

PUBLIC

Code Assessment

of the Verified ERC20

Smart Contracts

June 30, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 14

7 Informational 17

8 Notes 22

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Verified ERC20 according to
Scope to support you in forming an opinion on their security risks.

Velodrome implements the VerifiedERC20 system, which provides enhanced ERC20 tokens with
pluggable hook functionality. The system is designed to be modular, such that new hooks can be later
added, and comes with a set of hooks already implemented.

The most critical subjects covered in our audit are functional correctness and access control. Security
regarding all the aforementioned subjects is high.

The general subjects covered are error handling, gas efficiency, and correct integration with the CreateX
factory. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Verified ERC20 repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 12 June 2025 0784bf938facf33fb04a470956b4ac7cdfc057db Initial Version

2 24 June 2025 79e88c113be4c7642fa82782b3d6ef705cefae09 Fixes

For the solidity smart contracts, the compiler version 0.8.27 was chosen.

The following files were included in the scope of the assessment:

src/external/ERC20Lockbox.sol
src/hooks/BaseHook.sol
src/hooks/BaseTransferHook.sol
src/hooks/extensions/SelfTransferHook.sol
src/hooks/extensions/SinglePermissionHook.sol
src/hooks/extensions/AutoUnwrapHook.sol
src/hooks/HookRegistry.sol
src/libraries/CreateXLibrary.sol
src/VerifiedERC20.sol
src/VerifiedERC20Factory.sol

2.1.1 Excluded from scope
Anything outside the scope of the above files, such as the test files, documentation, and other files in the
repository, was not included in the assessment.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The VerifiedERC20 system provides enhanced ERC20 tokens with pluggable hook functionality. The
system allows for customizable token behavior through a registry-based hook system, enabling features
like user verification, automatic unwrapping, and permission controls.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Core Contracts

2.2.1.1 VerifiedERC20
The VerifiedERC20 contract extends the standard ERC20 token with a hook architecture that enables
customizable behavior during token operations. It implements a hook system that allows up to 8 hooks
per entry-point (16 per operation type: 8 before the operation, 8 after), each with controlled gas limits.
The contract uses OpenZeppelin components for reentrancy protection and proxy compatibility,
supporting the factory deployment pattern which uses minimal proxy contracts for efficient token creation.

Main Entry Points:

• initialize(name, symbol, owner, hookRegistry, hooks): Initializes the token with
basic parameters and hooks

• Usual ERC20 functions with hook validation:

• mint(account, value): Mints tokens

• burn(account, value): Burns tokens

• approve(spender, value): Approves spending

• transfer(to, value): Transfers tokens

• transferFrom(from, to, value): Transfers tokens on behalf of another account

Available Hook Entrypoints:

The VerifiedERC20 contract supports the following hook entry points for customizable behavior:

• BEFORE_MINT

• AFTER_MINT

• BEFORE_BURN

• AFTER_BURN

• BEFORE_APPROVE

• AFTER_APPROVE

• BEFORE_TRANSFER

• AFTER_TRANSFER

Restricted Functions:

The VerifiedERC20 contract's owner can manage hooks and their activation. A hook can only be
activated if it is registered in the HookRegistry. The entry point for the hook must be set within the
HookRegistry by the owner of the registry. There can be a maximum of 8 hooks per entry point, and
each hook execution is limited to 200,000 gas to prevent excessive resource consumption.

• activateHook(hook)

• deactivateHook(hook)

2.2.1.2 VerifiedERC20Factory
The VerifiedERC20Factory acts as the deployment hub for creating new VerifiedERC20 tokens
using CREATE2 minimal proxies through the CreateX library. The contract is fully permissionless, and
maintains a registry of all deployed tokens, providing discovery mechanisms.

Main Entry Points:

• deployVerifiedERC20(name, symbol, owner, hooks): Deploys new VerifiedERC20
instance with specified parameters

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.1.3 HookRegistry
The HookRegistry serves as the central authority for the hook ecosystem, ensuring that only validated
hooks can be integrated into VerifiedERC20 tokens. Operating under an ownership model, it maintains
a registry of hooks with their supported entry points, providing centralized validation and storage. This
registry acts as the source of truth for hook legitimacy, preventing unauthorized hooks from being used in
token operations.

Main Entry Points:

Both functions are restricted to the owner of the registry, and allow the owner to manage the hook
ecosystem:

• registerHook(hook, entrypoint): Registers a new hook (owner only)

• deregisterHook(hook): Removes a hook from the registry (owner only)

2.2.2 Hook System

2.2.2.1 Base Hook Contracts

2.2.2.1.1 BaseHook
BaseHook provides the foundational framework for implementing hooks that interact with mint, burn, and
approve operations in the VerifiedERC20 ecosystem. This abstract contract handles parameter
extraction and validation for two-parameter operations, allowing developers to implement their specific
logic without handling data parsing and interface compliance.

2.2.2.1.2 BaseTransferHook
BaseTransferHook serves as the foundation for hooks that intercept and process transfer operations,
which involve three parameters representing the sender, recipient, and amount. By abstracting
parameter decoding and providing an interface for transfer-specific logic, this contract enables
developers to build transfer hooks such as compliance checks, automatic conversions, or conditional
routing.

2.2.2.2 Hook Extensions

2.2.2.2.1 SinglePermissionHook
SinglePermissionHook implements an authorization mechanism that restricts token operations to
designated addresses, providing access control for VerifiedERC20 tokens. This hook is used for
scenarios where tokens need controlled issuance and destruction by ensuring that only pre-authorized
addresses can perform mint and burn operations while allowing the token owner to delegate these
permissions.

Using the function setAuthorized, the token owner can set a single authorized address for minting or
burning operations (depending on how the hook was configured in the registry). If a token wants to
control both minting and burning, it should use two instances of this hook, one for each operation.

Supported Entrypoints:

• BEFORE_MINT: Validates authorization before minting

• BEFORE_BURN: Validates authorization before burning

Main Entry Points:

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.2.2.2 SelfTransferHook
SelfTransferHook provides user verification capabilities by integrating with the Self.xyz protocol's
identity verification system, ensuring that only verified users can claim incentive rewards. By detecting
reward claim transactions and cross-referencing them with Self Passport SBT verification status, this
hook enables reward distribution based on the Self identity system.

Supported Entrypoints:

• BEFORE_TRANSFER: Validates user verification before transfers

2.2.2.2.3 AutoUnwrapHook
AutoUnwrapHook automatically converts VerifiedERC20 tokens back to their underlying base tokens
when users claim incentive rewards. This hook eliminates manual unwrapping steps in reward-claiming
workflows, ensuring users receive standard token format.

Using the function setLockbox, the token owner can set the correct lockbox address for their
VerifiedERC20 for automatic unwrapping.

Supported Entrypoints:

• AFTER_TRANSFER: Automatically unwraps tokens after transfers

2.2.3 External Contracts

2.2.3.1 ERC20Lockbox
ERC20Lockbox enables transitions between standard ERC20 tokens and their VerifiedERC20
counterparts, maintaining a 1:1 backing relationship.

Main Entry Points:

• deposit(amount): Locks ERC20 tokens and mints VerifiedERC20

• withdraw(amount): Burns VerifiedERC20 and releases ERC20 tokens

• withdrawTo(to, amount): Burns VerifiedERC20 and sends ERC20 to specified address

2.2.4 Libraries

2.2.4.1 CreateXLibrary
CreateXLibrary provides utility functions for CREATE2 deployments within the VerifiedERC20
system. It calculates salts to provide to the CreateX library, enabling the guarded salt feature. And
computes addresses for CREATE3 deployments.

Key Features:

• Provides guarded salt calculation.

• Supports CREATE3 address computation

2.2.5 System Flow

1. Deployment: VerifiedERC20Factory deploys new token instances with specified hooks

2. Hook Registration: HookRegistry owner registers available hooks with their entrypoints

3. Hook Activation: Each VerifiedERC20 token adds hooks from the registry

4. Token Operations: VerifiedERC20 tokens call registered hooks during operations

5. Hook Execution: Hooks perform validation/modification based on their specific logic

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.6 Changes in Version 2
Version 2 introduces the following update, in addition to addressing findings from Version 1:

• The SelfTransferHook and AutoUnwrapHook hooks now use IReward.authorized()
instead of IReward.DURATION() to identify incentive claim transactions. This adjustment improves
compatibility with Velodrome Gauges, which implement a similar interface to the Reward contract
(including voter() and DURATION()).

2.3 Trust Model

2.3.1 Roles
HookRegistry Owner

• Trust Level: Full system trust

• Responsibilities:

• Register and deregister hooks in the HookRegistry

• Maintain security of the hook ecosystem

• Validate hook implementations before registration

• Validate hook configuration made by the constructor before registration

• Powers: Can control which hooks are available system-wide

• Risk: Complete control over hook availability; malicious hooks could compromise all tokens if
activated by token owners

Token Owner (VerifiedERC20 Owner)

• Trust Level: Per-token trust

• Responsibilities:

• Activate and deactivate hooks for their specific token

• Manage token-specific configurations

• Ensure hooks are compatible with each other and the token's use case

• Powers: Control hook activation for individual tokens

• Risk: Can modify token behavior through hook selection; cannot introduce new hooks

Users

• Trust Level: No special trust required

• Responsibilities: Use only tokens that have a coherent and secure set of hooks activated

• Powers: Standard ERC20 operations subject to hook restrictions

2.3.2 Trust Assumptions

1. The system is expected to operate on chains with the Cancun hard fork or later, which supports
TSTORE and TLOAD.

2. ERC20 tokens to be wrapped in VerifiedERC20 are assumed to be ERC-compliant tokens that
are not malicious and present no specific risks or unusual behaviors (e.g., rebasing, transferring a
different amount than requested, fee-on-transfer, double entry points, non-compliant interface, or
hooks)

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3. HookRegistry Owner is assumed to be a trusted entity that will not register malicious hooks

4. Token Owners are trusted to select appropriate hooks for their use case

5. Hook implementations are assumed to be audited and secure before registration, they are trusted
to operate correctly and not DOS-attack the system by consuming excessive gas or reverting. They
also are trusted to reenter the VerifiedERC20 contract only for legitimate purposes, such as
performing additional token transfers or checks.

6. External dependencies Self Passport is trusted to operate correctly. That is, it is assumed that
getTokenIdByAddress and isTokenValid do not revert and that they return the expected
values.

7. ERC20Lockbox is assumed to be given mint and burn permissions for the VerifiedERC20 token
they are defined for.

8. The Reward contracts are assumed to define both the authorized() and voter() functions,
which should both always consume less than 5,000 gas each. The values returned by these
functions are assumed to be constant over time and always match the immutables defined in the
hook contracts: authorized and voter respectively.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 7

• Code CorrectedEvent Fields Not Indexed

• Code CorrectedGas Savings

• Code CorrectedMagic Value for address[][] Initialization

• Code CorrectedMissing AuthorizedSet Event

• Code CorrectedMissing Sanity Check

• Specification ChangedState Variables Return Misleading Values

• Code CorrectedUnused Constant MAX_GAS_PER_HOOK

6.1 Event Fields Not Indexed
Informational Version 1 Code Corrected

CS-VELO-VERC20-002

The Deposit and Withdraw events in the IERC20Lockbox interface have no indexed fields. Indexing
fields would improve event filtering and searching capabilities.

Code Corrected:

The _sender and _receiver arguments are now indexed.

6.2 Gas Savings
Informational Version 1 Code Corrected

CS-VELO-VERC20-004

The following gas optimizations were identified in the codebase:

1. In VerifiedERC20._activateHook(), the hookRegistry could be cached in memory to
avoid repeated storage reads.

2. In VerifiedERC20, the transfer and transferFrom functions simply call the base class
respective functions. These could be removed, as they do not add any additional logic.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

3. In HookRegistry, the contract uses a reentrancy lock but does not make any external non-static
calls.

Code Corrected:

All the above gas savings have been implemented in the codebase.

6.3 Magic Value for address[][] Initialization
Informational Version 1 Code Corrected

CS-VELO-VERC20-006

In the initialize function of the VerifiedERC20 contract, the address[][] array
_hooksByEntrypoint is initialized using a hardcoded value of 8. This assumes there are exactly 8
types of entry points. If the number of entry point types changes in the future, this value will be incorrect.

Code Corrected:

The hardcoded value 8 has been replaced with a MAX_ENTRYPOINTS constant.

6.4 Missing AuthorizedSet Event
Informational Version 1 Code Corrected

CS-VELO-VERC20-007

The constructor in the SinglePermissionHook contract does not emit the AuthorizedSet event
after setting the authorized address for each respective VerifiedERC20 address.

Code Corrected:

The constructor now calls the internal _setAuthorized function, which properly emits the
AuthorizedSet event when setting authorized addresses during contract initialization.

6.5 Missing Sanity Check
Informational Version 1 Code Corrected

CS-VELO-VERC20-008

The constructors of AutoUnwrapHook and SinglePermissionHook do not check if the provided two
arrays have the same length.

Code Corrected:

The constructors now validate that the input arrays have matching lengths. If the arrays have different
lengths, the contracts revert with custom errors: AutoUnwrapHook_LengthMismatch() for the
AutoUnwrapHook contract and SinglePermissionHook_LengthMismatch() for the
SinglePermissionHook contract.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.6 State Variables Return Misleading Values
Informational Version 1 Specification Changed

CS-VELO-VERC20-010

In the HookRegistry contract, the variable hookEntrypoints is used to store the entry points of the
hooks. However, by default, any hook will have Entrypoint(0) as its value, which corresponds to
BEFORE_APPROVE. One should first check if the hook is registered using isHookRegistered() before
using this variable.

Similarly, in VerifiedERC20, hookToIndex is used to store the index of the hook in the
_hooksByEntrypoint[hookEntrypoint] array. However, by default, any hook will have 0 as its
value, which corresponds to the first index in the array. One should first check if the hook is activated
using isHookActivated() before using this variable.

Specification changed:

The NatSpec of the external getters for the state variables has been updated to clarify that the values
returned by these variables may not be valid and that isHookRegistered() or isHookActivated()
should be used to check the validity of the hook before using these variables.

6.7 Unused Constant MAX_GAS_PER_HOOK
Informational Version 1 Code Corrected

CS-VELO-VERC20-012

In the VerifiedERC20 contract, the constant MAX_GAS_PER_HOOK is defined but not used in the
_checkHooks function. Instead, a hardcoded value of 200_000 is used for the _gas parameter in the
excessivelySafeCall.

Code Corrected:

The hardcoded value 200_000 has been replaced with the MAX_GAS_PER_HOOK constant in the
_checkHooks() function.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Broken Checks-Effects-Interactions Pattern
Informational Version 1 Acknowledged

CS-VELO-VERC20-001

The following functions do not adhere to the Checks-Effects-Interactions pattern:

• setLockbox() in AutoUnwrapHook: Storage is updated after calling the owner function of the
_verifiedERC20.

• setAuthorized() in SinglePermissionHook: Storage is updated after calling the owner
function of the _verifiedERC20.

• registerHook() in HookRegistry: Storage is updated after calling the supportsEntrypoint
function of the _hook.

Although all the interactions here are static calls, which cannot change the state, it is still recommended
to follow the Checks-Effects-Interactions pattern to avoid potential issues in the future if the code is
modified.

Acknowledged:

The Velodrome team acknowledges the risk and states:

External calls are to trusted contracts.

7.2 Event Ordering With Reentrancy
Informational Version 1 Acknowledged

CS-VELO-VERC20-003

The VerifiedERC20 contract is partially reentrant by design to allow hooks like AutoUnwrapHook to
perform token transfers as part of the transfer hook execution. It should be noted that this reentrancy can
lead to unexpected event ordering.

Given a transferFrom call with a BEFORE_TRANSFER hook that performs a transfer of tokens, the
following sequence of events occurs:

1. Approval event is emitted for spending the allowance

2. The BEFORE_TRANSFER hook is executed, which may call the transfer function

3. The Transfer event is emitted for the transfer performed by the hook

4. The Transfer event is emitted for the original transferFrom call

The ordering of these events reflects the ordering of the state changes but can lead to confusion, as one
usually expects the Approval and Transfer events of a transferFrom call to be emitted in an

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

atomic manner. Note that this behavior is enabled by the Inconsistent Allowance Spending Behavior
issue, as the hook is called between the allowance being spent and the transfer being executed.

Acknowledged:

The Velodrome team acknowledges the issue.

7.3 Inconsistent Allowance Spending Behavior
Informational Version 1 Code Partially Corrected

CS-VELO-VERC20-005

In the _update function in the VerifiedERC20 contract, the allowance spending behavior is
inconsistent. When burning tokens for oneself (to == address(0) and msg.sender == from), the
allowance is not spent. However, in the transferFrom function, the allowance is always spent.

Additionally, the allowance is spent after the BEFORE_BURN hook, whereas in transfer and
transferFrom the allowance is spent before the BEFORE_TRANSFER hook.

Code Partially Corrected:

The second inconsistency has been addressed by spending allowance in the burn function, before the
BEFORE_BURN hook is called. The first one has not been addressed.

7.4 Set Ordering Is Not Guaranteed
Informational Version 1 Acknowledged

CS-VELO-VERC20-009

Several functions allow querying an EnumerableSet or an array given an index. As there are no
guarantees on the ordering of values inside the set/array, callers should not rely on the index to return a
specific value. The affected functions are:

• VerifiedERC20.getHookAtIndex()

• HookRegistry.getHookAt()

The following function should however maintain ordering given that the set is append-only:

• VerifiedERC20Factory.getVerifiedERC20At()

Acknowledged:

The Velodrome team acknowledges the issue.

7.5 Unchecked Calls
Informational Version 1 Acknowledged

CS-VELO-VERC20-011

In both the AutoUnwrapHook and SelfTransferHook hooks, the _isClaimIncentive function is
used to determine if the transfer is part of an incentive claim:

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

function _isClaimIncentive(address _from) internal view returns (bool) {
 (bool success, bytes memory data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.DURATION.selector)
 });

 if (!success || data.length < 32 || (abi.decode(data, (uint256)) != 7 days)) return false;

 (success, data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.voter.selector)
 });
 if (!success || data.length < 32 || voter != abi.decode(data, (address))) return false;

 return true;
}

The calls made to _from are designed not to make the hook revert if the call fails, but rather to check if
the call returns the expected data. If the call fails or returns unexpected data, the function returns false,
indicating that the transfer is not part of an incentive claim.

A potential attack vector involves a malicious actor providing an amount of gas that would cause the
execution to revert with an "out-of-gas" error precisely during one of the two static calls. This could lead
the hook to mistakenly interpret the transfer as not being an incentive claim. In the case of the
SelfTransferHook, this could allow a bypass of the self-transfer verification.

However, we demonstrate that this attack is not feasible in practice. The gas consumption of the called
view functions defined in Reward.sol is sufficiently low, making it impossible for such an attack to
succeed.

In practice, the following amount of gas is provided to each static call:

gasForwarded = min(5000, gasBeforeCall * 63 / 64)

Assuming that _from defines the DURATION and voter functions as follows:

uint256 public constant DURATION = 7 days;

address public immutable voter;

We can safely assume that the gas cost of executing these functions is less than 1,000 gas. This means
that one would need gasBeforeCall (the gas after charging for the STATICCALL opcode and before
making the call) to be less than 1,015 gas. Consequently, the gas remaining after the failing call would be
less than 16 gas, which is insufficient to complete the hook call successfully.

 gasForwarded = min(5000, gasBeforeCall * 63 / 64) < 1000
=> gasForwarded = gasBeforeCall * 63 / 64 < 1000
=> gasBeforeCall < 1000 * 64 / 63
=> gasRemaining = gasBeforeCall / 64 < 1000 / 63 < 16

Note that the above claims are made under the assumption that both functions consume less than 1,000
gas. If either of the two called functions exceeds this threshold (e.g., by reading from a storage variable),
it may be possible to cause the call to fail while still having sufficient gas to complete the execution.

Acknowledged:

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 19

http://github.com/velodrome-finance/contracts/blob/9e5a5748c3e2bcef7016cc4194ce9758f880153f/contracts/rewards/Reward.sol#L20-L23
https://chainsecurity.com

Version 2The Velodrome team acknowledges informational findings. As of , authorized() is called
instead of DURATION(). The former is a state variable, so reading it consumes more gas. Given that the
call to authorized() will consume in the worst case approximately 2,700 gas (2,100 gas for the cold
storage read and 600 gas for Solidity overhead), we show below that the gas remaining in the hook after
the call will be less than 72 gas (we use here a safe upper-bound of 4,500 gas for the call to
authorized()):

 gasForwarded = min(5000, gasBeforeCall * 63 / 64) < 4500
=> gasForwarded = gasBeforeCall * 63 / 64 < 4500
=> gasBeforeCall < 4500 * 64 / 63
=> gasRemaining = gasBeforeCall / 64 < 4500 / 63 < 72

To reach a return after the failed call to authorized() in the Hooks using _isClaimIncentive, it
was found that at least 100 gas (safe lower bound) is required. As the gas remaining after the failed call
will be at most 72 gas, this is insufficient to complete the hook call successfully.

Note that it is critical that the function authorized() in every Reward contract does not consume more
than 5,000 gas. This can occur even with a simple state variable getter if the contract has many entry
points, as it would incur high gas overhead from function selector matching.

7.6 abi.decode May Fail
Informational Version 1 Acknowledged

CS-VELO-VERC20-013

In both the AutoUnwrapHook and SelfTransferHook hooks, the _isClaimIncentive function is
used to determine if the transfer is part of an incentive claim:

function _isClaimIncentive(address _from) internal view returns (bool) {
 (bool success, bytes memory data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.DURATION.selector)
 });

 if (!success || data.length < 32 || (abi.decode(data, (uint256)) != 7 days)) return false;

 (success, data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.voter.selector)
 });
 if (!success || data.length < 32 || voter != abi.decode(data, (address))) return false;

 return true;
}

If the _from address is not a Reward contract, one of the static calls should fail, and the function should
return false.

It is possible that a non-Reward contract is provided as the _from address, but implements the
DURATION and voter functions, returning 7 days and the address of the voter respectively. In this
case, the function would return true, and this address would be a false positive.

However, if the _from address implements the DURATION and voter functions, but the voter function
returns a value that cannot be decoded as an address when ABI-encoded, the hook will revert,
preventing the _from address from sending tokens.

This could happen if the returned value is a uint256 larger than 2**160 - 1, which is the maximum
value that can be decoded as an address. In this case, the abi.decode internal routing fails.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Version 2As of , the call to DURATION() was replaced by authorized(). As the latter returns an
address, the above issue described for the call to voter() now also applies to authorized() as well.

Acknowledged:

The Velodrome team acknowledges the issue.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Functions With Unbounded Gas Costs
Note Version 1

Several functions return the result of EnumerableSet.values(). As this operation copies the entire
storage of the set to memory, these functions can be expensive and will become increasingly costly as
the set grows. Integrators should not use these functions on-chain, but rather should only use them
off-chain, as the gas cost could become too large for the transaction to fit within the block gas limit.

The affected functions are:

• VerifiedERC20Factory.getAllVerifiedERC20s()

• HookRegistry.getAllHooks()

8.2 Incentive Claiming False Positive
Note Version 1

In both the AutoUnwrapHook and SelfTransferHook hooks, the _isClaimIncentive function is
used to determine if the transfer is part of an incentive claim:

function _isClaimIncentive(address _from) internal view returns (bool) {
 (bool success, bytes memory data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.DURATION.selector)
 });

 if (!success || data.length < 32 || (abi.decode(data, (uint256)) != 7 days)) return false;

 (success, data) = _from.excessivelySafeStaticCall({
 _gas: 5_000,
 _maxCopy: 32,
 _calldata: abi.encodeWithSelector(IReward.voter.selector)
 });
 if (!success || data.length < 32 || voter != abi.decode(data, (address))) return false;

 return true;
}

In the unlikely event that a contract, which is not a Reward contract, is provided as the _from address,
and it implements the DURATION and voter functions (returning 7 days and the address of the voter,
respectively), the function would incorrectly return true, leading to a false positive for this address.

8.3 VerifiedERC20 Will Have Different
Addresses on Different Chains
Note Version 1

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

The VerifiedERC20Factory is not designed to deploy two VerifiedERC20 contracts to the same
address on different chains. The salt generation includes block.chainid, which ensures the
deployment address differs across chains.

Velodrome - Verified ERC20 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Core Contracts
	2.2.1.1 VerifiedERC20
	2.2.1.2 VerifiedERC20Factory
	2.2.1.3 HookRegistry

	2.2.2 Hook System
	2.2.2.1 Base Hook Contracts
	2.2.2.1.1 BaseHook
	2.2.2.1.2 BaseTransferHook

	2.2.2.2 Hook Extensions
	2.2.2.2.1 SinglePermissionHook
	2.2.2.2.2 SelfTransferHook
	2.2.2.2.3 AutoUnwrapHook

	2.2.3 External Contracts
	2.2.3.1 ERC20Lockbox

	2.2.4 Libraries
	2.2.4.1 CreateXLibrary

	2.2.5 System Flow
	2.2.6 Changes in Version 2

	2.3 Trust Model
	2.3.1 Roles
	2.3.2 Trust Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Event Fields Not Indexed
	6.2 Gas Savings
	6.3 Magic Value for address[][] Initialization
	6.4 Missing AuthorizedSet Event
	6.5 Missing Sanity Check
	6.6 State Variables Return Misleading Values
	6.7 Unused Constant MAX_GAS_PER_HOOK

	7 Informational
	7.1 Broken Checks-Effects-Interactions Pattern
	7.2 Event Ordering With Reentrancy
	7.3 Inconsistent Allowance Spending Behavior
	7.4 Set Ordering Is Not Guaranteed
	7.5 Unchecked Calls
	7.6 abi.decode May Fail

	8 Notes
	8.1 Functions With Unbounded Gas Costs
	8.2 Incentive Claiming False Positive
	8.3 VerifiedERC20 Will Have Different Addresses on Different Chains

