

PUBLIC

Code Assessment

of the Superchain Slipstream

Smart Contracts

13 November, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Findings 12

6 Resolved Findings 13

7 Informational 18

8 Notes 20

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Superchain Slipstream
according to Scope to support you in forming an opinion on their security risks.

Velodrome implements Superchain Slipstream, a Superchain extension of the Velodrome Slipstream
concentrated liquidity pools and liquidity mining incentives. Superchain Slipstream allows deploying
Concentrated Liquidity pools and gauges on Leaf chains, chains which are part of the Optimism
Superchain ecosystem. The Leaf chain gauges will receive rewards for Liquidity Providers in the form of
Velodrome emissions bridged from the Root chain (OP Mainnet).

The most critical subjects covered in our audit are integration with the Velodrome superchain system,
cross-chain compatibility, and gauge liquidity accounting. The security of all aforementioned subjects is
high, after some of the issues uncovered by ChainSecurity were properly addressed.

The general subjects covered in our audit are ABI compatibility of similar contracts, address collisions,
correct deployment of pools and gauges. The security of all aforementioned subjects is high. Possibility
of address collisions are discussed in the note Attackers can in the future generate address collisions.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 1

• Code Corrected 1

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Superchain Slipstream repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 7 Oct 2024 c82627fa4542d937b6e4ff6914fb190ce1227e64 First version

2 30 Oct 2024 47ab65233005a70acb14f6673f2b6fd2c3ca3e2d Fixes and Mode sfs

3 1 Nov 2024 80fb1682f6d1bfa8852a4cbed76286caff02f742 Third Version

4 5 Nov 2024 e404e3d8e80faf7b01bc2435b6ef508bfe22d4ee Fourth Version

For the solidity smart contracts, the compiler version 0.7.6 was chosen.

The assessment has been partially performed as a diff audit, and partially as a full audit. In the diff audit
only the changes compared to the previous codebase have been evaluated. The reference commit used
as the base of the difference is 55b677900751f89566fb19d72d091cc101a9d28b, referred to as
BASE_VERSION. The following files are part of the diff audit (arrows indicate renaming compared to the
base version):

contracts/core/CLFactory.sol
contracts/core/CLPool.sol
contracts/gauge/CLGauge.sol -> contracts/gauge/LeafCLGauge.sol
contracts/gauge/CLGaugeFactory.sol -> contracts/gauge/LeafCLGaugeFactory.sol
contracts/gauge/libraries/SafeCast.sol
contracts/periphery/NonfungiblePositionManager.sol

Version 1The following files are new in , and have been fully audited.

contracts/mainnet/gauge/RootCLGauge.sol
contracts/mainnet/gauge/RootCLGaugeFactory.sol
contracts/mainnet/pool/RootCLPool.sol
contracts/mainnet/pool/RootCLPoolFactory.sol

Version 1For , the integrations with the overall Velodrome systems have been evaluated taking the
following commits as references:

contracts-private ee15bd1e63d3b33ce8d179f73bca7390812bd99b
superchain-contracts-private 45bfd414892adabd95103669345418d4080fb4bc

2.1.1 Scope after Version 2
Version 2

Version 2

With , the scope is expanded to include contracts specific to the Mode network. Contracts
previously in scope have also been renamed. The scope after consists of:

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Leaf:
 contracts/core/CLFactory.sol
 contracts/core/CLPool.sol (only **diff-audited**)
 contracts/gauge/LeafCLGauge.sol (only **diff-audited**)
 contracts/gauge/LeafCLGaugeFactory.sol
 contracts/periphery/NonfungiblePositionManager.sol (only **diff-audited**)

Root:
 contracts/root/gauge/RootCLGauge.sol
 contracts/root/gauge/RootCLGaugeFactory.sol
 contracts/root/pool/RootCLPool.sol
 contracts/root/pool/RootCLPoolFactory.sol

Mode:
 contracts/extensions/ModeFeeSharing.sol
 contracts/core/extensions/ModeCLFactory.sol
 contracts/core/extensions/ModeCLPool.sol
 contracts/gauge/extensions/ModeLeafCLGauge.sol
 contracts/gauge/extensions/ModeLeafCLGaugeFactory.sol
 contracts/periphery/extensions/ModeNonfungiblePositionManager.sol
 contracts/periphery/extensions/ModeSwapRouter.sol

2.1.2 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Namely, third-party
libraries are explicitly out of the scope of this review.

In this report, we assume that the slipstream codebase at BASE_VERSION is safe. For contracts marked
as diff-audited, only the changes between the BASE_VERSION and the latest commit have been
audited.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome implements an extension of the Uniswap V3 protocol to be used on Velodrome Superchain.
By doing so, Superchain Slipstream offers access to Velodrome liquidity rewards to liquidity providers of
Concentrated Liquidity pools on chains which are part of the Superchain.

In what follows, we look into different components of the system.

2.2.1 NFT Position Manager
Like in Uniswap V3, LPs can, through the NonfungiblePositionManager contract, deposit funds as
liquidity in a pool and price range and receive an NFT as a receipt. Once holding an NFT, LPs can

1. increase their liquidity by depositing the required amount of token-0 & token-1

2. decrease their liquidity by burning the liquidity deposited in a position

3. collect the fees accumulated in their position

4. and burn their NFT, once their position is cleared (no owed amounts left)

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Position NFTs, differently than positions held in the pool directly, are transferable.

2.2.2 Leaf-Chain Concentrated Liquidity Pool Factory
Through the CLFactory contract, users can deploy a pool defined by its token-0, token-1, tick spacing,
and the initial price. This pool gets deployed as a minimal proxy through the Openzeppelin Clones library,
with a deployment salt depending on: token pair and the tick spacing. Right after contract creation, the
pool gets initialized with the given configuration. It is worth mentioning that for a tick spacing to be valid,
and hence usable when deploying pools, it has to be enabled in the factory.

2.2.3 Leaf-Chain Concentrated Liquidity Pools
The CLPool contract implements Concentrated Liquidity (CL) pools on the Leaf Chains, which are a
slightly modified version of Uniswap V3 pools. Similarly as in Uniswap V3, LPs can

1. deposit liquidity to a price range, defined by an upper and lower tick, by transferring the
corresponding amount of token-0 and token-1 to the system.

2. collect fees earned by the liquidity in token-0 & token-1 from the pool.

3. burn a given amount of liquidity and receive token0 and token1 back.

On top of what is offered by Uniswap V3, it also implements staking functionality. The stake() function
can only be called by the pool's gauge. This function updates the rewards, and then transfers liquidity
from the position owned by the NFT to the gauge. Considering this fact, the overall liquidity of the pool
would be divided to two parts:

1. staked liquidity: it represents the amount of liquidity deposited in the gauge. If this liquidity is used
during swaps, the fees are accrued for the gauge. As Uniswap V3 math tracks every value (rather
than price) per unit of liquidity, rewards are multiplied by this.

2. unstaked liquidity, which is the position's liquidity still held by the LPs. This value is used when
calculating the fees in favor of LPs and updating owed values.

Those positions owned by the gauge also have accumulated fees which can be collected by the gauge.

2.2.4 Leaf-Chain Gauge
As mentioned before, LPs' positions on the Leaf Chain's Concentrated Liquidity Pool are represented by
NFTs. LPs can then deposit their NFTs in the LeafCLGauge, which means relinquishing their right on
collecting fees of CL pool and receive rewards (Velo emissions) in return.

When depositing an NFT in the gauge, first, all the accrued fees are collected and sent to the LP, then
NFT is transferred from the position owner to the gauge, and finally the meta information regarding the
two positions (both have the same lower and upper bounds but with different owners; one belongs to the
NFT Manager and the other to the gauge) gets updated.

LPs, who have staked their NFTs in the gauge, can collect their rewards over each position held by them.
Collecting the rewards first updates the rewards growth of the position in the pool, and then transfers the
accrued amount of reward token to the receiver.

From the root chain, rewards are sent through the Velodrome bridge to the leaf gauges. Rewards are
deposited through the notifyRewardAmount() function.

2.2.5 Leaf-Chain Gauge Factory
Voter contract can deploy a new gauge for a pool with its voting reward contract. The gauge gets
deployed with create3 (similar to create2, but doesn't include the initialization code in the address
calculation) with a salt depending on chain ID, token pair, and tick spacing of the pool.

On the Root Chain we have the following contracts:

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.6 Root Chain Liquidity Pool
The RootCLPool contract is a place holder that implements getter methods for the purpose of
integrating with the existing Velodrome system on the Root chain.

2.2.7 Root Chain Pool Factory
The contract RootCLPoolFactory is a factory for creation of RootCLPool. Pools are deployed as
minimal proxies through OpenZeppelin Clones library. They share the same implementation
(RootCLPool) and use as deployment salt a hash of chainid , token0, token1, tickSpacing.

2.2.8 Root Chain Gauge
On RootCLGauge, the Voter can notify new rewards to the Gauge with notifyRewardAmount().
The reward amount is capped by the maximum weekly reward for this gauge (If extra tokens are sent,
they will be transferred to the Minter). The rewards are then bridged to the leaf chain through a
message of type NOTIFY. The notify admin of the gauge factory can also call
notifyRewardWithoutClaim() which similarly create a message of NOTIFY_WITHOUT_CLAIM and
sends it to the leaf chain to be processed.

2.2.9 Root Chain Gauge Factory
The RootCLGaugeFactory contract allows deployment of root-leaf chain gauge pairs. The Voter on
the root chain calls createGauge(). First it deploys a gauge for a the given pool on the root chain.
Then, it creates a message of type CREATE_GAUGE and sends it through the bridge to the leaf chain. The
message is forwarded to the leaf voter, which calls createGauge() on the LeafCLGaugeFactory,
which deploys the leaf gauge.

RootCLGaugeFactory also exposes the calculateMaxEmissions() function. This function, given a
Gauge address, returns the maximum weekly reward amount for that gauge during the current week.
Max emissions for a gauge are configured as a percentage of the total weekly reward emissions. An
emission admin can set a specific emission cap for a gauge, through the setEmissionCap() function.
If a gauge does not have a cap set, the global defaultCap is used instead.

2.2.10 Factory Deployment
The RootCLGaugeFactory and RootCLPoolFactory on OP Mainnet and the
LeafCLGaugeFactory and CLFactory on each Leaf chains are deployed in a permissioned way
through CreateX.create3, such that they have the same address on all chains.

2.2.11 Trust Model and Assumptions
RootCLGaugeFactory.emissionAdmin can set the emission cap for a gauge, as well as the default
cap. These values are used when the Voter calls notifyRewardAmount() on the root chain. Hence,
this role is trusted.

RootCLGaugeFactory.notifyAdmin can call notifyRewardWithoutClaim() and is trusted.

RootCLPoolFactory.owner enables the tick spacings and sets fees for them. It is trusted.

CLFactory.owner sets the fee modules. It is trusted.

The reward token is assumed to be the Velo V2 token.

Reward distribution to gauges (notifyRewardAmount()), by calling Voter.distribute(), is
assumed to happen on a weekly basis.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Version 22.2.12 Changes in
Velodrome has extended the functionality of the ecosystem to be able to participate in Sequencer Fee
Sharing (SFS) program of Mode Network. It allows owners of smart contracts to receive a portion of fees
when users interact with their smart contracts. ModeFeeSharing provides the functionality of registering
in SFS right upon deployment. ModeCLFactory inherits from ModeFeeSharing and registers itself on
SFS contract. An NFT is minted that allows claiming the fees originated in the contract. The
ModeCLPools assign their sequencer fees to the already existing token of the factory (simplifying the fee
collection). SwapRouter also links its fee to the token of the factory.

ModeNFTPositionManager inherits from ModeFeeSharing, and registers itself with SFS.
ModeLeafCLGauge and ModeLeafCLGaugeFactory link their fees to the token of
ModeNFTPositionManager.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedincreaseLiquidity() for NFT Owned by Gauge Breaks Accounting of Liquidity

High -Severity Findings 1

•
Code Corrected

RootCLPoolFactory Does Not Support Pools With Same Parameters on Different Chains

Medium -Severity Findings 2

• Code CorrectedNonFungiblePositionManager Can Return Incorrect Lists of User Positions

• Code CorrectedGas Limit of createGauge on Leaf Chain Incompatible With Slipstream

Low -Severity Findings 1

• Code CorrectedDifferent Interfaces in Slipstream Contracts

Informational Findings 1

• Code CorrectedEmission Cap Not Sanitized Can Cause Overflow

6.1 increaseLiquidity() for NFT Owned by
Gauge Breaks Accounting of Liquidity
Design Critical Version 3 Code Corrected

CS-VELOSLIP-008

Version 3In a critical check is removed from increaseLiquidity(), allowing anybody to increase the
liquidity of a position NFT owned by the gauge. This can lead to incorrect liquidity accounting in the pool
and gauge, with potentially critical consequences.

Version 1

The increaseLiquidity() function of NonfungiblePositionManager allows increasing the
liquidity of a tokenised position. It is unpermissioned, such that any user can increase any other user's
liquidity, however had the following line, which prevented increasing the liquidity of tokenised
positions owned by the gauge:

if (ownerOf(params.tokenId) == gauge) require(msg.sender == gauge);

Version 3The check has been removed in . The consequence is that the liquidity of a tokenised position
owned by the Gauge, and the amount of liquidity the gauge has staked in the pool can be different, since
no pool.stake() is triggered by increaseLiquidity(). This results in a tokenised position whose
liquidity is only partially staked. When the position NFT is unstaked, the full liquidity amount is unstaked
from the pool, even if only part of that liquidity had been staked for that NFT. This can take liquidity from
the staked positions of other users, leaving them unable to withdraw. The incorrect accounting of liquidity
on withdrawal can also result in the incorrect attribution of rewards.

The following example aims to expose a transaction sequence resulting in incorrect behavior:

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• User Bob (B) mints nft 1, depositing 100 liquidity in range R.

• User Mallory (M) mints nft 2, depositing 100 liquidity in range R. From the perspective of the pool, the
NonfungiblePositionManager (nfpm) has 200 liquidity in range R.

• B deposits nft 1 in the gauge. The gauge calls pool.stake(), which reduces the liquidity of the
nfpm for range R, and increases the liquidity of the gauge for range R

• M deposits nft 2 in the gauge. From the pool perspective now the nfpm has 0 liquidity in range R, and
the gauge has 200 liquidity.

• M calls increaseLiquidity() to increase liquidity for nft 2 by 100. Nft 2 belongs to the gauge,
and has now 200 liquidity from the perspective of nfpm. The new liquidity added by
increaseLiquidity() goes to the nfpm from the perspective of the pool, so the liquidity of nft 2
is split between 100 for the gauge and 100 for nfpm. From the pool perspective, the gauge still has
200 liquidity total, and nfpm 100

• M withdraws nft 2 from the gauge. This causes a call of pool.stake(-200), since the whole nft
amount is unstaked, even if M actually only owns 100 staked liquidity (the other 100 liquidity is in the
nfpm position). From the pool perspective, now the gauge has 0 liquidity, and nfpm 100 liquidity.

• B tries to withdraw nft 1 from the gauge. This triggers stake(-100), which fails because it
underflows, since the gauge has 0 liquidity left in the pool. B is prevented from recovering their
liquidity.

The consequence is that users can be locked from accessing their liquidity. The rewards for existing
staked liquidity can also be stolen by an attacker.

Code corrected:

Version 4In , increaseLiquidity() cannot be called on gauge-owned tokenIds. The following
assertion has been added:

require(ownerOf(params.tokenId) != pool.gauge());

6.2 RootCLPoolFactory Does Not Support Pools
With Same Parameters on Different Chains
Design High Version 1 Code Corrected

CS-VELOSLIP-001

In the method createPool() of RootCLPoolFactory, the following check ensures that the same pool
is not deployed twice:

require(getPool[token0][token1][tickSpacing] == address(0), "AE");

However, the check is too strict, as it does not include the chainid of the new pool. It is reasonable that
two pools with equal parameters may be deployed on different leaf chains, let us say one with chainid 11
and the second with chainid 12. This is possible within the context of Superchain Slipstream by using the
createPool() function of the leaf pool factory. However, only one of the two pools can have a gauge
deployed, since gauge deployment requires creating a mock RootCLPool on the root chain. When this
mock pool is deployed, for example for the pool on chainid 11, its address is saved in the getPool
mapping:

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

getPool[token0][token1][tickSpacing] = pool;

This mapping does not consider the pool's chainid. The pool with the same parameters but chainid 12 will
therefore have to occupy the same slot in the mapping, preventing the deployment of the required
RootCLPool.

Code corrected:

Velodrome has modified the storage variable getPool to embed the chainid as well:

mapping(uint256 => mapping(address => mapping(address => mapping(int24 => address)))) public override getPool;

6.3 NonFungiblePositionManager Can Return
Incorrect Lists of User Positions
Correctness Medium Version 2 Code Corrected

CS-VELOSLIP-009

Version 2 introduces a mapping from user and pool addresses to enumerable sets of positions, in
NonFungiblePositionManager. This mapping allows quick enumeration of user positions for a given
pool through the userPositions(user, pool) view function. This function can return incorrect
results, as the mapping is updated when minting and burning position NFTs, but not when transferring
them from one user to another.

The mapping _userPositions, defined as

mapping(address => mapping(address => IterableEnumerableSet.UintSet)) internal _userPositions;

keeps track of an enumerable set of tokenIds for every user and pool pair. When minting a new liquidity
position in NonFungiblePositionManager, the newly minted tokenId is added to the mapping for
the recipient as:

_userPositions[params.recipient][address(pool)].add(tokenId);

and when burning, the tokenId is removed from the mapping of the user and pool as:

_userPositions[ownerOf(tokenId)][pool].remove(tokenId);

However, the tokenId can be transferred from one user to another. When transferred, no change from
one user's set to another is implemented, such that it will remain in the set of the minting user. This does
not cause internal problems, since trying to remove an element which is not in an enumerable set will not
revert. However, the userPositions() function might return incorrect results if the queried user has
transferred their NFTs.

Code corrected:

Version 3NonFungiblePositionManager in implements the _beforeTokenTransfer() hook of
OpenZeppelin's ERC721. The hook is called before every token transfer, and ensures that the tokenId
is removed from the sender's enumerable set and added into the receiver's enumerable set.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.4 Gas Limit of createGauge on Leaf Chain
Incompatible With Slipstream
Design Medium Version 1 Code Corrected

CS-VELOSLIP-002

The file GasLimits.sol of the superchain-contracts-private repository specifies a limit of
5.8M gas to execute the CREATE_GAUGE command on the leaf chain. This limit is compatible with the
gas consumption of CREATE_GAUGE for non slipstream gauges, however it is too low for slipstream
gauges. Overall CREATE_GAUGE (which includes pool deployment, fees and bribes reward contracts
deployment, and gauge deployment) requires around 6.1M gas for slipstream, because LeafCLGauge
has a bigger bytecode size than LeafGauge. Deploying the system with current gas limit would result in
a gauge creation message to be stuck in the bridge, until an operator manually replays it with more gas.

Code corrected:

Velodrome has increased the gas limit for CREATE_GAUGE command to 7_320_000 gas units.

6.5 Different Interfaces in Slipstream Contracts
Design Low Version 1 Code Corrected

CS-VELOSLIP-003

Some contracts differ in their interfaces and exposed behaviors between their slipstream and their
non-slipstream versions. This could cause issues for integrators.

View method isPair(pool) in slipstream RootCLPoolFactory returns true if a RootCLPool has
been deployed at that address. In non-slipstream RootPoolFactory, isPair() always returns
false. This also translates to a different behavior when calling createGauge on the Voter.
Superchain Slipstream pools can have unpermissioned gauge deployment if both tokens are whitelisted,
but Superchain non-slipstream pools cannot be deployed in an unpermissioned manner.

RootPoolFactory exposes the isPool() view, equivalent to isPair(). However,
RootCLPoolFactory only has isPair() and not isPool().

RootPoolFactory exposes the view methods allPools() and allPools(uint256).
RootCLPoolFactory only implements allPools(uint256)

RootPoolFactory exposes a implementation() getter. RootCLPoolFactory exposes a
poolImplementation() getter.

RootPool exposes chainid(). RootCLPool exposes chainId() (different capitalization).

Code corrected:

RootCLPoolFactory.isPair() now always returns false. Furthermore, isPool() as well as
allPools() functions have also been added. RootPoolFactory.poolImplementation() has
been renamed to implementation(). Also, the public storage variable RootCLPool.chainId has
been renamed to chainid.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.6 Emission Cap Not Sanitized Can Cause
Overflow
Informational Version 1 Code Corrected

CS-VELOSLIP-005

The emissionAdmin of RootCLGaugeFactory is trusted, and we assume they will not set malicious
values as a gauge emission cap, through the functions setEmissionCap() and setDefaultCap().
However if a too high value is set, for example for the purpose of having no reward cap for a gauge, the
multiplication _weeklyEmissions * maxRate in calculateMaxEmissions() can overflow. This
can cause loss of rewards.

Code corrected:

In RootCLGaugeFactory, both functions setEmissionCap() and setDefaultCap() enforce
_emissionCap and _defaultCap respectively not to exceed MAX_BPS.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Inconsistent Code in
NonfungiblePositionManager
Informational Version 1 Code Partially Corrected

CS-VELOSLIP-006

Function increaseLiquidity() of NonfungiblePositionManager is no longer called by
LeafCLGauge. However it contains the line:

if (ownerOf(params.tokenId) == gauge) require(msg.sender == gauge, "NG")

This line implies that the gauge could potentially call increaseLiquidity(), maybe in a future code
iteration. However, if increaseLiquidity() was to be called with the gauge as recipient, the liquidity
addition would be invalid, as the liquidity is added to the position of the
NonfungiblePositionManager (address(this)), instead of the gauge.

The code is therefore misleading, pointing to possible uses which would actually be invalid. In practice,
the gauge does not call increaseLiquidity(), and increaseLiquidity() should not be called
with tokenId owned by the gauge.

Similarly, decreaseLiquidity() is now incompatible with calls from the gauge, which is fine since the
gauge never calls it. However it would be clearer to explicitly disallow that possibility.

Explicitly disallowing the gauge to call these functions would result in clearer code.

Version 4In liquidity increasing for gauge positions is explicitly forbidden. decreaseLiquidity() is still
incompatible with calls from the gauge, but this requirement is still not explicit.

7.2 Pool Can Be Initialized With Considerably
Wrong Price
Informational Version 1 Acknowledged

CS-VELOSLIP-007

The unpermissioned createPool() function of CLPoolFactory allow anyone to create and initialize a
pool. The initialization sqrtPriceX96 of the pool determines where the tick of the pool is initialized,
and consequently the starting point of the first swap. The pool creator can therefore sets the tick far
from the actual price, up to 1774544 ticks away from the actual price (TickMath.MAX_TICK * 2),
however in general the distance can be set at most MAX_TICKS away from the actual price (887272). If
the pool tickSpacing is 1, even with the tickBitmap, that would require MAX_TICKS/256 == 3465
SLOADs to reach the correct tick, costing over 8M gas (without accounting for the gas expenditure of the
other operations in the loop). This opens a griefing attack vector, where the attacker uses about 300K
gas for pool creation, and the first swapper incurs a gas cost greater than 8M gas.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

Acknowledged:

Velodrome has acknowledged this issue and replied with:

"Prices for new pools become stale quickly even for pools initialized at the correct price. If there is no/little
liquidity, it becomes easy to move the price to a different tick, so it is considered an acceptable risk."

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Attackers Can in the Future Generate Address
Collisions
Note Version 1

Possible collisions of addresses are present through the codebase, some of the collisions can be found
with a realistic computational budget today, and some others are still very expensive but will become
feasible in the next decades, as computational power becomes cheaper.

• The salt used in create3 deployment by root and leaf gauge factories is a value of only 11 bytes
(88 bits). The salt for gauge deployment is computed as the first 11 bytes of the keccak of pool
parameters (keccak(chainId ++ token0 ++ token1 ++ tickSpacing)). We can find
two pool configurations which produce the same salt with ~50% probability requires only
sampling 2^44 pool configurations (randomizing over token0 for example), because of the
Birthday paradox. Trying 2^44 attempts is feasible with modest computational power at the
current day. This allows to create two pools whose gauges will have the same address, only one
of the gauges can be therefore successfully created. Since on each pool one of the tokens is
random, pools with couples of "real" tokens are not affected.

• Finding a collision between 160 bits addresses (generating the same address in two different
ways, for example create2 and EOA) requires on the order of 2^80 tries. It is feasible with a
computational budget in the order of billions of dollars (currently roughly estimated around $3B).
The relative ease of address collision generation is the rationale for EIP-3607. More information
on the cost of finding a collision can be found in the following Sherlock issue
https://github.com/sherlock-audit/2024-06-makerdao-endgame-judging/issues/64 or in the
document by Ethereum Foundation researcher Dmitry Khovratovich here . In the present
Velodrome Superchain system, collisions can be generated for precomputed addresses, which
include Leaf and Root pools, and Leaf and Root gauges. A possible exploit using an address
collision for leaf gauges could be the following:

• attackers find a way to create a malicious contract at address X, and creates a leaf pool
B whose precomputed gauge is also address X. attacker does not deploy those yet.

• attacker persuades Velodrome to create a gauge for pool B. The Root gauge for B is
created, and a CREATE_GAUGE message is communicated to the bridge.

• while the CREATE_GAUGE message has been processed by the root chain, but not the
leaf chain, attacker creates malicious contract X.

• CREATE_GAUGE is received on the leaf, and reverts because a contract already exists
at X.

The previous example would cause the root and leaf chains to be out of sync, and the following
DEPOSIT messages for gauge X to fail on leaf but not on root, breaking deposits and withdraws
through the bridge (since one reverting transaction on leaf blocks all the following ones).

Precomputed addresses which could be the target of collision attacks are the addresses of leaf and root
pools (create2, 256 bits salt), and leaf and root gauges (create3, 88 bits salt). As mentioned, the
computational budget for such an attack would today be ~$3B. However if Moore's law remains valid,
over the next 30 years the cost will be reduced by an order of 1000x.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 20

https://eips.ethereum.org/EIPS/eip-3607
https://github.com/sherlock-audit/2024-06-makerdao-endgame-judging/issues/64
https://hackmd.io/Vzhp5YJyTT-LhWm_s0JQpA
https://chainsecurity.com

8.2 Weekly Gauge Cap Can Limit Rewards
Accumulated Over Multiple Weeks
Note Version 1

The reward amount distributed by notifyRewardAmount() is capped by
RootCLGaugeFactory.calculateMaxEmissions(), a function calculates the maximum possible
emission for a gauge in a week. If the reward accumulates over multiple weeks and before
notifyRewardAmount() is called on the Gauge, the accumulated amount gets capped with the
maximum emission of only one week. However, in practice we can assume that reward distribution is
performed every week, since both voters and stakers are incentivized to trigger it.

Velodrome - Superchain Slipstream - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Scope after Version 2
	2.1.2 Excluded from scope

	2.2 System Overview
	2.2.1 NFT Position Manager
	2.2.2 Leaf-Chain Concentrated Liquidity Pool Factory
	2.2.3 Leaf-Chain Concentrated Liquidity Pools
	2.2.4 Leaf-Chain Gauge
	2.2.5 Leaf-Chain Gauge Factory
	2.2.6 Root Chain Liquidity Pool
	2.2.7 Root Chain Pool Factory
	2.2.8 Root Chain Gauge
	2.2.9 Root Chain Gauge Factory
	2.2.10 Factory Deployment
	2.2.11 Trust Model and Assumptions
	2.2.12 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 increaseLiquidity() for NFT Owned by Gauge Breaks Accounting of Liquidity
	6.2 RootCLPoolFactory Does Not Support Pools With Same Parameters on Different Chains
	6.3 NonFungiblePositionManager Can Return Incorrect Lists of User Positions
	6.4 Gas Limit of createGauge on Leaf Chain Incompatible With Slipstream
	6.5 Different Interfaces in Slipstream Contracts
	6.6 Emission Cap Not Sanitized Can Cause Overflow

	7 Informational
	7.1 Inconsistent Code in NonfungiblePositionManager
	7.2 Pool Can Be Initialized With Considerably Wrong Price

	8 Notes
	8.1 Attackers Can in the Future Generate Address Collisions
	8.2 Weekly Gauge Cap Can Limit Rewards Accumulated Over Multiple Weeks

