

PUBLIC

Code Assessment

of the Superchain Interoperability

Smart Contracts

20 May 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 18

4 Terminology 19

5 Open Findings 20

6 Resolved Findings 23

7 Informational 32

8 Notes 35

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Superchain Interoperability
according to Scope to support you in forming an opinion on their security risks.

Velodrome implements an expansion of Velodrome AMM system to Superchain. With this expansion, the
VELO rewards and incentives become available on chains beyond Optimism with the help of Hyperlane.

The most critical subjects covered in our audit are multi-chain state consistency, functional correctness,
Hyperlane integration, and frontrunning resistance.

The mechanisms ensuring consistent state across chains are robust and deliver a high level of security.
The functional correctness is high as issues such as Voting period in epochs can be bypassed by using
poke() have been resolved. Similarly, the integration with Hyperlane's bridging mechanism was found to
be correct after issues such as Metadata Misuse in Bridges were resolved.

In the second version of the codebase, the mechanism enforcing the ordering of specific types of
messages (DEPOSIT and WITHDRAW) was relaxed. This could lead the state of some contracts to be
temporarily inconsistent which would lead to accounting issues (Voting power can be temporarily
artificially inflated). The issue has been addressed, but it should be noted that the system relies heavily
on the assumption that messages from the root to the leaf will be processed within 1 hour.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 8

• Code Corrected 4

• Risk Accepted 3

• Acknowledged 1

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Superchain Interoperability repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 7 October 2024 45bfd414892adabd95103669345418d4080fb4bc Initial Version

2 5 November 2024 2daa9e303cad0c907da7dbfadf4d0ff1bbd18aa0 Fixes

3 6 November 2024 fa572a3c5b0828333cbcf74797848b9d90300e47 First report

4 5 February 2025 5d3f5a87596043b9a6eb4d34399a012e1cfeb9d3 Gas router, domains

5 20 February 2025 bff89f808e3d33bb3782e5228d6b94aaaf3a43ff Second report

6 20 April 2025 79a3145441b94b4c38de5c274026d5396db680ab Superwap Router

7 16 May 2025 c15a81e1f9faffb721563826b359b05ee78afb84 Fixes

For the solidity smart contracts, the compiler version 0.8.27 was chosen.

This review assumes that the src/root contracts will be deployed to Optimism mainnet chain. Other
contracts are assumed to be deployed on EVM equivalent chains with Hyperlane bridge support. Prior to
deploying to any Leaf network, it is assumed that compatibility tests will be performed.

The following contracts in the folder src/ are in the scope of the review:

bridge:
 extensions:
 hyperlane:
 ModeLeafHLMessageModule.sol

 ModeLeafMessageBridge.sol
 ModeTokenBridge.sol

 hyperlane:
 LeafHLMessageModule.sol

 ChainRegistry.sol
 CrossChainRegistry.sol
 LeafMessageBridge.sol
 TokenBridge.sol

extensions:
 ModeFeeSharing.sol

gauges:
 extensions:
 ModeLeafGauge.sol

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

 ModeLeafGaugeFactory.sol

 LeafGauge.sol
 LeafGaugeFactory.sol

libraries:
 rateLimits:
 RateLimitedMidpointLibrary.sol
 RateLimitMidpointCommonLibrary.sol

 Commands.sol
 CreateXLibrary.sol
 GasLimits.sol
 VelodromeTimeLibrary.sol

root:
 bridge:
 hyperlane:
 RootHLMessageModule.sol
 RootMessageBridge.sol

 emergencyCouncil:
 EmergencyCouncil.sol

 gauges:
 RootGauge.sol
 RootGaugeFactory.sol

 pools:
 RootPool.sol
 RootPoolFactory.sol

 rewards:
 RootIncentiveVotingReward.sol
 RootFeesVotingReward.sol
 RootVotingRewardsFactory.sol

voter:
 extensions:
 ModeLeafVoter.sol
 LeafVoter.sol

xerc20:
 MintLimits.sol
 XERC20.sol
 XERC20Factory.sol
 XERC20Lockbox.sol

Version 3 Version 1Note that the scope represents the files in . The project layout has changed since .

Version 4In , the scope was updated as follows:

Added contracts:

bridge:
 BaseTokenBridge.sol

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

 LeafEscrowTokenBridge.sol
 LeafTokenBridge.sol
 LeafRestrictedTokenBridge.sol

root:
 bridge:
 hyperlane:
 GasRouter.sol
 Paymaster.sol
 PaymasterVault.sol
 RootEscrowTokenBridge.sol
 RootTokenBridge.sol
 RootRestrictedTokenBridge.sol

xerc20:
 extensions:
 RestrictedXERC20.sol
 RestrictedXERC20Factory.sol

Removed contracts:

bridge:
 TokenBridge.sol

Renamed contracts:

bridge:
 extensions:
 ModeTokenBridge.sol into ModeLeafEscrowTokenBridge.sol

Version 6In , only the changes made to the following scope was reviewed:

bridge:
 BaseTokenBridge.sol
 DomainRegistry.sol
 LeafEscrowTokenBridge.sol
 LeafTokenBridge.sol

root:
 bridge:
 RootEscrowTokenBridge.sol
 RootTokenBridge.sol

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Namely, third-party
libraries and integrations, such as OpenZeppelin and Hyperlane, are explicitly out of the scope of this
review. They are assumed to be secure and conform to their specification. Hyperlane can make use of
user-defined hooks. These are assumed to be implemented correctly and not expose the system in
scope to additional threats. In this report, we assume the previous version of Velodrome is safe, and the
review is focused on the interoperability of the superchain contracts.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The previous version of the protocol was taken at commit hash:
ee15bd1e63d3b33ce8d179f73bca7390812bd99b which is v2.1.

Configurable parameters of the system such, as gas limits, are out of scope and assumed to be chosen
correctly by the system admins. Admin actions are assumed to not expose the system to potential
security threats.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome Superchain is an expansion of existing Velodrome V2 AMM protocol capabilities.

In Velodrome V2, liquidity pools for asset pairs are created on Optimism mainnet. Liquidity providers can
deposit assets into these pools and get LP tokens in return. These LP tokens can be used to redeem the
deposited assets and a share of the trading fees generated by the AMM protocol. LP tokens can be
staked in Gauge contract to earn part of weekly VELO emissions. Each week is called an epoch and the
amount of VELO emissions is distributed based on the number of votes a gauge receives. VELO tokens
can be locked in VotingEscrow contract in exchange for veVELO EIP-721 tokens. Each veVELO token
has a voting power that can be used to steer which gauges corresponding to certain pools receive VELO
distributions for the following week. In return for controlling the VELO distributes, these voters earn the
fees for those pools from the prior epoch, as well as any incentives that were deposited by users.

Velodrome Superchain extends the capabilities of Velodrome V2 to support reward distribution, voting
and bribes across Optimism Superchain network.

2.2.1 Velodrome V2 Core Components
Velodrome V2 protocol, deployed on Optimism, comprises the following core components:

• Pools: These could be constant product AMMs similar to UniswapV2, with a different fee for
stable and volatile pairs, or concentrated liquidity pools similar to UniswapV3. For constant
product AMMs, LPs deposit the two liquidity tokens and mint some LP tokens. For the
concentrated liquidity ones, they mint an NFT.

• PoolFactory: It is a factory contract that deploys pools. It is also responsible for storing the fee
that pools should charge for swapping.

• Gauges: LP tokens can be staked here to earn VELO emission rewards while relinquishing the
earned LP fees.

• VotingEscrow: VELO holders can lock tokens and earn a veVELO NFT in return. The lock period
defines how much voting power the veVELO token will have.

Conversion formula is: .

• Voter: the contract that handles votes, emission distribution and creation of gauges, voting
rewards and bribes contracts.

• BribeVotingReward: It stores the bribes for a specific gauge. Anyone can deposit an amount on
any whitelisted token as a bribe. Users who voted for this particular gauge in Voter can claim
these rewards.

• FeeVotingReward: It stores the claimed trading fees of a pool. veVELO voters can claim these
rewards.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 8

https://docs.optimism.io/stack/explainer
https://chainsecurity.com

2.2.2 Superchain Protocol Components
Velodrome Superchain effectively makes the V2 system multi-chain, by bridging the VELO distribution,
voting and bribes across Optimism Superchain network. Optimism mainnet is considered as the Root
chain, and other chains are considered as Leaf chains.

Each Leaf chain will have its own set of core components, similar to Velodrome V2 core components.
However, the Leaf pools and gauges will be replicated on Root chain. This way Root chain will have a
complete view of the state of all the pools and gauges across all chains and act as a synchronization
point.

Leaf specific components are:

• Pool - Liquidity pool for an asset pair.

• PoolFactory - Factory contract for creating pools.

• LeafGauge - Staking contract for LP tokens. It receives xVELO rewards from the Root chain and LP
stakers can claim them.

• LeafGaugeFactory - Factory contract for creating LeafGauge contracts.

• FeesVotingReward - Contract that receives trading fees for staked LP tokens and distributes them
to the veVELO voters.

• BribeVotingReward - Contract that receives and distributes extraordinary incentive rewards to
the veVELO voters.

• VotingRewardsFactory - Factory contract for creating FeesVotingReward and
BribeVotingReward contracts.

• LeafHLMessageModule - Contract for receiving messages sent from Root via Hyperlane.

• LeafMessageBridge - Contract that keeps track of the module that handles messages from the
Root chain. Assumed to be LeafHLMessageModule for this assessment.

• LeafVoter - Contract for creating, killing and reviving gauges on the Leaf chain, whitelisting
tokens, claiming rewards from the LeafGauge contracts

• XERC20 - ERC20 token that represents VELO on the Leaf chains. It is an ERC20 token that supports
token transfers between chains.

Root chain contracts:

• RootPool - Contract that mirrors the Pool contract on the Leaf chain. Does not support swaps or
liquidity deposits.

• RootPoolFactory - Factory contract for creating RootPool contracts. It has the same address as
the PoolFactory contract on the Leaf chain.

• RootGauge - Root chain size LeafGauge contract. It has same address as LeafGauge on the Leaf
chain and forwards reward notification messages to the corresponding LeafGauge contract using
the Hyperlane protocol. LP stakers cannot claim VELO rewards from this contract.

• RootGaugeFactory - Factory contract for creating RootGauge contracts. It has the same address
as the LeafGaugeFactory contract on the Leaf chain.

• RootFeesVotingReward - Root chain size FeesVotingReward contract. Forwards calls to the
corresponding Leaf FeesVotingReward contract.

• RootBribeVotingReward - Root chain size BribeVotingReward contract. Forwards calls to the
corresponding Leaf BribeVotingReward contract.

• RootVotingRewardsFactory - Factory contract for creating RootFeesVotingReward and
RootBribeVotingReward contracts. It has the same address as the VotingRewardsFactory
contract on the Leaf chain.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 9

https://docs.optimism.io/stack/explainer
https://www.xerc20.com/
https://chainsecurity.com

• RootHLMessageModule - Contract for sending messages to Leaf chain via Hyperlane. Forwards
messages to the corresponding LeafHLMessageModule contract.

• RootMessageBridge - Contract that keeps track of the module that handles outgoing messages.
Assumed to be RootHLMessageModule for this assessment.

• Voter - Existing Velodrome V2 Voter contract.

• XERC20 - cross-chain VELO variant, minted by XERC20Lockbox

• XERC20Lockbox - Contract that holds wrapped VELO tokens on the Root chain

• EmergencyCouncil - Ownable contract that can kill or revive both Velodrome V2 and Superchain
Gauges.

RootMessageBridge and LeafMessageBridge with Message Modules

RootMessageBridge with RootHLMessageModule is deployed on the Root chain and handles
dispatching messages to the Leaf chain. LeafMessageBridge with LeafHLMessageModule are
deployed on the Leaf chain and handle incoming messages from the Root chain. Communication is one
way, from the Root to the Leaf chain. RootMessageBridge supports nine message commands, each
designed to manage operations on the Leaf chain effectively:

• DEPOSIT - Triggered when Voter.vote() is called on the Root chain. It increases the user's
voting balance in FeesVotingRewards and BribeVotingRewards of the target LeafGauge.

• WITHDRAW - Triggered when Voter.reset() is called on the Root chain or as a cleanup
procedure at the start of Voter.votes(). It lowers the user's voting balance in
FeesVotingRewards and BribeVotingRewards of the target LeafGauge.

• NOTIFY - Triggered when Voter.distribute() is called on the Root chain. It notifies the gauge
about the rewards available for claiming.

• NOTIFY_WITHOUT_CLAIM - Notify the gauge about the rewards without claiming Pool trading fees.

• GET_INCENTIVES - Claim bribes from Leaf chain BribeVotingRewards contract.

• GET_FEES - Claim fees from the Leaf FeeVotingRewards contract.

• CREATE_GAUGE - Create a new LeafGauge on the Leaf chain.

• KILL_GAUGE - Kills a LeafGauge. Can only be initiated by EmergencyCouncil.

• REVIVE_GAUGE - Revives a LeafGauge. Can only be initiated by EmergencyCouncil.

Each DEPOSIT and WITHDRAW command for a specific Leaf chain includes a nonce. This nonce makes
incoming DEPOSIT and WITHDRAW messages on the Leaf chain to be processed in order. This prevents
situations, where the sum of user votes on Leaf chains temporarily exceeds the Root chain voting power.
Note that the use of nonces was abandoned in the next iterations of the codebase.

XERC20

An XERC20 token is an ownable, mintable/burnable ERC20 token. Used to wrap VELO into xVELO. On
Root chain VELO tokens are locked in XERC20Lockbox and XERC20 tokens are minted. An owner can
assign a cap to any bridge address, that would enable it to mint/burn XERC20 tokens. The value
is the midpoint of the buffer. Buffer value decreases or increases linearly over time until the midpoint is
reached. When XERC20 tokens are minted buffer is decreased by the amount minted. When XERC20
tokens are burned buffer is increased by the amount burned. Transaction is reverted if the buffer is below
zero or above the cap.

In addition to the standard XERC20 interface, mint and burn that were already discussed, the contract
exposes the following interface:

• setBufferCap(): the owner of the contract sets a new non-zero buffer cap for an address
with a buffer cap already specified. The cap should be above 1_000e18.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 10

https://github.com/velodrome-finance/contracts?tab=readme-ov-file#protocol-mechanics-contracts
https://chainsecurity.com

• setRateLimitPerSecond(): the owner of the contract sets a new rate limit for an already
registered address. The rate limit cannot exceed a 25_000e18.

• addBridge(): the owner instantiates the buffer cap, and the rate limit for an address. The
available buffer is initialized at the midpoint.

• removeBridge(): the owner deletes all the data related to a buffer of a specific address
rendering the address unable to mint or burn.

Velodrome Superchain relies on Hyperlane protocol to transfer messages from Root to Leaf chains. A
separate pair of Bridge contract, one on Root and one on Leaf, need to be deployed to facilitate
cross-chain communication. For this assessment, two bridges are in scope. TokenMessageBridge -
RootMessageBridge. However, XERC20 can also be transferred through the optimism superchain
bridge. Tokens can be minted and burned by the bridge via the crosschainMint() and
crosschainBurn respectively.

TokenBridge

TokenBridge - Contract that facilitate XERC20 token transfers between chains.

• Sending tokens: TokenBridge.sendToken() burns the specified amount of XERC20 tokens on
the origin chain, calls Hyperlane's Mailbox.dispatch(), and ensures the transaction is routed to
the registered destination chain.

• Receiving Tokens: TokenBridge.handle() confirms that the message originates Hyperlane's
Mailbox and mints the specified amount of XERC20 tokens on the destination chain for the
designated recipient.

• ChainRegistry functionality allows the owner to register and deregister chains that can be used
as destinations for cross-chain token transfers.

Note that both minting and burning are constrained by the XERC20 buffer cap.

2.2.3 Important Call Paths
Depositing on the Voting Rewards Contracts

1. veVELO holder calls Voter.vote() on the Root chain with list of pool and corresponding vote
weights.

2. Voter.vote() calls _reset(). This "undoes" the previous vote by calling _withdraw() on the
RootFeesVotingReward and RootBribeVotingReward contracts.

• RootBribeVotingReward._withdraw() is a no-op.

• RootFeesVotingReward sends a WITHDRAW message to the LeafHLMessageModule
on the Leaf chain.

• LeafHLMessageModule calls FeeVotingReward._withdraw() and
BribeVotingReward._withdraw() on the Leaf chain.

3. Voter.vote() calls _deposit() on the Fee and Bribe reward contracts for the new pools.

• RootFeesVotingReward sends a DEPOSIT message to the FeesVotingReward on
the Leaf chain.

• RootFeesVotingReward sends a DEPOSIT message to the BribeVotingReward on
the Leaf chain.

Withdrawing from the Voting Rewards Contracts

1. veVELO holder calls Voter.reset() on the Root chain.

2. Voter.reset() calls _reset(). As described in the depositing flow above.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Getting Incentives/Bribes

1. veVELO holder calls Voter.claimBribes() on the Root chain, specifying the list of reward
tokens to claim.

2. Voter.claimBribes() calls RootBribeVotingReward.getReward().
RootBribeVotingReward determines the recipient address of the rewards on the Leaf chain.

It is either the owner of veVELO NFT or recipient registered in RootVotingRewardsFactory

3. RootBribeVotingReward.getReward() sends a GET_INCENTIVES message to the
LeafHLMessageModule on the Leaf chain via the RootMessageBridge.

4. LeafHLMessageModule calls BribeVotingReward.getRewards() on the Leaf chain.

5. BribeVotingReward.getRewards() transfers the reward tokens to the recipient.

Getting Fees

1. A veVELO holder calls Voter.claimFees() on the Root chain, specifying the list of fee reward
tokens to claim.

2. Voter.claimFees() invokes RootFeesVotingReward.getReward(). The
RootFeesVotingReward contract determines the recipient address for the rewards on the Leaf
chain, which is either the owner of the veVELO NFT or a recipient registered in
RootVotingRewardsFactory.

3. RootFeesVotingReward.getReward() sends a GET_FEES message to the
LeafHLMessageModule on the Leaf chain via the RootMessageBridge.

4. Upon receiving the message, LeafHLMessageModule calls
FeesVotingReward.getRewards() on the Leaf chain.

5. FeesVotingReward.getRewards() then transfers the fee reward tokens to the designated
recipient.

Pool and Gauge deployment flow

On Leaf chain, a Pool contract can be deployed using PoolFactory contract. To stake LP tokens of
this pool, a Voter.createGauge() function needs to be called on the Root chain. This call results in
(effects only):

1. Deploys RootBribesVotingRewards and RootFeesVotingRewards contracts on the Root
chain by calling RootVotingRewardsFactory.createRewards().

2. Deploys RootGauge contract on the Root chain by calling
RootGaugeFactory.createGauge(). This creates CREATE_GAUGE message that is sent to the
Leaf chain via Hyperlane protocol.

On a Leaf chain, processing of the CREATE_GAUGE message results in:

1. Deployment of the Pool contract, if it is not already deployed.

2. Deployment of FeesVotingRewards and BribeVotingRewards contracts on the Leaf chain by
calling VotingRewardsFactory.createRewards().

3. Deployment of LeafGauge contract on the Leaf chain by calling
LeafGaugeFactory.createGauge().

As a result, the Gauge created on a Root chain is duplicated on a Leaf chain with the same address, but
with different functionality.

Notifying Rewards

1. Any user can initiate distribution of claimable rewards once per week by calling
Voter.distribute() on the Root chain.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2. Voter.distribute() calls Minter.updatePeriod() to mint new VELO tokens. The
RootGauge is then approved to withdraw the minted VELO amount from Voter. This action is
expected to occur once per epoch.

3. VELO tokens are locked on XERC20Lockbox and xVELO tokens are minted.

4. The RootMessageBridge burns the xVELO on Root chain and dispatches a NOTIFY message to
the LeafHLMessageModule on the Leaf chain.

5. Upon receiving the NOTIFY message, the LeafHLMessageModule mints xVELO on the Leaf
chain.

LeafGauge.notifyRewardAmount() is called.

6. LeafGauge.notifyRewardAmount() triggers the gauge to claim trading fees from the pool and
increases the reward rate of current epoch.

There exists an alternative process, where trading fees are not claimed from the pool. This starts when a
notify admin calls RootGauge.notifyRewardWithoutClaim(). In this case
NOTIFY_WITHOUT_CLAIM is bridged and LeafGauge.notifyRewardWithoutClaim() is called.

2.2.4 Deployment
RootBribeVotingReward and its Leaf chain equivalent BribeVotingReward are deployed by
respectively the RootVotingRewardFactory and the VotingRewardsFactory with new keyword to
create the contracts. The same factories also deploy the RootFeesVotingReward and
FeesVotingReward contracts in the same way. Therefore, the reward contracts will be deployed on
different addresses on the Root and the Leaf chains.

RootPoolFactory and PoolFactory will respectively deploy RootPool and Pool on the Root and
Leaf chains. While the implementation of such pools will be deployed through CREATE3 as described
above, the pool factories will deploy a new pool through Clones.cloneDeterministic(). This will
ensure that the same pool is deployed on all chains. However, the pools will have different addresses on
Root and Leaf as the RootPoolFactory uses the chainid as part of the salt whereas PoolFactory
only uses token0 and token1 and stable as part of the salt.

RootGaugeFactory and LeafGaugeFactory both use CREATEX.deployCreate3() to deploy
respectively RootGauge and LeafGauge. Both factories use the same salt parameters therefore the
Root gauge will be at the same address as the Leaf gauge on the Leaf chain.

LeafVoter will also be deployed with CREATE3, but it is important to note that it will not have the same
address as the Voter currently deployed on Optimism.

XERC20 and XERC20Lockbox will be deployed on the Root chain while XERC20 without a lockbox will be
deployed on Leaf chains.

2.2.5 VERSION 2
The following changes were introduced in the second version of the codebase:

• DEPOSIT and WITHDRAW messages can only be emitted up until an hour before the end of the
epoch unless the tx.origin is the owner or an approved party to use the token. A
consequence of that is that after the end of the vote, users can only poke() themselves.

• Users cannot claim rewards in an epoch they already voted in.

• To mitigate any potential DoS issues, the use of nonces has been abandoned for DEPOSIT
and WITHDRAW messages. Instead, the message includes the block.timestamp of the root
chain. This change relaxes the invariant where deposits and withdraw messages are received
in the same order they are emitted. In the current implementation, these messages can be
reordered under the following assumptions:

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

• When voting, bridging of the deposit and the withdraw for a tokenId will eventually be
processed before the epoch finishes. Therefore, even in the case of reordering the
state will eventually be consistent. It is important to note however, that the state can be
inconsistent during the processing of the messages e.g., two deposits might have
occurred without a withdrawal.

• Rewards are only requested for past epochs and requesting the leaf rewards can only
happen after the flip of an epoch where a specific tokenId has voted. This guarantees
that both the withdraw and deposit messages will have already been processed.

• For RootHLMessageModule and TokenBridge, a custom hook is used when quoting or
dispatching a message. In the case of the TokenBridge, users get refunded for the excessive
gas. It is currently only meant to be used for users (EOAs) to transfer tokens between chains.
This is why a transfer primitive is used to refund users. It will likely not be the only way, nor
the final way for users to transfer tokens between chains.

• Some leaf contracts of the system have been extended to be able to receive rewards when
deployed on the Mode rollup.

2.2.6 VERSION 3
The following changes were introduced in the third version of the codebase:

• GET_FEES/ GET_INCENTIVES is only allowed an hour after the start of a new epoch until one
hour before the epoch end. This is done to ensure that all deposit and withdrawal messages of
the previous epoch have been processed and that the state is consistent. This change heavily
relies on the following assumption: All messages should be processed within one hour of their
emission. If this assumption breaks the system might end up in an inconsistent state which
some users can benefit from.

• DEPOSIT and WITHDRAW messages can now be sent to the leaf chain until the end of the epoch
by either any user using poke() or by whitelisted users using vote().

2.2.7 VERSION 4
The following changes were introduced in the fourth version of the codebase:

• A GasRouter is introduced to update the gas price of the commands instead of having them
hardcoded. It maintains a mapping between commands and gas limits. The GasRouter is only
used on the Root chain and its mapping is assumed to properly be populated.

• A mapping chainID <-> hyperlane domain has been added to support Hyperlane
domains where chainID != domain. This mapping is used only on the root chain, as it is
assumed that the leaf chains will only bridge to the root chain, where chainID == domain.

• When bridging xVELO from a leaf to the root chain, it is automatically redeemed into VELO and
sent to the recipient on the root chain.

• It is now possible to bridge and lock xVELO from a leaf chain in one transaction. The xVELO is
automatically redeemed for VELO and deposited in the VotingEscrow for a given tokenId. If
the deposit fails, the VELO token is simply transferred to the provided recipient address.

• xOP Leaf Incentives: Velodrome wants to enable OP token to be wrapped in xOP and used with
restrictions on a leaf chain. Users should be able to claim xOP on a leaf chain, but its utility is
primarily intended to bridge it back to the root chain. Transfers on leaf chains are restricted to
limit the token's broader usage. The same lockbox mechanism is employed to wrap OP to xOP
as with xVELO (see Superchain interoperability report). xOP is bridged to a leaf chain using a
[Root]RestrictedTokenBridge. If the destination chain is a chain other than BASE, the
recipient should be a live gauge deployed on that chain. For BASE the recipient can be any

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 14

https://www.chainsecurity.com/security-audit/velodrome-superchain-interoperability
https://chainsecurity.com

address including a gauge. Note that for the BASE case it is not possible to enforce further
restrictions as the gauges on BASE are not known on the Root chain. In any case, if the
recipient address is a gauge, xOP is directed to the contract that escrows the bribes/incentives
after being minted for the bridge.

Transferring xOP is restricted on all leaf chains. Transfers can only originate from whitelisted
addresses. An address is whitelisted only if it has received funds from the token bridge. Minting
and burning the token is only restricted by the capped buffer mechanism already discussed
earlier. As the bridge can directly burn xOP, all users are able to bridge back xOP to the root
chain as long as they're able to interact with the bridge. It is important to note that any entity can
mint or burn xOP should they be given a buffer. Such an entity could simulate transfers by
burning for one address and minting for another one.

As with xVELO, xOP is unwrapped upon receiving from the RootRestrictedTokenBridge.

• Gas sponsoring: Velodrome enables gas sponsoring for the following two cases: 1) sending the
NOTIFY command from the root to the leaf chains during the first hour of each new epoch and
2) for all the messages for a set of whitelisted addresses without further restrictions. Users
(tx.origin) are whitelisted in RootHLMessageModule. Moreover, gas sponsoring is also
available for a set of whitelisted msg.sender addresses on the RootTokenBridge when
bridging xVELO from the root chain to a leaf chain. The whitelist is maintained in the Paymaster
contract which is inherited by the bridge contracts. The funds used for sponsoring are escrowed
in the PaymasterVault. The owner of the vault can withdraw assets, while the vault manager
i.e., the Hyperlane module or the token bridge, can use the funds for sponsoring.

2.2.8 VERSION 6
In version 6, several updates were introduced to support the Velodrome Superswaps router's use of the
bridge for asset bridging on behalf of users:

• The Hyperlane version was upgraded to 5.12.0.

• The sendToken() function was overloaded to accept a refund address. This allows the Velodrome
Superswaps router to specify a refund address when sending tokens through the bridge, as the
router cannot receive ETH transfers.

• Fee refund calculations were removed, as Hyperlane handles refunds internally and credits the
specified refund address.

• To simplify chainID and Hyperlane domain conversions, the bridge now accepts a domain instead of
a chainID. This change shifts the responsibility to the user to provide the correct domain for the
destination chain.

2.2.9 VERSION 7
In version 7, only fixes for the issues found during the audit were introduced. No major changes were
made to the system.

2.3 Trust Model
General:

The system is assumed to be deployed on the Optimism mainnet and the Superchain network.

VELO:

VELO emissions are distributed weekly and Voter.distribute() is called once per week.

Create3:

The following contracts are assumed to be deployed on the same address across all chains with
CREATE3 where the address of the deployer is used in the salt:

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• RootPoolFactory and PoolFactory

• RootPool and Pool implementation contracts. Proxies that use these implementations won't
have the same address.

• LeafGaugeFactory and RootGaugeFactory

• LeafGauge and RootGauge

• LeafHLMessageModule and RootHLMessageModule

• LeafMessageBridge and RootMessageBridge

• LeafEscrowMessageBridge and RootEscrowMessageBridge

• RootVotingRewardFactory and VotingRewardsFactory

• XERC20Factory

• XERC20

• TokenBridge

• LeafVoter

Roles:

Some functionality in the system is controlled by parties with elevated privileges:

• governor of the Voter contract.

• owner of the EmergencyCouncil contract.

• owner of LeafMessageBridge and RootMessageBridge contracts.

• owner of LeafEscrowMessageBridge and RootEscrowMessageBridge contracts.

• owner of LeafHLMessageModule contract.

• owner of XERC20 contract.

• owner of ChainRegistry, CrossChainRegistry and TokenBridge.

All such parties are assumed to be trusted and act in a non-malicious way or configure the system in a
way that exposes it to threats.

Version 4:

Version 4For we extend the trust model as follows:

• We assume that the infrastructure for xOP is going to be properly deployed and parametrized.

• For gas sponsoring:

• The whitelist manager is assumed to properly configure the whitelist and the paymaster
vault.

• The whitelisted users are assumed to not try to drain the PaymasterVault by executing
redundant transactions.

Tokens:

The system is expected to interact only with ERC-compliant tokens that are not malicious and present no
specific risks or unusual behaviors (e.g., rebasing, transfers a different amount than requested,
fee-on-transfer, double entry points, non-compliant interface, or hooks)

Hyperlane:

Hyperlane is out of scope for this assessment, however, the following assumptions are made:

• Hyperlane messages are assumed to be processed in less than 1 hour.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

• The hook and ISM contracts used by the different bridges are assumed to properly ensure the
security of the system, to validate the messages are genuine and cannot be replayed. If the
configured hooks or ISM contracts are compromised, the bridge can be exploited to drain funds, or
mint unbacked tokens.

• The non-mandatory hook used by the different token bridges is assumed to refund to the provided
address the part of msg.value that is not used for fees.

• The different GAS_LIMIT[_LOCK]() constant functions value are assumed to be properly set to
match as close as possible, but not lower than the actual gas cost of the transactions needed to
relay the messages.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Risk AcceptedReentrancy Due to InterchainGasPaymaster Calling tx.origin

• Risk AcceptedRelayer Can Prevent Tokens From Being Deposited in the Escrow

• AcknowledgedSequencer Downtime Over Epoch Boundary

• Risk AcceptedXERC20 Rate Limit Can Prevent Bridging of Funds

5.1 Reentrancy Due to
InterchainGasPaymaster Calling tx.origin
Design Low Version 6 Risk Accepted

CS-VELO-SC-INOP-020

Version 1

This issue extends the informational issue Potential reentrancy due to InterchainGasPaymaster calling
tx.origin reported in of the system with the new risk brought by the EVM Pectra hardfork.

The Hyperlane Mailbox might have InterchainGasPaymaster or other similar hooks as one of its
default hooks. The function payForGas() of InterchainGasPaymaster is triggered as a
post-dispatch hook.

function payForGas(
 bytes32 _messageId,
 uint32 _destinationDomain,
 uint256 _gasLimit,
 address _refundAddress
) public payable override {
 uint256 _requiredPayment = quoteGasPayment(
 _destinationDomain,
 _gasLimit
);
 require(
 msg.value >= _requiredPayment,
 "IGP: insufficient interchain gas payment"

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

);
 uint256 _overpayment = msg.value - _requiredPayment;
 if (_overpayment > 0) {
 require(_refundAddress != address(0), "no refund address");
 payable(_refundAddress).sendValue(_overpayment);
 }

 ...
}

Since RootHLMessageModule._generateGasMetadata() sets the _refundAddress to
tx.origin, a third-party-controlled address, payForGas() might call tx.origin with unbounded gas
if an overpayment has occurred.

Prior to the Pectra hardfork, this was not an issue as tx.origin was always an EOA and could not
reenter the system. However, it is now possible for tx.origin to have some code and reenter the
system in an unexpected way.

Risk accepted:

Velodrome understands and accepts this risk.

5.2 Relayer Can Prevent Tokens From Being
Deposited in the Escrow
Design Low Version 6 Risk Accepted

CS-VELO-SC-INOP-021

In the RootEscrowTokenBridge contract, if a message of type SEND_TOKEN_AND_LOCK_LENGTH is
received in the handle() function, the token bridge attempts to deposit the underlying tokens into the
escrow contract.

else if (length == Commands.SEND_TOKEN_AND_LOCK_LENGTH) {
 (address recipient, uint256 amount, uint256 tokenId) = _message.sendTokenAndLockParams();
 IXERC20(xerc20).mint({_user: address(this), _amount: amount});

 IERC20(xerc20).safeIncreaseAllowance({spender: address(lockbox), value: amount});
 lockbox.withdraw({_amount: amount});
 erc20.safeIncreaseAllowance({spender: address(escrow), value: amount});
 try escrow.depositFor({_tokenId: tokenId, _value: amount}) {}
 catch {
 erc20.safeDecreaseAllowance({spender: address(escrow), requestedDecrease: amount});
 erc20.safeTransfer({to: recipient, value: amount});
 }
}

A malicious relayer can force the inner call to the escrow contract to fail by providing a carefully chosen
gas limit. Although the inner call would run out of gas, given the 63/64 rule, the outer context might still
have enough gas to execute the remaining logic in the handle() function, depending on the gas
consumption of the depositFor() function.

This allows a malicious relayer to prevent handle() from depositing tokens into the escrow contract,
causing the tokens to be sent back to the original recipient instead.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Risk accepted:

Velodrome understands and accepts this risk.

5.3 Sequencer Downtime Over Epoch Boundary
Security Low Version 2 Acknowledged

CS-VELO-SC-INOP-014

Version 2With the introduction of root timestamps for DEPOSIT and WITHDRAW messages in of the code,
the system is exposed to a risk of sequencer downtime over an epoch boundary.

The blackout period at the end of an epoch and the distribution window period at the beginning of a new
epoch allow the leaf chains to receive all messages from the root chain for the epoch that just ended and
reach a consistent state after processing all of them.

However, due to sequencer downtime that lasts across the epoch boundary, the system can be exposed
to the reordering of messages belonging to different epochs. This can lead to an inconsistent checkpoint
state in the leaf gauge reward contract. Indeed, Rewards.sol relies on the assumption that deposit
timestamps are monotonically increasing across epochs. While, reordering for a single epoch is handled
correctly, receiving messages from epoch E and then E - 1 will create an additional checkpoint, breaking
the assumption that when a message from epoch E is received, no messages from previous will be
received later. Both the user's and supply checkpoint system can be affected. It is therefore crucial that
the gauges are killed before the epoch flip in case of sequencer downtime that can last across an epoch
boundary.

Acknowledged:

Velodrome acknowledges the risk and will update their incident response plan to include the above
scenario.

5.4 XERC20 Rate Limit Can Prevent Bridging of
Funds
Design Low Version 1 Risk Accepted

CS-VELO-SC-INOP-004

XERC20 implements a rate limit for bridges for minting and burning operations. The rate limits are defined
per bridge and thus can be different.

Situation can arise, where a TokenBridge has initiated a token bridging on a chain with high buffer cap.
This Situation can arise naturally or artificially, for example, by a malicious actor. However, the
destination bridge does not have enough buffer cap for the minting operation to succeed.

Choosing appropriate buffer cap is deciding a trade-off between security and usability.

Risk Accepted:

Velodrome accepts the risk.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedVoting Power Can Be Temporarily Artificially Inflated

• Code CorrectedRootMessageBridge.sendMessage() Reverts if InterchainGasPaymaster Is Used

Medium -Severity Findings 2

• Code CorrectedChain ID Must Be Mapped

• Code CorrectedVoting Period in Epochs Can Be Bypassed by Using poke()

Low -Severity Findings 4

• Code CorrectedInvalid Comparison of Domain With Chain ID

• Code CorrectedMetadata Misuse in Bridges

• Code CorrectedKilling and Reviving Leaf-Chain Gauges

• Code CorrecteddeployXERC20WithLockbox() in XERC20Factory Can Be Frontrun

Informational Findings 7

• Code CorrectedGas Limit Discrepancy

• Code CorrectedArbitrary Address Can Be Revived as a Gauge

• Code CorrectedMissing chainId Check in TokenBridge.handle()

• Specification ChangedSpecification Inaccuracy

• Code CorrectedUsage of Both transferFrom() and safeTransferFrom()

• Specification ChangedXERC20 Hardcoded 18 Decimals

• Code Correctedassert Statement in XERC20Factory Is Redundant

6.1 Voting Power Can Be Temporarily Artificially
Inflated
Security High Version 2 Code Corrected

CS-VELO-SC-INOP-015

Version 2In of the code, nonces for WITHDRAW and DEPOSIT messages were removed and replaced by
timestamps. However, this introduces eventual consistency on the Leaf reward contract side as the order
of the messages is not guaranteed. GET_FEE and GET_BRIBES can only be called in the next epoch if
the user voted in the current epoch.

However, the following scenario is now possible:

• User pokes() at the end of epoch E on a LeafGauge G1.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

• User claims rewards/bribes in epoch E+1 on G1.

• If the messages arrive at Leaf in the following order :

1. DEPOSIT on either epoch E or E+1

2. GET_FEES/BRIBES on epoch E+1

3. WITHDRAW on epoch E+1

Then the user will have claimed rewards with inflated voting power. Note, that there is still a risk for the
user to lose the rewards if the reordering of the messages is:

1. WITHDRAW on either epoch E or E+1

2. GET_FEES/BRIBES on epoch E+1

3. DEPOSIT on epoch E+1

Normal users can perform this with poke() while whitelisted users can perform this with poke() and
vote().

While in the above scenario, the user can inflate its reward by using poke() themself and claim rewards
in the next epoch, it is also possible for a user that didn't vote in the epoch E to claim inflated rewards in
the following scenario:

• Alice pokes/votes at the end of epoch E

• Bob who hasn't voted in this epoch claims rewards at the end of epoch E.

• If the messages arrive at Leaf in the following order in epoch E + 1 :

1. Alice:WITHDRAW

2. Bob:CLAIM_FEES

3. Alice:DEPOSIT

Bob will be able to claim rewards with inflated voting power as Alice's DEPOSIT message will be
processed after Bob's CLAIM_FEES message.

However, Bob can also lose rewards if the messages are reordered as follows:

1. Alice:DEPOSIT

2. Bob:CLAIM_FEES

3. Alice:WITHDRAW

In this case, Alice's voting power and the total votes will be inflated temporarily, reducing Bob's
rewards.

Code corrected:

The code has been modified such that rewards cannot be claimed during the blackout period (the last
hour before the epoch flip) and during the distribution window (the first hour after the epoch flip). This
allows for enough time for the messages to be processed such that the reward contracts reach a
coherent state before rewards can be claimed.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.2 RootMessageBridge.sendMessage()
Reverts if InterchainGasPaymaster Is Used
Design High Version 1 Code Corrected

CS-VELO-SC-INOP-001

When RootMessageBridge.sendMessage() is called, first the fee is queried using
RootHLMessageModule.quote(), then RootHLMessageModule.sendMessage() is called to send
the message, with fee as msg.value.

This flow has two problems.

First, RootHLMessageModule.quote() will query quoteDispatch() without metadata. Default
InterchainGasPaymaster hook will use default 50k gas limit to estimate the fee. However, during
RootHLMessageModule.sendMessage() the gas metadata will be computed using
RootHLMessageModule._generateGasMetadata() 50k gas is not enough, to fulfill any of the
GasLimits contract limits. Thus, it will lead to the Hyperlane IGP hook reverting as the msg.value will
always be smaller than the required gasLimit passed to when calling Mailbox.dispatch() call.
Therefore, no message can be dispatched to the leaf chain.

Second, the _messageBody used RootHLMessageModule.quote() will be modified in the
RootHLMessageModule.sendMessage() if command <= Commands.WITHDRAW. For those two
commands (DEPOSIT and WITHDRAW), nonce is appended to the message body. We did not find any
Hyperlane hook at this moment that relies on the content or length of the message body, however,
modular nature of Hyperlane hooks might introduce such hook in the future.

Code corrected:

Changes were made to include the metadata in the gas quote. The nonce has been removed as part of
another change, therefore the second issue is no longer relevant.

6.3 Chain ID Must Be Mapped
Correctness Medium Version 4 Code Corrected

CS-VELO-SC-INOP-016

As the Hyperlane's domains do not necessarily match the chain ID, a mapping must be used to ensure
the correctness of the data for the message being sent. In RootMessageBridge.sendMessage(),
_chainid is used directly as _destinationDomain when requesting a quote. To cover the cases
where domain != chainID, the mapping of RootHLMessageModule should be used to get the
correct domain.

Code corrected: RootHLMessageModule.quote() now converts the chainID to domain ID.

6.4 Voting Period in Epochs Can Be Bypassed by
Using poke()
Design Medium Version 1 Code Corrected

CS-VELO-SC-INOP-002

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Due to synchronization between the Root chain and the leaf chain, voting is disabled 1 hour before the
end of the epoch and enable 1 hour into the epoch such that for example DEPOSIT messages emitted
from the root chain have time to be processed on the leaf destination chain.

Voter.vote() allows a user to reassign his voting weight and Voter.poke() allows a use to revote
the same weights as before.

However, while Voter.vote() only allows whitelisted NFT to vote during the voting blackout period,
Voter.poke() allows any user to vote during it. Any user can poke() any other user. Thus, users are
at risk of getting their rewards denied by malicious users who would poke() them near the end of the
epoch if their votes are cast on leaf gauges and the cross-chain messages are processed on the leaf
chain in the next epoch, but the withdrawals are processed in the current epoch.

Code corrected:

During the voting blackout period (1 hour prior to epoch flip, which occurs at 00:00 GMT time each
Thursday), only the owner or approved user for a given NFT will now be able to vote() or poke(). This
prevents other users from being able to poke a user maliciously prior to epoch flip.

6.5 Invalid Comparison of Domain With Chain ID
Design Low Version 6 Code Corrected

CS-VELO-SC-INOP-018

In the DomainRegistry contract, the owner can call the registerDomain function to register a new
Hyperlane domain. Functions inheriting from DomainRegistry use this mechanism to ensure that a
remote domain is registered before sending a message to it or receiving messages from it.

function registerDomain(uint32 _domain) external onlyOwner {
 if (_domain == block.chainid) revert InvalidDomain();
 if (_domains.contains({value: _domain})) revert AlreadyRegistered();
 _domains.add({value: _domain});
 emit DomainRegistered({_domain: _domain});
}

As highlighted in the Hyperlane documentation, Hyperlane domains do not necessarily correspond to the
chain ID, even for EVM-compatible chains. For instance, the domain for RARI Chain is 1000012617,
whereas the actual chain ID is 1380012617. Consequently, the check _domain == block.chainid
will not always prevent the current chain's domain from being registered.

Code corrected:

The DomainRegistry was updated and now compare the provided domain against
Mailbox(mailbox).localDomain() instead of block.chainid.

6.6 Metadata Misuse in Bridges
Correctness Low Version 6 Code Corrected

CS-VELO-SC-INOP-019

In BaseTokenBridge, the _generateGasMetadata() function is used to generate the metadata that
is passed to the Hyperlane Mailbox along with the message to be sent.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

function _generateGasMetadata(address _hook, uint256 _value, address _refundAddress, bytes memory _message)
 internal
 view
 virtual
 returns (bytes memory)
{
 /// @dev If custom hook is set, it should be used to estimate gas
 uint256 gasLimit = _hook == address(0) ? GAS_LIMIT() : IHookGasEstimator(_hook).estimateSendTokenGas();
 return StandardHookMetadata.formatMetadata({
 _msgValue: _value,
 _gasLimit: gasLimit,
 _refundAddress: _refundAddress,
 _customMetadata: ""
 });
}

Similarly, LeafEscrowTokenBridge and RootHLMessageModule respectively override and define
the _generateGasMetadata() function in a comparable manner.

According to Hyperlane's documentation, the _msgValue field of the standard metadata is expected to
represent the msg.value that will be sent along with the message on the destination chain by the
relayer.

However, the metadata constructed and passed to Mailbox.dispatch() in LeafTokenBridge,
RootTokenBridge, and RootHLMessageModule misuses this value. Instead of representing the
msg.value for the destination chain, it provides the fee being paid on the source chain as _msgValue
(i.e., _msgValue is set to the msg.value provided to dispatch()).

• In LeafTokenBridge, the metadata includes msg.value as the _value parameter. However,
msg.value is also used to pay the bridge's fee.

• Similarly, in both RootTokenBridge and RootHLMessageModule, the metadata sets
_msgValue = msg.value if the transaction is not sponsored. If the transaction is sponsored,
_msgValue is set to fee, where fee represents the bridge fee covered by the PaymasterVault
for whitelisted senders.

Note that if the hooks being used by the bridges do not rely on the _msgValue field of the metadata, this
issue will be ignored by the Hyperlane system when quoting and charging fees.

Code corrected:

The _generateGasMetadata() functions were updated to hardcode the _msgValue field to 0 as the
bridges are not expected to handle native token transfers.

6.7 Killing and Reviving Leaf-Chain Gauges
Design Low Version 1 Code Corrected

CS-VELO-SC-INOP-003

EmergencyCouncil.killRootGauge() kills RootGauge only via the call to Voter.killGauge().
EmergencyCouncil.killLeafGauge() attempts to kill first the RootGauge via
Voter.killGauge() and then the LeafGauge via a KILL_GAUGE message sent to the
RootMessageBridge. If the RootGauge is already killed, the Voter.killGauge() call will revert with
GaugeAlreadyKilled error. This design prevents killing a gauge on the leaf chain if it was already
killed on the root chain.

The same holds for EmergencyCouncil.reviveRootGauge() and
EmergencyCouncil.reviveLeafGauge().

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

The kill and revive functions for root gauges now revert if called on a leaf gauge. The check is done
by checking for the presence of a chain id on the root contract.

6.8 deployXERC20WithLockbox() in
XERC20Factory Can Be Frontrun
Security Low Version 1 Code Corrected

CS-VELO-SC-INOP-005

XERC20Factory.deployXERC20WithLockbox() can be called by anyone. It deploys the
XERC20Lockbox and the XERC20 contract using create3 function. The salt does not depend on
_erc20 parameter. Therefore, front-runing with a non-VELO _erc20 parameter is possible. A
redeployment of all XERC20Factory contracts on all chains and all XERC20 contracts will be necessary
to fix this issue.

Code corrected:

The ERC20 token is now set in the constructor, which prevents the front-running from having an impact.

6.9 Gas Limit Discrepancy
Informational Version 6 Code Corrected

CS-VELO-SC-INOP-026

The BaseTokenBridge contract defines the GAS_LIMIT() function as follows:

function GAS_LIMIT() public pure virtual returns (uint256) {
 return 200_000;
}

The RootTokenBridge contract inherits from BaseTokenBridge but does not override the
GAS_LIMIT() function.

The RootEscrowTokenBridge contract, which inherits from RootTokenBridge, overrides the
GAS_LIMIT() function as follows:

function GAS_LIMIT() public pure override(BaseTokenBridge, ITokenBridge) returns (uint256) {
 return 76_000;
}

However, since the LeafEscrowTokenBridge contract does not override the handle() function
defined in LeafTokenBridge, messages processed by both LeafEscrowTokenBridge and
LeafTokenBridge should consume a comparable amount of gas.

Additionally, note that the LeafEscrowTokenBridge contract overrides the GAS_LIMIT() function to
return 190_000, whereas the LeafTokenBridge contract inherits a GAS_LIMIT() of 200_000 from
BaseTokenBridge. This discrepancy suggests that messages processed by the RootTokenBridge
may consume more gas than the RootEscrowTokenBridge, despite the code hinting the opposite.

Code corrected:

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

The RootEscrowTokenBridge no longer overrides the GAS_LIMIT() function. Moreover, the
BaseTokenBridge contract now defines the GAS_LIMIT() function to return 76_000 gas. If a bridge
requires a higher value, it will need to override the function, which done by the
LeafEscrowTokenBridge with 190_000 gas.

6.10 Arbitrary Address Can Be Revived as a
Gauge
Informational Version 1 Code Corrected

CS-VELO-SC-INOP-006

In EmergencyCouncil, reviveRootGauge can be called on an arbitrary address that is not registered
as a gauge. Indeed, Voter.reviveGauge() will also not verify that the provided address is a
registered gauge and update the isAlive mapping accordingly. This can lead to a situation where an
arbitrary address can be considered as an alive gauge from an external perspective.

This behavior differs from reviveLeafGauge which will in LeafVoter check that the provided address
is indeed a registered gauge through the isGauge mapping.

Code corrected:

Both reviveRootGauge and reviveLeafGauge now check that the provided address is a registered
gauge with Voter.isGauge().

6.11 Missing chainId Check in
TokenBridge.handle()
Informational Version 1 Code Corrected

CS-VELO-SC-INOP-017

In TokenBridge.handle() there is no verification that the cross-chain message originated from a
registered chain. Therefore, a small risk exists that a malicious actor manages to deploy a contract at the
same address as the TokenBridge contract on a different chain which could then send a message to
the TokenBridge contract on the main chain to mint xVELO tokens. However, this requires the attacker
to deploy a contract at a specific address which is highly unlikely.

Code corrected:

A check was added to ensure that only messages from registered chains are processed.

6.12 Specification Inaccuracy
Informational Version 1 Specification Changed

CS-VELO-SC-INOP-008

In the specification file SPECIFICATION.md the following description is given for the format of
GET_INCENTIVES and GET_FEES messages :

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Get Incentives & Get Fees
This payload consists of:

- 1 byte command
- 20 byte gauge address
- 32 byte recipient address
- 32 byte token id
- 1 byte tokens array length
- 20 - 100 bytes of token addresses

However, the recipient address is not 32 byte long but a 20 byte address. Furthermore, the
token addresses are not 20-100 bytes long but can vary from 0 to 160 bytes (5 * 32) as elements of
an array that is encodedPacked are still padded according to the specification

Specification changed:

The specification have been updated to reflect the correct length of the recipient address and the token
addresses.

6.13 Usage of Both transferFrom() and
safeTransferFrom()
Informational Version 1 Code Corrected

CS-VELO-SC-INOP-009

Voter.notifyRewardAmount() uses safeTransferFrom() with rewardToken.
Voter.distribute() first, calls rewardToken with safeApprove() and then e.g.
RootGauge.notifyRewardAmount(). RootGauge.notifyRewardAmount() uses
transferFrom() with rewardToken. As the reward token is assumed to be VELO this is not
immediately an issue. However, the use of transferFrom() restricts which tokens can be used as
reward token.

Code corrected:

Code now uses safeTransferFrom() in RootGauge.notifyRewardAmount() and
RootGauge._notify() instead of transferFrom().

6.14 XERC20 Hardcoded 18 Decimals
Informational Version 1 Specification Changed

CS-VELO-SC-INOP-012

XERC20 decimals are fixed to 18. However, the XERC20Lockbox can be created and mint 1:1 any
arbitrary ERC20 token. XERC20Lockbox and XERC20Factory don't enforce that the decimals of the
wrapped ERC20 token are 18. It is therefore assumed that XERC20 is only used to wrap ERC20 tokens
with 18 decimals, such as VELO.

Specification changed:

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 30

https://docs.soliditylang.org/en/latest/abi-spec.html
https://chainsecurity.com

Velodrome acknowledges the issue and updated the specification in the XERC20Factory to make
support for 18 decimals explicit.

6.15 assert Statement in XERC20Factory Is
Redundant
Informational Version 1 Code Corrected

CS-VELO-SC-INOP-013

In XERC20Factory.deployXERC20WithLockbox(), the following assertion is performed after
deployCreate3() has been invoked to deploy both the lockbox and the XERC20 contract:
assert(_XERC20 == expectedAddress);. As expectedAddress is computed using CREATEX
with the same parameters as in deployCreate3(), the assertion is redundant and can be removed.

Code corrected:

The assert statement has been removed.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Savings
Informational Version 6 Acknowledged

CS-VELO-SC-INOP-022

In the DomainRegistry contract, both the registerDomain and deregisterDomain functions
include logic to check whether a domain is already registered or not, reverting if the condition is met.

function registerDomain(uint32 _domain) external onlyOwner {
 if (_domain == block.chainid) revert InvalidDomain();
 if (_domains.contains({value: _domain})) revert AlreadyRegistered();
 _domains.add({value: _domain});
 emit DomainRegistered({_domain: _domain});
}

Since _domains.add() and _domains.remove() already handle failure cases by returning false (e.g
add() return false the domain is already registered), the explicit contains() check could be omitted
and instead, the logic could rely on the return values of add() and remove() to save the gas consumed
by the storage loads made in contains().

Acknowledged:

Velodrome acknowledges this informational issue and decided not to apply the recommendation given
the low impact of the gas savings.

7.2 Locked Funds
Informational Version 6 Acknowledged

CS-VELO-SC-INOP-023

Funds can become locked in the various bridge contracts defined in the system, with no mechanism to
unlock them.

In the different TokenBridge contracts, the handle() function is marked as payable. However, there is
no implemented method to withdraw native tokens from the contract.

Similarly, there is no function to recover ERC20 tokens that might be sent to the contract by mistake.

Acknowledged:

Velodrome acknowledges this informational issue.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

7.3 Missing Sanity Checks
Informational Version 6 Acknowledged

CS-VELO-SC-INOP-024

In BaseTokenBridge.constructor(), the different address being provided as parameters are not
sanity checked. It could be useful to check that the addresses are not zero addresses.

Acknowledged:

Velodrome acknowledges this informational issue.

7.4 SentMessage Event Inaccurately Reflects the
Fee Paid
Informational Version 6 Acknowledged

CS-VELO-SC-INOP-025

In the LeafTokenBridge and RootTokenBridge contracts, the event SendMessage is emitted when
a message is sent.

Version 6Before , this event displayed the exact fee paid for bridging the message. However, it now only
shows the message value provided. The actual fee paid might be smaller if a refund occurred in
Hyperlane.

Acknowledged:

Velodrome acknowledges this informational issue and added:

Hyperlane fees are not regularly updated, so this is unlikely to be a material change

7.5 Potential Reentrancy Due to
InterchainGasPaymaster Calling tx.origin
Informational Version 1 Risk Accepted

CS-VELO-SC-INOP-007

Hyperlane Mailbox might have InterchainGasPaymaster as one of its default hooks.
InterchainGasPaymaster.payForGas() is triggered as a post-dispatch hook.
RootHLMessageModule._generateGasMetadata() sets the _refundAddress to tx.origin -
3rd party controlled address. In InterchainGasPaymaster.payForGas(), might call tx.origin
with unbounded gas if overpayment has occurred.

The refund should never happen in practice, as the RootMessageBridge.sendMessage() aims at
transferring the exact amount of gas defined by the gasLimit from the user to hyperlane.

However, this case must be considered as a potential reentrancy vector.

Risk accepted:

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

Velodrome acknowledges the risk.

7.6 Whitelisted NFTs Can Double Voting Power
Informational Version 1 Risk Accepted

CS-VELO-SC-INOP-010

Whitelisted NFTS in Voter can vote() during the voting blackout period. Following sequence of events
is possible:

• Root chain at Epoch E: Alice votes on a leaf gauge deployed on chain C1

• Root chain at the last moment of Epoch E+1: Alice votes on another leaf gauge on chain C2

• Leaf chain C2 at Epoch E+1: The deposit message from the vote for the gauge on chain C2 is
processed

• Leaf chain C1 at Epoch E+2: The withdrawal message from the vote for the gauge on chain C1 is
processed

The order of DEPOSIT and WITHDRAW messages is not guaranteed between leaf chains. If this
situation arises, Alice will be able to claim rewards for epoch E+1 on both C1 and C2 chains.

Risk Accepted:

Velodrome acknowledges the risk and accepts it as is.

7.7 LeafGauge._claimFees() Return Values
Are Never Used
Informational Version 1 Acknowledged

CS-VELO-SC-INOP-011

In LeafGauge._claimFees(), the return value is not used by
LeafGauge.notifyRewardAmount() - the only place where this it is called.

Acknowledged:

Velodrome acknowledges the issue but does not plan to change the code.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bribes Can Be Added After Voting Is Over
Note Version 1

Voting is only available 1 hour into the epoch and closes 1 hour before the epoch ends. This is cooldown
period serves as buffer to ensure that Withdrawal and Deposit actions has been finalized on the leaf
chain. However, bribes can be added at any time to a BribeVotingReward contract using
notifyRewardAmount(). Users will not be able to react to these bribes after the voting period is over.
Distributing bribes with significant time left in the epoch is encouraged to allow users to react to the
bribes.

8.2 Bridging From Leaves
Note Version 1

When bridging from the Root chain to a Leaf, the target chain ID is translated into the corresponding
Hyperlane domain ID.

However, when bridging from a Leaf, no such translation occurs. Currently, the only whitelisted chain is
the Root chain, which does not require translation. If a new whitelisted chain were added that does
require translation, bridging from a Leaf to this chain would fail.

8.3 ChainRegistry Contracts Can Be
Misconfigured
Note Version 1

If chain A can send messages to chain B, ChainRegistry contract on chain A must have chain B
registered by the owner. However, there is no guarantee that chain B has chain A registered in his
ChainRegistry contract. Thus, a situation can occur where A sends message to B but B cannot send
back to A.

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Velodrome V2 Core Components
	2.2.2 Superchain Protocol Components
	2.2.3 Important Call Paths
	2.2.4 Deployment
	2.2.5 VERSION 2
	2.2.6 VERSION 3
	2.2.7 VERSION 4
	2.2.8 VERSION 6
	2.2.9 VERSION 7

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Reentrancy Due to InterchainGasPaymaster Calling tx.origin
	5.2 Relayer Can Prevent Tokens From Being Deposited in the Escrow
	5.3 Sequencer Downtime Over Epoch Boundary
	5.4 XERC20 Rate Limit Can Prevent Bridging of Funds

	6 Resolved Findings
	6.1 Voting Power Can Be Temporarily Artificially Inflated
	6.2 RootMessageBridge.sendMessage() Reverts if InterchainGasPaymaster Is Used
	6.3 Chain ID Must Be Mapped
	6.4 Voting Period in Epochs Can Be Bypassed by Using poke()
	6.5 Invalid Comparison of Domain With Chain ID
	6.6 Metadata Misuse in Bridges
	6.7 Killing and Reviving Leaf-Chain Gauges
	6.8 deployXERC20WithLockbox() in XERC20Factory Can Be Frontrun
	6.9 Gas Limit Discrepancy
	6.10 Arbitrary Address Can Be Revived as a Gauge
	6.11 Missing chainId Check in TokenBridge.handle()
	6.12 Specification Inaccuracy
	6.13 Usage of Both transferFrom() and safeTransferFrom()
	6.14 XERC20 Hardcoded 18 Decimals
	6.15 assert Statement in XERC20Factory Is Redundant

	7 Informational
	7.1 Gas Savings
	7.2 Locked Funds
	7.3 Missing Sanity Checks
	7.4 SentMessage Event Inaccurately Reflects the Fee Paid
	7.5 Potential Reentrancy Due to InterchainGasPaymaster Calling tx.origin
	7.6 Whitelisted NFTs Can Double Voting Power
	7.7 LeafGauge._claimFees() Return Values Are Never Used

	8 Notes
	8.1 Bribes Can Be Added After Voting Is Over
	8.2 Bridging From Leaves
	8.3 ChainRegistry Contracts Can Be Misconfigured

