

PUBLIC

Limited Code Review

of the Vyper Compiler

Semantic analysis and Code generation

June 13, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Review Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Notes 24

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Vyper team,

Thank you for trusting us to help Vyper with this review. Our executive summary provides an overview of
subjects covered in our review of the latest version of Vyper Compiler according to Scope to support you
in forming an opinion on their security risks.

Limited code reviews are best-effort checks and don't provide assurance comparable to a non-limited
code assessment. This review was not conducted as an exhaustive search for bugs, but rather as a
best-effort sanity check for the pull requests of interests. The review was executed by one engineer over
a period of two weeks. Given the large scope and codebase and the limited time, the findings aren't
exhaustive.

The subjects covered by our review are detailed in the Review Overview section.

We did not find any issues in the fixes of the security advisories that were in the scope of this review and
can confidently assert that the security advisories have been resolved.

The elimination of the Function Signature class enhances the code's readability and consistency,
according to our findings. This removal, enabled by the previous pull request that refactored the type
system and the code generation, is one of the last steps in merging the type systems of the semantic
analysis and the code generation.

The Journal and its commit/rollback scheme fix the issue with incorrect type checking of loop variables
but also allows for future new metadata to be added to the compiler easily. Although one issue was found
in its implementation as highlighted by Metadata Journal can rollback incorrectly, this new primitive is a
great addition to the compiler as it also fixes a performance issue by caching the list of potential types for
nodes.

Special attention should be applied to testing complex expressions with functions calls as
sub-expression. As highlighted in various issues such as Multiple evaluations of DST lead to non-unique
symbol errors when copying Bytes arrays or DynArrays or Make_setter is incorrect for complex types
when the RHS references the LHS with a function call, such complex expressions might be edge cases
in the compiler logic and should be part of the testing suite.

Additionally, the large amount of issues related to the new IfExp AST node depicts the importance for the
compiler to be more generic in its way to validate the semantics of expressions as currently, some
functions must handle the case of several AST nodes in distinct ways as they cannot be handled by the
general logic.

The following sections will give an overview of the system and the issues uncovered. We are happy to
receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

Low -Severity Findings 24

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Review Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The review was performed on the fixes of the recently published security advisories of the
https://github.com/vyperlang/vyper repository as well as on several important pull requests:

1. https://github.com/vyperlang/vyper/commit/02339dfda0f3caabad142060d511d10bfe93c520

2. https://github.com/vyperlang/vyper/commit/c3e68c302aa6e1429946473769dd1232145822ac

3. https://github.com/vyperlang/vyper/commit/851f7a1b3aa2a36fd041e3d0ed38f9355a58c8ae

4. https://github.com/vyperlang/vyper/commit/0bb7203b584e771b23536ba065a6efda457161bb

5. https://github.com/vyperlang/vyper/commit/4f8289a81206f767df1900ac48f485d90fc87edb

6. https://github.com/vyperlang/vyper/commit/3de1415ee77a9244eb04bdb695e249d3ec9ed868

7. https://github.com/vyperlang/vyper/pull/3388

8. https://github.com/vyperlang/vyper/pull/3390

9. https://github.com/vyperlang/vyper/pull/3410

10. https://github.com/vyperlang/vyper/pull/3375

In addition to the pull requests mentioned, a non-exhaustive general review of vyper.semantics and
vyper.codegen was conducted within the available time constraints.

This review was not conducted as an exhaustive search for bugs, but rather as a best-effort sanity check.
The issues already documented on the https://github.com/vyperlang/vyper repository at the
time of the review were not included in this report.

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 28 May 2023 5c2892b2b4f6cdbc039b0f70ecd0e7058fed521c Initial Version - v0.3.9

2.2 System Overview
The Vyper language is a pythonic smart-contract oriented language, targeting the Ethereum Virtual
Machine (EVM). The Vyper compiler translates the Vyper language into the EVM bytecode. The
compilation process is performed in multiple phases:

1. Vyper Abstract Syntax Tree (AST) is generated from Vyper source code.

2. Literal nodes in the AST are validated.

3. Constants are replaced in the AST with their value and constant expressions are folded.

4. The semantics of the program are validated. The structure and the types of the program are
checked and type annotations are added to the AST.

5. Getters for public variables are added, and unused statements are removed from the AST.

6. Positions in storage and code are allocated for storage and immutable variables.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 5

https://github.com/vyperlang/vyper/commit/02339dfda0f3caabad142060d511d10bfe93c520
https://github.com/vyperlang/vyper/commit/c3e68c302aa6e1429946473769dd1232145822ac
https://github.com/vyperlang/vyper/commit/851f7a1b3aa2a36fd041e3d0ed38f9355a58c8ae
https://github.com/vyperlang/vyper/commit/0bb7203b584e771b23536ba065a6efda457161bb
https://github.com/vyperlang/vyper/commit/4f8289a81206f767df1900ac48f485d90fc87edb
https://github.com/vyperlang/vyper/commit/3de1415ee77a9244eb04bdb695e249d3ec9ed868
https://github.com/vyperlang/vyper/pull/3388
https://github.com/vyperlang/vyper/pull/3390
https://github.com/vyperlang/vyper/pull/3410
https://github.com/vyperlang/vyper/pull/3375
https://chainsecurity.com

7. The Vyper AST is turned into a lower-level intermediate representation language (IR).

8. Various optimizations are applied to the IR.

9. The IR is turned into EVM assembly.

10. Assembly is turned into bytecode.

The review we conducted revolved around phases 4 to 7 of the above list.

We now give a brief overview of the two main components we are interested in: the semantic validation
and the code generation.

2.2.1 Semantic Validation
Once the Abstract Syntax Tree has been folded, it is analyzed to ensure that it is a valid AST regarding
Vyper semantics and annotated with types and various metadata so that the code generation module can
properly generate IR nodes from the AST.

The semantics validation starts with the ModuleAnalyzer which iterates over the various Module-level
statements of the contract. For each statement, after performing various checks, the compiler updates
the namespace to add a new entry if needed. For example, for a variable declaration, the namespace will
be updated to map the variable's name to some data structure with relevant information such as its type,
whether it is public or constant for example.

Once all module-level statements have been properly analyzed, the compiler checks some properties of
the module, for example, whether there are no circular function calls or collisions between function
selectors.

The FunctionNodeVisitor is then used to validate the content of each function one by one. It iterates
over all the statements in the body of the function, and, for each statement, validates that it respects
Vyper semantics and, if needed, calls functions like validate_expected_type or
get_possible_types_from_node to analyze the type of the statement's sub-expressions.

Those functions are using the _ExprAnalyser to infer one or multiple types for a given expression.
Such a process can be recursive in the case of complex expressions and mostly act as a type checker.

The FunctionNodeVisitor is also in charge of validating several properties of the functions, for
example, that its body respects the function's mutability, or that there is eventually a terminus node at the
end of the function if it has a return type.

Once the full Vyper contract has been validated, the StatementAnnotationVisitor and the
ExpressionAnnotationVisitor are called to finally annotate the expression nodes of the AST with
their corresponding type for the code generation that will happen later.

2.2.2 Code Generation
After the Abstract Syntax Tree has been typechecked, storage slots have been assigned to storage
variables, and data locations have been assigned to immutable variables, the resulting AST is forwarded
to the code generation phase to be turned into an intermediate representation of the code (IR). The
intermediate representation is a lower-level description of the same program, where the operations
performed are more similar to the EVM primitives. As such, it handles pointers directly, explicitly performs
memory and storage stores and loads, and translates every high-level Vyper concept into an EVM
compatible equivalent. It differs from assembly because it has some high level convenience functionality,
such as performing conditional jumps with the if operator, looping with the repeat operator, defining
stack variables with the with operator and setting new values for them with the set operator, marking
jump locations with the label operator. Furthermore it has some convenience functions such as
sha3_32 and sha3_64, which use the keccak hash function to compute the hashes of stack variables
and the deploy function, which copies the runtime bytecode to memory and returns it at the end of the
constructor execution.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The code generation is accessed from the function
vyper.codegen.module.generate_ir_for_module(), which accepts a variable containing the
annotated AST, and storage and data indexes. Code is generated for the runtime (code that will be
returned by the smart contract constructor and stored in the smart contract) and for the constructor.
Functions are sorted topologically according to the call graph, code is generated first for functions that
don't call other functions, then for functions that depend on those, and so on. The memory allocation
strategy for a function is to reserve a memory frame large enough for every callee at the beginning of the
function memory frame, and then allocate the variables after the biggest memory offset used by any of
the callees. For every function, code is generated and concatenated. For external functions, code for
selector matching is prepended. An external function with keyword arguments will generate several
selectors, setting the default values for keywords arguments, then calling a common function body.
Function arguments for internal functions are allocated as memory variables at the beginning of the
function memory frame. The caller will set their value, accessing the callee memory frame. For external
functions, calldata is copied to memory if clamping is needed or if the internal Vyper representation is
different than the ABI encoding. Clamping is necessary for types that could exceed their allowed range,
such as uint128, and ABI encoding and Vyper memory representation differ for dynamic types, for
which the ABI encoding includes relative pointers. Return values for internal functions are copied to a
buffer allocated in the caller function memory frame. The caller passes on the stack the address of the
return buffer to the callee function. The return program counter, for internal functions, is also pushed on
the stack by the caller.

Code for the function body is then generated by calling vyper.codegen.stmt.parse_body().
parse_body() generates the codes for every statement in a function. Subexpressions in every
statement are recursively parsed. For every type of AST node representing a statement, a function
parse_{NodeType} is present in stmt.py, which generates the IR for a node of type NodeType (e.g.
parse_Return, parse_Assign). Expressions contained in statements are recursively parsed, in the
vyper.codegen.expr module. Code is generated for the innermost expressions, and the output of the
generated code is used to evaluate the containing expressions.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Incorrect Order of Evaluation of Arguments of Builtin Function

• Make_setter Is Incorrect for Complex Types When the RHS References the LHS With a Function
Call

• Metadata Journal Can Rollback Incorrectly

Low -Severity Findings 24

• Assertion Could Be More Precise in parse_Binop

• Assertions Are Not Constant

• Calls to State-Modifying Functions in Range Expressions Are Not Caught by the Type-Checker

• Default Arguments Are Treated as Keyword Arguments

• Epsilon Is Not Documented

• IfExp Cannot Be Used in a Subscript

• IfExp Fails at Codegen When Used With Self or Environment Variables

• IfExp Not Annotated When Used as Iterable for a Loop

• Implements Statement Does Not Enforce the Same Indexation of Events

• Imported Contracts Are Not Fully Semantically Validated

• Incorrect Typing of Builtins Whose Return Type Depends on Some of Its Argument's Types

• Incorrect Typing of Loop Iterable When It Is a List Literal

• Incorrect Typing of Raw_Call When Max_Outsize=0 in Kwargs

• Multiple Evaluations of DST Lead to Non-Unique Symbol Errors When Copying Bytes Arrays or
DynArrays

• Nesting a Pop in Append Results in Incorrect Behavior

• No Sanity Check on Storage Layout Files

• Overriding Storage Layout Fails With Immutables

• PR 3134 Has Been Reverted

• Redundant and Incomplete Function Selector Collision Checks

• References to Public Constant and Immutables With Self Missed by the Typechecker

• Semantic Analysis of the Imported Contract Is Done With the Current Contract's Namespace

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

• StateAccessViolation When "Self" Is Used as a Struct Field Name

• TypecheckFailure When Using Address and Self Members as Struct Field Name

• in and Not in Cannot Be Used With DynArray of Enums

5.1 Incorrect Order of Evaluation of Arguments of
Builtin Function
Correctness Medium Version 1

CS-VYPER_MAY_2023-001

The order of evaluation of the arguments of the builtin functions uint256_addmod, uint256_mulmod,
ecadd and ecmul is incorrect.

• For uint256_addmod(a,b,c) and uint256_mulmod(a,b,c), the order is c,a,b.

• For ecadd(a,b) and ecmul(a,b), the order is b,a.

In the following contract, a call to foo() returns 1 while we would expect it to return 0.

a:uint256

@internal
def bar() -> uint256:
 self.a = 1
 return 8

@external
def foo()->uint256:
 return uint256_addmod(self.a, 0, self.bar()) # returns 1

In the following contract, a call to loo() returns False while we would expect it to return True.

x: uint256[2]

@internal
def bar() -> uint256[2]:
 self.x = ecadd([1, 2], [1, 2])
 return [1,2]

@external
def loo() -> bool:
 self.x = [1, 2]

 a:uint256[2] = ecadd([1, 2], [1, 2])
 b:uint256[2] = ecadd(self.x, self.bar())

 return a[0] == b[0] and a[1] == b[1] # returns false

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5.2 Make_setter Is Incorrect for Complex Types
When the RHS References the LHS With a Function
Call
Correctness Medium Version 1

CS-VYPER_MAY_2023-002

Issue 2418 described a bug where, during an assignment, if the right-hand side refers to the left-hand
side, part of the data to be copied may get overwritten before being copied.

Although PR 3410 fixed the issue in most of the cases, it can still happen with function calls as shown in
the example below. A call to foo returns [2,2] where if the function bar would be inlined, it would
return [2,1]

a:DynArray[uint256,2]

@external
def foo() -> DynArray[uint256,2]:
 # Initial value
 self.a = [1,2]
 self.a = [self.bar(1), self.bar(0)]
 return self.a #returns [2,2]

@internal
def bar(i:uint256)->uint256:
 return self.a[i]

In this second example, boo temporarily assigns values to a before emptying it. the values stored in a
are however still readable from foo as a call to foo here returns [11,12,3,4].

a:DynArray[uint256, 10]

@external
def foo()->DynArray[uint256,10]:
 self.a = [1,2,self.boo(),4]
 return self.a # returns [11,12,3,4]

@internal
def boo() -> uint256:
 self.a = [11,12,13,14,15,16]
 self.a = []
 # it should now be impossible to read any of [11,12,13,14,15,16]
 return 3

5.3 Metadata Journal Can Rollback Incorrectly
Correctness Medium Version 1

CS-VYPER_MAY_2023-003

To fix the issue of incorrect type checking of loop variables, a commit/rollback scheme for metadata
caching has been implemented to handle speculation when trying to type a loop.

When registering two consecutive updates for a given node, the journal can have an incorrect behavior.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 12

https://github.com/vyperlang/vyper/issues/2418
https://github.com/vyperlang/vyper/pull/3410
https://chainsecurity.com

Assuming that the compiler has entered the speculation mode (while typing a loop for example), and
considering an AST node A which, at the time of entering the speculation had M0 as metadata, if the
following events happen, the cached metadata for A would become incorrect (considering M0!=M1):

1. The metadata of A is updated a first time (using register_update) resulting in M1.

2. The metadata of A is updated a second time resulting in M2 (which might or might not be equal to
M1).

3. _rollback_inner is called to roll back A's metadata to its state pre-speculation.

While the correct state of A's metadata should be M0, the resulting metadata will currently be M1 as the
second call to register_update has "overwritten" the first one.

5.4 Assertion Could Be More Precise in
parse_Binop
Design Low Version 1

CS-VYPER_MAY_2023-004

In the function Expr.parse_BinOp in the code generation, the assertion
is_numeric_type(left.typ) could be performed before the LShift and RShift cases are those
operators are only defined for numeric types.

5.5 Assertions Are Not Constant
Correctness Low Version 1

CS-VYPER_MAY_2023-005

The definition of the class Context introduce the flag in_assertion which, when set, indicates that
the context should be constant according to is_constant() definition. This flag is never set during the
code generation, specifically, it is possible to have a non-constant expression in an assert statement.
For example, the following contract compiles.

x: uint256

@internal
def bar() -> uint256:
 self.x = 1
 return self.x

@external
def foo():
 assert self.bar() == 1

5.6 Calls to State-Modifying Functions in Range
Expressions Are Not Caught by the Type-Checker
Correctness Low Version 1

CS-VYPER_MAY_2023-006

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The type checker does not catch the use of a state-modifying function call in a range expression, this
leads the code generator to fail due to an assertion:
assert use_staticcall, "typechecker missed this"

The compiler fails to compile the following with the assertion mentioned above.

interface A:
 def foo()-> uint256:nonpayable

@external
def bar(x:address):
 a:A = A(x)
 for i in range(a.foo(),a.foo()+1):
 pass

5.7 Default Arguments Are Treated as Keyword
Arguments
Design Low Version 1

CS-VYPER_MAY_2023-007

validate_call_args takes kwargs, the list of valid keywords as an argument and makes sure that
when a call is made, the given keywords are valid according to kwargs.

When being called from ContractFunctionT.fetch_call_return, the defaults arguments of the
function are given to validate_call_args in kwargs although it is not allowed to give keywords
arguments in a function call except for gas, value, skip_contract_check and
default_return_value.

For example, when trying to compile the following contract, the call to validate_call_args made by
fetch_call_return will succeed although an invalid keyword argument is passed. The compilation
will later fail (as it should) as fetch_call_return enforce that the kwargs should belong to the call site
kwargs' whitelist.

@external
def foo():
 self.boo(a=12)

@internal
def boo(a:uint256=12):
 pass

5.8 Epsilon Is Not Documented
Design Low Version 1

CS-VYPER_MAY_2023-008

The builtin function epsilon is not documented in https://docs.vyperlang.org/.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 14

https://docs.vyperlang.org/
https://chainsecurity.com

5.9 IfExp Cannot Be Used in a Subscript
Design Low Version 1

CS-VYPER_MAY_2023-009

The IfExp AST node's case is missing in util.py:types_from_Subscript and
annotation.py:visit_subscript. The following example does not compile, and the compiler
returns: vyper.exceptions.StructureException: Ambiguous type

@external
def boo() :
 a:uint256 = ([1] if True else [2])[0]

5.10 IfExp Fails at Codegen When Used With Self
or Environment Variables
Design Low Version 1

CS-VYPER_MAY_2023-010

Some complex expressions including the new IfExp node might typecheck, however, no corresponding
case is implemented in the codegen leading the compiler to fail.

The following example fails to compile with an assertion error
(isinstance(contract_address.typ, InterfaceT)) in ir_for_external_call.

@external
def foo():
 (self if True else self).bar()

@internal
def bar():
 pass

The following example fails to compile with
vyper.exceptions.TypeCheckFailure: Name node did not produce IR.

@external
def foo():
 a:Bytes[10] = (msg if True else msg).data

Note: In case the first example was to be allowed by Vyper, one would need to be careful as several
analysis and sanity checks (e.g circularity checks) rely on the fact that function calls are always on the
form self.FUNC_NAME.

5.11 IfExp Not Annotated When Used as Iterable
for a Loop
Design Low Version 1

CS-VYPER_MAY_2023-011

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The IfExp AST node's case is missing in annotation.py:visit_For leading the
StatementAnnotationVisitor to omit the annotation of a IfExp node when used as iterable in a
loop. The following example does not compile, and the compiler returns: KeyError: 'type'.

@external
def foo():
 for x in [1,2] if True else [0,12]:
 pass

Note that if a new case for IfExp is created in annotation.py:visit_For to fix this issue, the
function local.py:visit_For should be updated carefully as the check that ensures that for loops
must have at least 1 iteration would not be performed on IfExp nodes.

5.12 Implements Statement Does Not Enforce the
Same Indexation of Events
Correctness Low Version 1

CS-VYPER_MAY_2023-012

When using the implements statement, the contract's events fields are not enforced to match the
interface's events fields on their indexation.

For example, the following code compiles although the spender field of Approval is not indexed.

from vyper.interfaces import ERC20

implements: ERC20

event Transfer:
 sender: indexed(address)
 receiver: indexed(address)
 value: uint256

event Approval:
 owner: indexed(address)
 spender: address
 value: uint256

name: public(String[32])
symbol: public(String[32])
decimals: public(uint8)

balanceOf: public(HashMap[address, uint256])
allowance: public(HashMap[address, HashMap[address, uint256]])
totalSupply: public(uint256)

@external
def __init__(_name: String[32], _symbol: String[32], _decimals: uint8, _supply: uint256): pass

@external
def transfer(_to : address, _value : uint256) -> bool: return True

@external
def transferFrom(_from : address, _to : address, _value : uint256) -> bool: return True

@external
def approve(_spender : address, _value : uint256) -> bool: return True

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.13 Imported Contracts Are Not Fully
Semantically Validated
Correctness Low Version 1

CS-VYPER_MAY_2023-027

When importing a contract, only the function signatures are semantically checked (to produce the
InterfaceT), A contract that does not compile could be imported in another one which would then
compile as long as the signatures of the imported functions are semantically correct.

For example, a.vy compiles although it imports b.vy which does not compile.

#a.vy
import b as B

@external
def foo(addr:address):
 x:B = B(addr)
 x.foo()

#b.by
@external
def foo():
 x:uint256 = "foo"

5.14 Incorrect Typing of Builtins Whose Return
Type Depends on Some of Its Argument's Types
Correctness Low Version 1

CS-VYPER_MAY_2023-013

Builtin functions whose return type depends on some of its argument's type can be incorrectly typed
resulting in the compiler exiting with a TypeMismatch.

To achieve this behavior, the builtin function should be called with arguments such that:

• At least one argument is not constant as the call would be folded otherwise.

• get_possible_types_from_node should return multiple potential types for the arguments on
which the return type of the builtin depends.

Below is a list of the builtins affected together with examples failing to compile although they should:

• min and max:

• a:uint256 = min(1 if True else 2, 1)

• all unsafe builtins:

• a:uint256 = unsafe_add(1 if True else 2, 1)

• shift (deprecated as of v0.3.8):

• a:uint256 = shift(-1, 1 if True else 2)

• uint2str:

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

• f:String[12] = uint2str(1 if True else 2)

5.15 Incorrect Typing of Loop Iterable When It Is a
List Literal
Correctness Low Version 1

CS-VYPER_MAY_2023-014

when a loop iterates over a literal list, the function visit_For of the StatementAnnotationVisitor
annotates it with a Static Array type whose value type is the last element of the list of common types of
shared by the elements. To be consistent with the previously performed analysis, the list should be typed
using the type of the loop iterator as it is done with range expressions.

In this code, although it compiles, i is typed as a uint8 while [1,2,3] is annotated with int8[3].

@external
def foo():
 for i in [1,2,3]:
 a:uint8 = i

When doing the code generation of a for loop iterating over a literal list, _parse_For_list is
overwriting the value type of the list with the type of the loop iterator inferred at type checking. This
behavior is commented with:
TODO investigate why stmt.target.type != stmt.iter.type.value_type. By solving the
issue above, stmt.target.type would be equal to stmt.iter.type.value_type and no
overwriting would be needed.

5.16 Incorrect Typing of Raw_Call When
Max_Outsize=0 in Kwargs
Correctness Low Version 1

CS-VYPER_MAY_2023-015

When called with max_outsize explicitly set to 0 (max_outsize=0) the compiler wrongly infers that
raw_call has no return type.

@external
@payable
def foo(_target: address):

 # compiles
 a:bool = raw_call(_target, method_id("someMethodName()"), revert_on_failure=False)

 # does not compile but should compile
 b:bool = raw_call(_target, method_id("someMethodName()"), max_outsize=0, revert_on_failure=False)

 # compiles but should not compile
 raw_call(_target, method_id("someMethodName()"), max_outsize=0, revert_on_failure=False)

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

5.17 Multiple Evaluations of DST Lead to
Non-Unique Symbol Errors When Copying Bytes
Arrays or DynArrays
Correctness Low Version 1

CS-VYPER_MAY_2023-016

The destination of byte arrays and DynArray copying is evaluated multiple times as
cache_when_complex is not used. This includes the following functions:

• make_byte_array_copier.

• _dynarray_make_setter (both cases: src.value == "multi" and
src.value != "multi").

For example, compiling the following Vyper code will output
AssertionError: non-unique symbols {'self.bar()2'}.

a:DynArray[DynArray[uint256, 2],2]

@external
def foo():
 self.a[self.bar()] = [1,2]
@internal
def bar()->uint256:
 return 0

5.18 Nesting a Pop in Append Results in Incorrect
Behavior
Correctness Low Version 1

CS-VYPER_MAY_2023-017

When modifying the size of a DynArray during a call to append, the initial length will be the one used to
compute the new length and the compiler won't consider any change of length done by the
sub-expression. In the example below, the value returned by a.pop() is used but its side effect of
decreasing a's length is omitted.

This behavior was introduced by the fix to the security advisory OOB DynArray access when array is on
both LHS and RHS of an assignment. As the length of the append is cached before the evaluation of the
pop and stored in memory after, the new length produced by the pop which is stored in the memory is
not taken into account as it is overwritten by the cached length.

@external
def foo() -> DynArray[uint256,3]:
 a:DynArray[uint256,2] = [12]
 a.append(a.pop())
 return a # outputs [12,12] while the same in python outputs [12]

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 19

https://github.com/vyperlang/vyper/security/advisories/GHSA-3p37-3636-q8wv
https://github.com/vyperlang/vyper/security/advisories/GHSA-3p37-3636-q8wv
https://chainsecurity.com

5.19 No Sanity Check on Storage Layout Files
Design Low Version 1

CS-VYPER_MAY_2023-018

When compiling a contract with the flag storage_layout_file, some basic sanity checks could be
performed on the given JSON file as currently:

• The JSON can have duplicated entries. In this case, the last one will be the one used by the
compiler.

• The JSON can have entries not matching any storage slot of the contract

• The entries of the JSON do not necessarily have to match with the type of the corresponding
variables in the contract.

For example, a contract only defining the storage variable a:uint256 can be compiled given the
following storage layout:

{
 "a": {"type": "uint16", "slot": 10},
 "a": {"type": "uint8", "slot": 1},
 "b": {"type": "uint256", "slot": 1}
}

5.20 Overriding Storage Layout Fails With
Immutables
Correctness Low Version 1

CS-VYPER_MAY_2023-019

The check used for ignoring immutable in set_storage_slots_with_overrides is ill-defined.

When compiling a contract with a custom storage layout file, if an immutable is defined in the contract
(and is not present in the json), the compilation will fail with a StorageLayoutException.

For example, the following contract fails to compile if given an empty storage layout.

a:immutable(uint256)

@external
def __init__():
 a = 1

5.21 PR 3134 Has Been Reverted
Design Low Version 1

CS-VYPER_MAY_2023-020

The PR 3134 has been reverted by the PR 2974 in the sense that neither the conflicting signatures nor
the method ID are displayed when the multiple functions share the same selector.

Note however that PR 2974 fixed an issue where collision between functions having 0x00000000 has
method ID were not detected since collision == 0 would be treated as collision == Null.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 20

https://github.com/vyperlang/vyper/pull/3134/
https://github.com/vyperlang/vyper/pull/2974/
https://chainsecurity.com

5.22 Redundant and Incomplete Function Selector
Collision Checks
Design Low Version 1

CS-VYPER_MAY_2023-021

To ensure the method IDs are unique, the constructor of the ModuleAnalyzer performs two checks that
are both incomplete but together cover every case:

• The call to validate_unique_method_ids by the constructor of the ModuleAnalyzer does not
handle the public variable getters as they haven't been added to the AST yet.

• The generation of an InterfaceT from the top-level node has as a side effect to ensure the
uniqueness of method IDs of public variable getters and external functions but does not handle
internal variables (not really required at the moment but in Vyper semantics to prevent breaking
changes in case of a future change to their calling convention).

It would probably be better to have one check that covers everything for clarity purposes.

5.23 References to Public Constant and
Immutables With Self Missed by the Typechecker
Design Low Version 1

CS-VYPER_MAY_2023-022

As visit_VariableDecl adds public constant and immutables variables to self's namespace,
types_from_Attribute successfully typecheck references to constant and immutables using self.
The compiler later fails during the codegen.

Compiling the following contract will fail with KeyError: 'a'.

a:public(constant(uint256)) = 1

@external
def foo():
 b:uint256 = self.a

5.24 Semantic Analysis of the Imported Contract
Is Done With the Current Contract's Namespace
Correctness Low Version 1

CS-VYPER_MAY_2023-023

When an imported interface is typed, the namespace of the current contract is used to generate the
interface type from the AST of the imported contract. This means that the imported contract's function
definitions may use the types and constants defined in the current contract.

For example a.vy would compile successfully although b.vy, which is imported by a.vy makes use of
S and a, both defined in a.vy.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 21

https://github.com/vyperlang/vyper/blob/5c2892b2b4f6cdbc039b0f70ecd0e7058fed521c/vyper/semantics/analysis/module.py#L109
https://github.com/vyperlang/vyper/blob/5c2892b2b4f6cdbc039b0f70ecd0e7058fed521c/vyper/semantics/analysis/module.py#L93
https://chainsecurity.com

#a.vy
import b as B

struct S:
 x:uint256
a:constant(uint256) = 12

@external
def bar(addr:address):
 x:B = B(addr)
 y:S = x.foo()

#b.vy
@external
def foo(a:uint256=a) -> S:
 return S({x:12})

5.25 StateAccessViolation When "Self" Is Used as
a Struct Field Name
Correctness Low Version 1

CS-VYPER_MAY_2023-024

While it is allowed to use self as a field name for a struct, constructing such struct in a pure function
will result in a StateAccessViolation as the compiler will consider that this is a reference to self,
the address of the contract.

For example, the following contract fails to compile due to StateAccessViolation: not allowed
to query contract or environment variables in pure functions.

struct A:
 self:uint256

@external
@pure
def foo():
 a:A = A({self:1})

5.26 TypecheckFailure When Using Address and
Self Members as Struct Field Name
Correctness Low Version 1

CS-VYPER_MAY_2023-025

Accessing the field of an enum named after an address or self member (balance, codesize,
is_contract, codehash or code) results in a TypeCheckFailure.

For example, the following contract fails to compile due to
TypeCheckFailure: Attribute node did not produce IR.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

struct User:
 balance:uint256

@external
def foo():
 a:User = User({balance:12})
 b:uint256 = a.balance

5.27 in and Not in Cannot Be Used With DynArray
of Enums
Correctness Low Version 1

CS-VYPER_MAY_2023-026

When trying to use the in or not in operator with a Dynamic Array of Enum, the compiler fails to
compile the program with a TypeMismatch.

For example, the following contract does not compile due to the in operation.

enum A:
 a
 b
@external
def foo():
 f:DynArray[A,12] = []
 b:bool = A.a in f

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

6.1 Note on PR 3388
Note Version 1

The code generation of the constructor of a contract is performed before the code generation of the
deployment version of its called functions. It hence relies on the fact that the code generation of runtime
internal functions properly sets the frame information of the constructor's callees. If the runtime code
generation would be to skip the generation of internal functions that will not be included in the runtime
code for example, the MemoryAllocator of the constructor would be incorrectly initialized.

Additionally, following PR 3388, the following comment in the function _runtime_ir is now outdated:

create a map of the IR functions since they might live in both
runtime and deploy code (if init function calls them)
internal_functions_ir: list[IRnode] = []

6.2 Unused Parameters
Note Version 1

• _is_function_implemented does not use its parameter fn_name.

• struct_literals does not use its parameter name.

Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Review Overview
	2.1 Scope
	2.2 System Overview
	2.2.1 Semantic Validation
	2.2.2 Code Generation

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Incorrect Order of Evaluation of Arguments of Builtin Function
	5.2 Make_setter Is Incorrect for Complex Types When the RHS References the LHS With a Function Call
	5.3 Metadata Journal Can Rollback Incorrectly
	5.4 Assertion Could Be More Precise in parse_Binop
	5.5 Assertions Are Not Constant
	5.6 Calls to State-Modifying Functions in Range Expressions Are Not Caught by the Type-Checker
	5.7 Default Arguments Are Treated as Keyword Arguments
	5.8 Epsilon Is Not Documented
	5.9 IfExp Cannot Be Used in a Subscript
	5.10 IfExp Fails at Codegen When Used With Self or Environment Variables
	5.11 IfExp Not Annotated When Used as Iterable for a Loop
	5.12 Implements Statement Does Not Enforce the Same Indexation of Events
	5.13 Imported Contracts Are Not Fully Semantically Validated
	5.14 Incorrect Typing of Builtins Whose Return Type Depends on Some of Its Argument's Types
	5.15 Incorrect Typing of Loop Iterable When It Is a List Literal
	5.16 Incorrect Typing of Raw_Call When Max_Outsize=0 in Kwargs
	5.17 Multiple Evaluations of DST Lead to Non-Unique Symbol Errors When Copying Bytes Arrays or DynArrays
	5.18 Nesting a Pop in Append Results in Incorrect Behavior
	5.19 No Sanity Check on Storage Layout Files
	5.20 Overriding Storage Layout Fails With Immutables
	5.21 PR 3134 Has Been Reverted
	5.22 Redundant and Incomplete Function Selector Collision Checks
	5.23 References to Public Constant and Immutables With Self Missed by the Typechecker
	5.24 Semantic Analysis of the Imported Contract Is Done With the Current Contract's Namespace
	5.25 StateAccessViolation When "Self" Is Used as a Struct Field Name
	5.26 TypecheckFailure When Using Address and Self Members as Struct Field Name
	5.27 in and Not in Cannot Be Used With DynArray of Enums

	6 Notes
	6.1 Note on PR 3388
	6.2 Unused Parameters

