Orders Does Not Work if Keeper Is Down
	8.7 Senior Tranche Assumes Full Risk in Extreme Situations
	8.8 Swaps on Pool Should Be Done Atomically
	8.9 System Is Paused if Chainlink Is Down
	8.10 Transaction Ordering MEV

