PUBLIC

Code Assessment

of the Solana WBTC
Smart Contracts

April 22, 2025

Produced for

®

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

N o o b~ WDN P

Notes

@ WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG

10
11
12
16

https://chainsecurity.com

1 Executive Summary

Dear WBTC team,

Thank you for trusting us to help WBTC with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Solana WBTC according to
Scope to support you in forming an opinion on their security risks.

WBTC implements a system that allows for minting and burning WBTC on Solana.

The most critical subjects covered in our audit are correctness of the minting and burning flow, the
implementation of the access control, and the sanitization of the data accounts. Security regarding all the
aforementioned subjects is high. Only minor issues have been uncovered which have been addressed.

The general subjects covered are compute unit efficiency of the implementation, the documentation and
specification, and testing. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

J Acknowledged

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code

commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Solana WBTC repository based on
the documentation files. The table below indicates the code versions relevant to this report and when

they were received.

V | Date Commit Hash Note
1 | 13 March 2025 8f3df0b18850d543605508471cf97801846475a4 Initial Version
2 | 7 April 2025 2fbe5ba70ef3f5e584a6bb5492975c0385¢c768be Fixes
3 | 22 April 2025 6e434c06bc5f06c952ddb2600ad33eb557456895 Final version

For the Solana programs, the anchor version 0.31.0 was used.

The following files were considered in scope for the assessment:

pr ogr ans
| -- controller

| T-- src

| |-- errors.rs

| -- events.rs

| -- instructions

| | -- claimmnt_authority.rs

| | -- clai mownership.rs
| |-- initialize.rs
| |-- mint.rs
| |-- nmod.rs
| | -- set_factory.rs
| | -- set_nenbers.rs
| | -- transfer_mint_authority.rs
| “-- transfer_ownership.rs
| -- lib.rs
| -- state
| |-- controller.rs
| “-- nod.rs

| -- factory

| T-- src

| |-- errors.rs

| -- events.rs

| -- instructions

| | -- burn.rs

| |-- initialize.rs

| |-- mnt_requests.rs

| |-- nmod.rs

| | -- set_custodian_btc_deposit_address.rs
| "-- set_nerchant_btc_deposit_address.rs
| -- lib.rs

| -- state

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

| | -- address.rs

| | -- factory state.rs
| |-- nmod.rs

| “-- request.rs

| -- errors.rs
-- events.rs
-- instructions
| -- add_merchant.rs
cl ai m ownership.rs
initialize.rs
nod. rs
renove_merchant.rs
set _custodian.rs
-- transfer_ownership.rs
-- lib.rs
-- state
| -- menbers.rs
| -- merchant _info.rs
"-- nod.rs

~

programs/ control | er/src/instructions/burn was part of (Version 1) but was later removed.

2.1.1 Excluded from scope

Third party libraries and dependencies were excluded from the scope of this assessment. The Solana
programs make use of the Anchor framework which is assumed to function properly.

The off-chain components and the deployment of the bridge were excluded from the scope of this
assessment as well as the creation and configuration of WBTC token mint. We assume all these happen
correctly.

All the handling of Bitcoin transactions, secure custody of BTC, non-Solana actions of the custodian,
KYC processes, and similar organizational matters are out of scope of this review, but important to the
security of the system.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

WBTC offers an implementation of a system to bring WBTC on Solana. Merchants can create requests to
mint and burn WBTC in the form of an SPL token. The process is facilitated by the custodian role which
monitors the Bitcoin chain and mints WBTC on Solana or release BTC on Bitcoin should it be burned on
Solana.

The system comprises three programs:
Factory:

This program is the merchant interface for bridging Bitcoin assets. Merchants use it to create (and
cancel) requests to mint WBTC to their Solana address. The Custodian reviews these requests,

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

confirming them on-chain after verifying the corresponding deposit on Bitcoin, which triggers the actual
minting by the Controller program; the Custodian can also reject requests. To burn WBTC, a merchant
sends the tokens to a specific Controller-owned account (ATA), leading the Controller program to burn
them. For minting to occur, the Custodian must first create a Cust odi anBt cDeposi t Addr ess data
account for the merchant, specifying the Bitcoin address for deposits. For burning (receiving BTC back),
the merchant must create a Mer chant Bt cDeposi t Addr ess data account with their own Bitcoin
receiving address. Each mint and burn request is assigned a unique, sequentially incrementing nonce
(starting from 0).

Controller:

The controller can mint or burn WBTC tokens. It only accepts calls from the factory program. It maintains
the Cont r ol | er St or e which holds the mint authority for WBTC in the SPL program. It can transfer the
mint authority and the ownership of the Control | er St ore to any other public key via a two-step
transfer process. Finally, the controller allows modifying the address of the factory program it accepts
calls from and the members program.

Members:

It maintains the Menber sSt or e data account which tracks the custodian and the number of merchant
data accounts (Mer chant | nf 0). The owner of the Menber St or e creates and deletes Mer chanl nf o
data accounts. They can also set the custodian or initiate a two-step ownership transfer of the account.

Below we describe the minting and the burning process:
WBTC Minting:

1. The custodian registers a BTC custodian address for the merchant
2. The merchant sends BTC to the address of the custodian.
3. The merchant creates a request on Solana (add_m nt _r equest).

4. The custodian confirms the transaction (confirm m nt _request) and mints WBTC for the
merchant.

WBTC Burning:

1. The merchant registers a BTC withdrawal address.

2. The merchant creates a burn request and transfers the assets to controller's ATA , and then the
controller's ATA burns the received tokens (bur n).

3. The custodian sends BTC to the merchant's BTC withdrawal address.

4. The custodian confirms the transaction (confi rm bur n_r equest).

Regarding Bitcoin we assume that no significant changes will take place. That means that we assume
that the restrictions on Transaction Length and Address Length the system uses will not become
problematic. Furthermore, we assume that secure deposits can be made.

2.3 Trust Model

We infer the following trust model:

Deployer: It deploys the programs and initializes the accounts. The trust to the deployer is limited as
they should not be able to change the parameters later. It needs to transfer its initial privileges
correctly. It is up to the deployment administrators of the system to check for a correct deployment
with correct configurations.

Big DAO: The role is fully trusted. It is the owner of the Contr ol | er St or e. Therefore, they can
set the factory program to accept calls from the members program which is used to check for
whitelisted merchants. If wrong programs are set then the controller could be receiving unverified
calls and mint/burn WBTC arbitrarily.

(S: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Small DAO: The role is fully trusted. It is the owner of the Menber St or e. Therefore, they can set
the custodian and whitelist merchants. Setting a malicious custodian can lead to arbitrary minting of
WBTC.

Custodian: The role is fully trusted. They are responsible to confirming mint and burn requests that
happened on Bitcoin. If they act maliciously the can wrongly confirm transactions that have not
happened.

Merchant: The trust to the role is limited. They are allowed to create mint and burn requests and
cancel mint requests. Hence, they could theoretically spam requests to annoy the custodian, but can
be removed if that is the case.

As seen above the system defines different roles. If roles are being transferred, weird states can
arise. For example, a transfer of mint authority could prevent mint requests from being confirmed. It
is assumed that, for all authority transfers and system changes, WBTC will ensure that all ongoing
processes are completed before implementation and any address changes will be communicated to
users in advance to maintain transparency and operational continuity.

2.4 Changes in Version 2

The

flow of burning has been changed. In (Version 2) the Factory no longer transfers tokens to the

Controller. Instead, the Factory directly issues a burn CPI which results in the tokens being burned from
the merchant's account.

For
fac

the mint flow, the Factory now calls the Controller with a PDA-signed invocation using the
tory_st ore. This provides better compatibility for users.

Otherwise, smaller efficiency improvements have been implemented.

2.5 Changes in Version 3

Minor improvements were implemented.

WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
« Missing Length Checks ()

5.1 Missing Length Checks
[Low](Version 1)[]

The fact ory program implements Confi r mBur nRequest () that allows the custodian to confirm a
burn request by updating the request status and the bt c¢_t xi d. However, the bt ¢_t xi d string length is
only checked to be at most 64 characters. Similarly, the merchant and custodian deposit addresses are
only checked to be at most 62 characters.

CS-SOLWTBC-001

WBTC acknowledges the issue with the following statement:

"We did consider but to cover a few exceptions scenarios and follow the implementation on ETH the
team has decided not to do so"

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 0

y g

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings &
ty g

» Bitcoin Addresses Can Be Larger Than 62 Characters
* Squads Compatibility

« Unused Storage Variable

« transfer CP1 Can Be Avoided

Informational Findings 4
+ Initially Created ATA Is Unused

* Inaccuracies in the Specification LIRS IERT-E

* Redundant Constraint (SR eu{=a T
* Unchecked mint_to and burn (&L CReIEE T

6.1 Bitcoin Addresses Can Be Larger Than 62
Characters

D (Lo (Version 2) CIXTTTD)

In the f act ory program, Request Account constraints the length of bt c_deposi t _addr ess to be at
most 62 characters. However, Bech32 addresses can have a length up to 90 characters. The factory
program does not support such addresses.

CS-SOLWTBC-003

Note that such addresses are supported in the WBTC bridge deployed on Ethereum mainnet as no
length constraint is enforced there. Therefore, there is a discrepancy between the two implementations.

Code corrected:

The length constraint has been modified to ensure that the address length is at most 100 characters.

6.2 Squads Compatibility
CIETD) (Low) (Version 1) (CXIESIEED)

CS-SOLWTBC-002

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 12

https://en.bitcoin.it/wiki/BIP_0173
https://chainsecurity.com

The different roles in the system might use Squads instead of a simple wallet account. In Squads, one
can bat ch_create(), followed by bat ch_add_t ransacti on() . Each added transaction to the batch
will be executed in order as a CPI in bat ch_execut e_transacti on() . Therefore, the source of the
CPI call will always be the Squads program. This leads to the following restrictions:

* Merchants using Squads cannot burn WBTC as the controllers verifies with
i nstructi on_sysvar that the instruction called is from the f act ory. However, the currently
executing instruction will be bat ch_execut e_transacti on() from Squads.

* For a similar reason, a Custodian using Squads cannot mi nt WBTC as the controllers also verify
with i nstructi on_sysvar that the instruction called is from the f act ory.

Code corrected

WBTC removed the check using i nst ructi on_sysvar inthe mi nt and bur n instructions. Instead, the
factory_store now signs the CPI and the controller expects in respectively mi nt and burn the
fact ory_st or e to be the signer of the transaction. This way, the controller ensures that only the factory
can call i nt and bur n without preventing the use of Squads by merchants or the custodian.

6.3 Unused Storage Variable
7D (Low) (Version 1) CXESIZET)

Some storage variables are never used:

CS-SOLWTBC-007

1. The ControllerStore holds pendi ng_owner _pr ogram and
pendi ng_nmi nt_aut hority_programbutthey are never used a part from being set back to
the default public key.

2. The same holds for the pendi ng_owner _pr ogr amof the Menber sSt or e in menbers.

3. The nmerchant public key is stored in the Merchant | nfo but it's not required as the
mer chant is also used in the seed.

Code corrected:

The pendi ng_owner _programand pendi ng_m nt _aut hority_programwere removed from the
Control | er St or e and the pendi ng_owner _pr ogr amwas removed from the Menber sSt or e.

WBTC decided to keep the mer chant public key in Mer chant | nf o to retrieve data more conveniently.

6.4 transfer CPICan Be Avoided
T (Low) (Version 1) CIYSIRTD)

In the factory program, the burn instruction first transfers the WBTC to the
control |l er _token_account and then invokes bur n on the contr ol | er program to burn the token
through a CPI call to the SPL token program.

CS-SOLWTBC-009

However, the transfer call from the merchant to the control | er _t oken_account can be avoided by
burning the required amount from the merchant's token account directly.

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected:

The burn process has been maodified to directly burn the tokens from the merchant's token account,
eliminating the transfer step.

6.5 Initially Created ATA Is Unused
[Informational] [Version 2]

Intheinitialize instruction the Control | er will create an Associated Token Account (ATA) for the
controll er_store, called control | er_t oken_account . Due to other design changes in the code
in (Version 2), this ATA is no longer being used. Hence, there is no reason to create it.

CS-SOLWTBC-004

Code corrected:
The Associated Token Account cont r ol | er _st or e has been removed from the Cont rol | er.

6.6 Inaccuracies in the Specification

[Informational] [Version 1] Specification Changed

The specification describes the minting and burning flows. However, the following inaccuracies were
found:

CS-SOLWTBC-005

» The burning flow indicates that the WBTC tokens are burned in the last step, but they are actually
burned when the merchant initiates the burn request.

* The minting flow indicates that the merchant first initiates a mint request to the f act ory and then
the custodian sets the BTC deposit address for that merchant. However,
add_mi nt _request _handl er () in the factory requires the BTC deposit address to be set.

Code corrected

WBTC updated the specification.

6.7 Redundant Constraint
(Informational) (Version 1)

Inconfirmm nt_request you specify the following constraints:

CS-SOLWTBC-006

#[account (

nmut ,

address = controller_store.token_mnt, // <-- Cl

m nt::token_program = token_program

constraint = token_mint.key() == controller_store.token_m nt @ FactoryError::InvalidTokenMnt // <-- Q2
)]
pub token_nint: InterfaceAccount<'info, M nt>,

The constraints C1 and C2 are equivalent, therefore one of them can be removed.

Another example of redundant constraints is

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

#[account (
seeds = [
MERCHANT_BTC_ADDRESS_SEED,
payer. key().as_ref() // <-- C1
I
bump = nerchant _btc_address. bunp,

constraint = nerchant_btc_address. merchant == payer. key() @FactoryError::InvalidBtcAddress, // <-- C2
constraint = !merchant_btc_address. btc_address.is_enpty() @ FactoryError::InvalidBtcAddress

)]

pub merchant _btc_address: Account<'info, MerchantBtcDepositAddress>,

In this case, the derivation of the mer chant _bt ¢_addr ess PDA address is done using the payer key,
therefore the constraint C2 is redundant as the PDA is implicitly associated to the payer through the
seed.

Code corrected:

* The first redundant constraint was removed.

*The second redundant constraint was kept to ensure that the content of
mer chant _bt ¢c_addr ess. ner chant is correct.

6.8 Unchecked m nt _to and burn

[Informational] [Version 1]

The control | er program uses mint _to() and burn() in respectively m nt and bur n. However,
neither of these functions performs any checks on the token mint and decimals.

CS-SOLWTBC-008

Code corrected

m nt _to() and burn() were respectively replaced by m nt _t o_checked() and bur n_checked() .

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Burning Is Restricted to ATAs

When a merchant wants to bridge back BTC from Solana to the Bitcoin network, it will create a burn
request through the f act ory program with burn(). This function will burn the amount of WBTC to
bridge from the merchant t oken_account . However, t oken_account is enforced to be an ATA of the
merchant account. Thus, a merchant can't burn WBTC from a token account. To burn WBTC, the
merchant must first transfer the WBTC from his token account to his ATA and then call bur n() .

7.2 WBTC Is Not Pausable

While the WBTC from Bitcoin network to Ethereum mainnet is pausable, it is not on Solana. This
difference is notable as the design of the system on Solana tries to not deviate from the initial design on
Ethereum.

7.3 merchant count Size

The current mer chant _count is limited to 65535 merchants due to it being typed as a ul6. This is
sufficient with the current specification. However, it might not be in the future the number of merchants
increases significantly.

I:$: WBTC - Solana WBTC - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model
	2.4 Changes in Version 2
	2.5 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Missing Length Checks

	6 Resolved Findings
	6.1 Bitcoin Addresses Can Be Larger Than 62 Characters
	6.2 Squads Compatibility
	6.3 Unused Storage Variable
	6.4 transfer CPI Can Be Avoided
	6.5 Initially Created ATA Is Unused
	6.6 Inaccuracies in the Specification
	6.7 Redundant Constraint
	6.8 Unchecked mint_to and burn

	7 Notes
	7.1 Burning Is Restricted to ATAs
	7.2 WBTC Is Not Pausable
	7.3 merchant_count Size

