PUBLIC

Limited Code Review

of the Vyper Compiler IR optimizer

and safe-math module

July 22, 2022

Produced for

v

@EHAINSEEURITY

by

Contents

Executive Summary
Review Overview
Limitations and use of report

Terminology

a A W N B

Findings

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG

© 0 N 01 W

https://chainsecurity.com

1 Executive Summary

Dear Vyper team,

Thank you for trusting us to help Vyper with this review. Our executive summary provides an overview of
subjects covered in our review of the latest reviewed contracts of Vyper Compiler according to Scope to
support you in forming an opinion on their security risks.

Limited code reviews are best-effort checks and don't provide assurance comparable to a non-limited
code review. This review was not conducted as an exhaustive search for bugs, but rather as a best-effort
sanity check for files of interest. The review was executed by one engineer over a period of two weeks
supported by a second engineer for four days. Given the large scope and codebase and the limited time,
the findings aren't exhaustive.

Vyper implements a compiler of Vyper language into EVM bytecode.

The most critical subjects covered in our review are the functional correctness of arithmetic operations
and the soundness of performed optimizations. Security regarding functional correctness of arithmetic
operations is improvable, due to discovered bugs, where IR nodes introduced by safemath, can
themselves have overflows.

We did not uncover any issues regarding the soundness of performed optimizations, however, we would
like to note that current optimizations are applicable only in a very limited number of cases. Extending the
applicable cases when they can be applied might lead to potential problems and bugs. In addition, since
optimizations are performed after safemath, extending optimizations to smaller than 256-bit datatypes
should be done carefully. Some of the currently performed optimizations might potentially lead to an
overflow of smaller datatypes, if not properly adjusted.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Review Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The review was performed on the following source code files inside the
https://github. com vyperl ang/ vyper repository:

evyper/ir/optimzer.py. Functions inside this file were checked, with a special focus on
_optim ze_bi nop.

e vyper/ codegen/ expr . py. Functional correctness of par se_Bi nQp function was checked.

evyper/codegen/arithmetic. py. Functions inside this file were checked for functional
correctness.

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note
1 | 23 June 2022 8eed2579f69b3081818423c0260696e397696361 Initial Version

2.1.1 Excluded from scope

All other files and imports that were not mentioned in Scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Review Overview.

Vyper language is a pythonic smart contract oriented language, targeted at Ethereum Virtual Machine
(EVM). Vyper compiler translates the Vyper language into the EVM bytecode. The compilation process is
performed in multiple phases:

1. Vyper AST is generated from the Vyper source code.

. Constant folding is performed on the AST.

. Imported interfaces are added to produce the contextualized global AST.

. The Intermediate Representation (IR) is produced from the contextualized AST.

. Optimizations are performed on the IR.

o O~ W N

. Assembly is generated from the IR.

7. Bytecode is generated from the Assembly.

In this review, we focused on 2 parts:
1. The checks for overflows, that are introduced for arithmetic operations during the IR generation.

2. The optimizations that are performed on IR.

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Arithmetic checks

The EVM opcodes like ADD, MJL or POWdo not revert on overflows. The Vyper corresponding ops +, *
and ** perform overflow checks and revert on overflow by default. These checks are introduced in the IR
during the conversion of the contextualized AST. In addition, most EVM opcodes operate with 32-byte
words. In Vyper, N-bit signed and unsigned integers as well as a decimal type are available. The IR
safemath checks the need to set the correct boundaries for each data type so that the result of the
operations is not only within the bounds of the word but also of the given type.

2.2.2 IR optimizations

Various optimizations are defined in vyper/ir/optim zer. py file. They are performed numerous
times on each node of the IR, until they stop changing. The following optimizations are implemented:

1. Binary operator: If one or both operands are literals whose value are known at compile time, some
optimizations can be introduced, for example x+0 can be safely replaced by x.

2. Unary operator: In some cases, unary operators such as slr, ceil 32 or i szero can be
optimized if the operand is a literal with some given value. i szer o(0) would be reduced to 1 for
example.

3. Unary operator: In some cases, unary operators such as sl r, cei |l 32, assert ori szero can be
optimized. i szer o(0) would be reduced to 1 for example.

4. Branches of an i f node can be either removed if the condition is known at compile time, either
swapped to allow for further optimizations in some cases.

5.nmezero and cal | dat acopy operations that are zeroing memory can be merged into a single
cal | dat acopy.

6. Empty sequences can be removed from the Intermediate Representation.

7. Sequential operations copying from calldata to memory can be merged into a single
cal | dat acopy operation.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

o (ENTIED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings !
ty g

« Compiler Panicking for an Out of Range Integer Node

« Different Semantics for Raising to the Power of Negative Numbers
« Exponentiation Lead to CompilerPanic Exception

« Folding Does Not Follow the Vyper Runtime Semantics

« SafeMath Reverting on Valid Power

« SafeMath Reverting on Valid Power for int256

* Wrong Overflow Exception

5.1 Compiler Panicking for an Out of Range
Integer Node

D (Lo (Version 1)

For exponentiation of unsigned numbers, the following IR node is added to check for overflows of the
computation:

CS-VYPER_JULY_2022-001

["It", X, upper_bound]

When a ui nt 256 is raised to the power of 0 or 1, upper _bound is equal to MAX_Ul NT256+1, which is
an output of cal cul at e_| ar gest _base. When trying to create a node for such value, the __init__
function of | Rnode, will throw an exceptionas - (2 ** 255) <= self.value < 2 ** 256 is false.

@xt er nal

def foo() ui nt 256:
X: Ui nt 256 0
return Xx 1

Error conpiling: Foo.vy
vyper . exceptions. Conpi |l erPani c: out of range

This is an unhandl ed internal conpiler error. Please create an issue on Gthub to notify the devel opers.
https://github. conl vyperl ang/ vyper/i ssues/ new?t enpl at e=bug. nd

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5.2 Different Semantics for Raising to the Power
of Negative Numbers

D (Lo (Version 1)

When computing the power of O or 1 by a negative number, if the compiler knows the exponent at
compile time, it will output an exception. On the other side, if the compiler is only aware of the base, it will
successfully compile and running the code will not revert. This behavior is due to the fact that the runtime
checks added by the compiler only check that the result of the computation is in bounds. It does not
check that the exponent is not negative to have the same semantic as the other case. The two examples
below show the issue, compilation of f oo will output the given exception while a call to bar will return 1.

CS-VYPER_JULY_2022-002

@xt er nal

def foo() I nt 16:
X: intl6 1
return x (-2)

vyper. exceptions. | nval i dOperation: Cannot cal cul ate a negative power

contract "Foo.vy", function "foo", line 4:17
3 X: intle =1
---> 4 return x ** (-2)
__________________________ N
5
@xt er nal
def bar () I nt 16:
X: intl6 2
return 1 X

5.3 Exponentiation Lead to Conpi | er Pani c
Exception

D (Lo (Version 1)

In arithnetic.safe_pow, when the base x is a literal, either x in (0,1), either
cal cul ate_I| argest _power is called. In cal cul ate_| argest _power however, Conpi | er Pani c
is raised when the absolute value of the base is either O or 1. This behavior results in powers of - 1
raising the exception as its absolute value is 1.

CS-VYPER_JULY_2022-003

a abs(a)
if ain (0, 1):
rai se Conpil erPani c("Exponential operation is useless!")

The following code snippet produces this behavior:

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

@xt er nal
def foo():
X: 1 nt256 4
y: int256 (-1) X

In addition the compiler does not handle the exception that is produced by this snippet:

Error conpiling: Foo.vy
vyper . exceptions. Conpi | er Pani c: Exponential operation is useless!

This is an unhandl ed internal conpiler error. Please create an issue on Gthub to notify the devel opers.
https://github. conml vyperl ang/ vyper/i ssues/ new?t enpl at e=bug. nd

5.4 Folding Does Not Follow the Vyper Runtime
Semantics

D (Low) (Version 1

AST folding is performed at the very beginning of the compilation pipeline. As it happens before the
semantics validation, depending on the expression, it is possible that either the folding is too restrictive
compared to the real semantics, or an expression that is not supposed to be valid is folded:

CS-VYPER_JULY_2022-004

The following example shows the first case:

@xt er nal
def fool() I nt 8:
return 1 (-5)

@xt er nal

def foo2() i nt 8:
X: int8 (-5)
return 1 X

Compiling f 0ol outputs the following exception since folding does not allow exponents to be negative.
On the other side, calling f 002 returns 1 as no folding is happening on the exponentiation.

Error conpiling: Fool.vy
vyper . exceptions. I nval i dOperation: Cannot cal cul ate a negative power

contract "Fool.vy", function "foo", line 3:11
2 def fool() -> int8:
--->3 return 1 ** (-5)
__________________ N
4

This example shows how some expression are folded even if they should not be valid:

@xt er nal
def bar1() ui nt 16:
return 1 2 2

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

@xt er nal

def bar 2() ui nt 16:
X: uintl6 2
return 1 X 2

In this example, calling bar 1 returns 1 while calling bar 2 reverts since no folding is done and 1-x
results in an underflow.

5.5 SafeMath Reverting on Valid Power
[Low] [Version 1]

When having the exponentiation of a signed number with the exponent y being a literal, saf e_pow adds
the following check to the intermediate representation:

CS-VYPER_JULY_2022-005

ok ["and", ["slt", X, upper_bound], ["sgt", X, -upper_bound]]

Signed integers are represented using two's complement, one of the properties of this representation is
that M N_I NT+1 == - MAX_I NT.

For values of y for which there exists x' such that x' **y==MAX_| NT+1, saf e_pow will compute
upper _bound=x", which is result of cal cul at e_| ar gest _power . If the event that the base of the
exponentiation happens to be x==-x', although there is no overflow as x**y==M N_I NT, the check
mentioned above will failas ["sgt ", X, -upper_bound] will return false since x==- upper _bound.

For instance, when the following code snippet is compiled and deployed, a call to f oo will revert:

@xt er nal
def foo() I nt 16:

X: intl6 8

y: intl6 X 5
return vy

The produced IR check will be:
[seq, [assert, [and, [slt, x, 8], [sqgt, x, -8]]], [exp, x, 5 <5>]]1]11,

Note that the same issue arises when trying to compute M N_INT**0 as well since
upper _bound==MAX_| NT+1 in this case:

@xt er nal
def foo() i nt 16:
X: intl6 32768
y: intl6 X 0
returny

5.6 SafeMath Reverting on Valid Power for
| nt 256
[Low] [Version 1)

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

CS-VYPER_JULY_2022-006

When having an exponentiation of a signed number, the following IR node is added to check for
overflows and underflows of the computation:

["and", ["slt", x, upper_bound], ["sgt", X, -upper_bound]]

For i nt 256, a similar issue as the one described in SafeMath Reverting on Valid Power can happen. For
any exponentiation of ai nt 256 by 0 or 1, upper _bound will be equal to MAX | NT256+1 and hence the
left-hand side of the and will be the following node: N=["slt", x, MAX | NT256+1] . This check will
always evaluate to false as the EVM interprets MAX | NT256+1 as M N_| NT256. In the following code, a
call to f oo will always revert:

@xt er nal

def foo() I nt 256:
X: 1 nt256 2
return x 0

When optimizations are enabled an interesting case can happen, during its call to
_conpari son_hel per, the optimizer will check the following:

if is strict and _int(args[1]) never:
return (0, [])

As _i nt (MAX_I NT256+1) evaluates to M N_I NT256, N will be replaced by the integer node 0.

5.7 Wrong Overflow Exception
[Low] [Version lj

When having an exponentiation, if the exponent y is a literal, safe_pows call to
cal cul ate_| argest _base will raise a TypeCheckFai |l ure if y happens to be greater than the
number of bits the given type can store. While this is a correct behavior in most cases, for bases equal to
0 or 1, such computation would not overflow.

CS-VYPER_JULY_2022-007

In practice, an Over f| owExcepti on is raised earlier when the same check is performed against the
Vyper AST inval i dat e_nuneri c_op.

@xt er nal
def foo():
X: uint 256 1
y: ui nt 256 X 257

Error conmpiling: Foo.vy
vyper. exceptions. Overfl owException: Power is too large, the calculation will always overflow

contract "test_opti/02.vy", function "foo", line 4:22
3 X: uint256 = 1
---> 4 y: uint256 = x ** 257
_____________________________ N
5

@ Vyper - Vyper Compiler - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Review Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Arithmetic checks
	2.2.2 IR optimizations

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Compiler Panicking for an Out of Range Integer Node
	5.2 Different Semantics for Raising to the Power of Negative Numbers
	5.3 Exponentiation Lead to CompilerPanic Exception
	5.4 Folding Does Not Follow the Vyper Runtime Semantics
	5.5 SafeMath Reverting on Valid Power
	5.6 SafeMath Reverting on Valid Power for int256
	5.7 Wrong Overflow Exception

