PUBLIC

Code Assessment

of the Superchain Interoperability

Smart Contracts

20 May 2025

Produced for

@ velodrome

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG

18
19
20
23
32
35

https://chainsecurity.com

1 Executive Summary

Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Superchain Interoperability
according to Scope to support you in forming an opinion on their security risks.

Velodrome implements an expansion of Velodrome AMM system to Superchain. With this expansion, the
VELOrewards and incentives become available on chains beyond Optimism with the help of Hyperlane.

The most critical subjects covered in our audit are multi-chain state consistency, functional correctness,
Hyperlane integration, and frontrunning resistance.

The mechanisms ensuring consistent state across chains are robust and deliver a high level of security.
The functional correctness is high as issues such as Voting period in epochs can be bypassed by using
poke() have been resolved. Similarly, the integration with Hyperlane's bridging mechanism was found to
be correct after issues such as Metadata Misuse in Bridges were resolved.

In the second version of the codebase, the mechanism enforcing the ordering of specific types of
messages (DEPOSIT and WITHDRAW) was relaxed. This could lead the state of some contracts to be
temporarily inconsistent which would lead to accounting issues (Voting power can be temporarily
artificially inflated). The issue has been addressed, but it should be noted that the system relies heavily
on the assumption that messages from the root to the leaf will be processed within 1 hour.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

|

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Superchain Interoperability repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note

1 | 7 October 2024 45bfd414892adabd95103669345418d4080fb4bc Initial Version

2 | 5 November 2024 | 2daa9e303cad0c907da7dbfadf4d0fflbbd18aa0 Fixes

3 | 6 November 2024 | fa572a3c5b0828333cbcf74797848b9d90300e47 First report

4 | 5 February 2025 5d3f5a87596043b9a6eb4d34399a012elcfeb9d3 Gas router, domains
5 | 20 February 2025 | bff89f808e3d33bb3782e5228d6h94aaaf3a4d3ff Second report

6 | 20 April 2025 79a3145441b94b4c38de5¢274026d5396db680ab | Superwap Router

7 | 16 May 2025 cl5a81elf9faffb721563826b359b05ee78afb84 Fixes

For the solidity smart contracts, the compiler version 0. 8. 27 was chosen.

This review assumes that the src/root contracts will be deployed to Optimism mainnet chain. Other
contracts are assumed to be deployed on EVM equivalent chains with Hyperlane bridge support. Prior to
deploying to any Leaf network, it is assumed that compatibility tests will be performed.

The following contracts in the folder src/ are in the scope of the review:

bri dge:
ext ensi ons:
hyper| ane:
ModeLeaf HLMessageModul e. sol
ModelLeaf MessageBri dge. sol
ModeTokenBri dge. sol
hyper| ane:

Leaf HLMessageModul e. sol

Chai nRegi stry. sol

Cr ossChai nRegi stry. sol
Leaf MessageBri dge. sol
TokenBri dge. sol

ext ensi ons:
ModeFeeShari ng. sol

gauges:

ext ensi ons:
MbdelLeaf Gauge. sol

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

ModelLeaf GaugeFact ory. sol

Leaf Gauge. sol
Leaf GaugeFact ory. sol

l'ibraries:
rateLimts:
Rat eLi m t edM dpoi ntLi brary. sol
Rat eLi mi t M dpoi nt ConmonLi brary. sol

Conmmands. sol

Creat eXLi brary. sol
GasLim ts. sol

Vel odr oneTi neLi brary. sol

root :
bri dge:
hyper | ane:
Root HLMessageModul e. sol
Root MessageBri dge. sol

enmer gencyCounci | :
Emer gencyCounci | . sol

gauges:
Root Gauge. sol
Root GaugeFact ory. sol

pool s:
Root Pool . sol
Root Pool Fact ory. sol

rewar ds:
Root | ncenti veVot i ngRewar d. sol
Root FeesVot i ngRewar d. sol
Root Vot i ngRewar dsFact ory. sol

vot er:
ext ensi ons:
ModelLeaf Vot er . sol
Leaf Vot er . sol

xer c20:
MntLimts. sol
XERC20. sol

XERC20Fact ory. sol
XERC20Lockbox. sol

Note that the scope represents the files in (Version 3). The project layout has changed since (Version 1),
In (Version 4), the scope was updated as follows:

Added contracts:

bri dge:
BaseTokenBri dge. sol

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

Leaf Escr owTokenBri dge. sol
Leaf TokenBri dge. sol
Leaf Restri ct edTokenBri dge. sol

root :
bri dge:
hyper | ane:
GasRout er . sol
Paymast er . sol
Paymast er Vaul t . sol
Root Escr owTokenBri dge. sol
Root TokenBri dge. sol
Root Restri ct edTokenBri dge. sol

xerc20:
ext ensi ons:
Restri ct edXERC20. sol
Restri ct edXERC20Fact ory. sol

Removed contracts:

bri dge:
TokenBri dge. sol

Renamed contracts:

bri dge:
ext ensi ons:
ModeTokenBri dge. sol into ModelLeaf Escr owTokenBri dge. so

In (Version 6), only the changes made to the following scope was reviewed:

bri dge:
BaseTokenBri dge. sol
Donai nRegi stry. sol
Leaf Escr owTokenBri dge. sol
Leaf TokenBri dge. sol

root :
bri dge:
Root Escr owTokenBri dge. sol
Root TokenBri dge. sol

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. Namely, third-party
libraries and integrations, such as OpenZeppelin and Hyperlane, are explicitly out of the scope of this
review. They are assumed to be secure and conform to their specification. Hyperlane can make use of
user-defined hooks. These are assumed to be implemented correctly and not expose the system in
scope to additional threats. In this report, we assume the previous version of Velodrome is safe, and the
review is focused on the interoperability of the superchain contracts.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The previous version of the protocol was taken at commit hash:
eel5bd1e63d3b33ce8d179f 73bca7390812bd99b which is v2.1.

Configurable parameters of the system such, as gas limits, are out of scope and assumed to be chosen
correctly by the system admins. Admin actions are assumed to not expose the system to potential
security threats.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome Superchain is an expansion of existing Velodrome V2 AMM protocol capabilities.

In Velodrome V2, liquidity pools for asset pairs are created on Optimism mainnet. Liquidity providers can
deposit assets into these pools and get LP tokens in return. These LP tokens can be used to redeem the
deposited assets and a share of the trading fees generated by the AMM protocol. LP tokens can be
staked in Gauge contract to earn part of weekly VELO emissions. Each week is called an epoch and the
amount of VELO emissions is distributed based on the number of votes a gauge receives. VELO tokens
can be locked in Vot i ngEscr ow contract in exchange for veVELO EIP-721 tokens. Each veVELOtoken
has a voting power that can be used to steer which gauges corresponding to certain pools receive VELO
distributions for the following week. In return for controlling the VELO distributes, these voters earn the
fees for those pools from the prior epoch, as well as any incentives that were deposited by users.

Velodrome Superchain extends the capabilities of Velodrome V2 to support reward distribution, voting
and bribes across Optimism Superchain network.

2.2.1 Velodrome V2 Core Components

Velodrome V2 protocol, deployed on Optimism, comprises the following core components:

* Pools: These could be constant product AMMSs similar to UniswapV2, with a different fee for
stable and volatile pairs, or concentrated liquidity pools similar to UniswapV3. For constant
product AMMs, LPs deposit the two liquidity tokens and mint some LP tokens. For the
concentrated liquidity ones, they mint an NFT.

 PoolFactory: It is a factory contract that deploys pools. It is also responsible for storing the fee
that pools should charge for swapping.

» Gauges: LP tokens can be staked here to earn VELO emission rewards while relinquishing the
earned LP fees.

* VotingEscrow: VELO holders can lock tokens and earn a veVELONFT in return. The lock period
defines how much voting power the veVELOtoken will have.
Conversion formula is: veVELO voting power = locked VELO amount - maXUOCk4p;;fi4yearS).

* Voter: the contract that handles votes, emission distribution and creation of gauges, voting
rewards and bribes contracts.

* BribeVotingReward: It stores the bribes for a specific gauge. Anyone can deposit an amount on
any whitelisted token as a bribe. Users who voted for this particular gauge in Vot er can claim
these rewards.

» FeeVotingReward: It stores the claimed trading fees of a pool. veVELO voters can claim these
rewards.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 8

https://docs.optimism.io/stack/explainer
https://chainsecurity.com

2.2.2 Superchain Protocol Components

Velodrome Superchain effectively makes the V2 system multi-chain, by bridging the VELO distribution,
voting and bribes across Optimism Superchain network. Optimism mainnet is considered as the Root
chain, and other chains are considered as Leaf chains.

Each Leaf chain will have its own set of core components, similar to Velodrome V2 core components.
However, the Leaf pools and gauges will be replicated on Root chain. This way Root chain will have a
complete view of the state of all the pools and gauges across all chains and act as a synchronization
point.

Leaf specific components are:
* Pool - Liquidity pool for an asset pair.
* Pool Fact ory - Factory contract for creating pools.

 Leaf Gauge - Staking contract for LP tokens. It receives x VELOrewards from the Root chain and LP
stakers can claim them.

» Leaf GaugeFact ory - Factory contract for creating Leaf Gauge contracts.

* FeesVot i ngRewar d - Contract that receives trading fees for staked LP tokens and distributes them
to the veVELOVvoters.

* Bri beVoti ngRewar d - Contract that receives and distributes extraordinary incentive rewards to
the veVELOVvoters.

Vot i ngRewardsFactory - Factory contract for creating FeesVotingReward and
Bri beVot i ngRewar d contracts.

» Leaf HLMessageModul e - Contract for receiving messages sent from Root via Hyperlane.

» Leaf MessageBri dge - Contract that keeps track of the module that handles messages from the
Root chain. Assumed to be Leaf H.MessageModul e for this assessment.

« Leaf Vot er - Contract for creating, killing and reviving gauges on the Leaf chain, whitelisting
tokens, claiming rewards from the Leaf Gauge contracts

* XERC20 - ERC20 token that represents VELOon the Leaf chains. It is an ERC20 token that supports
token transfers between chains.

Root chain contracts:
* Root Pool - Contract that mirrors the Pool contract on the Leaf chain. Does not support swaps or
liquidity deposits.
* Root Pool Fact ory - Factory contract for creating Root Pool contracts. It has the same address as
the Pool Fact ory contract on the Leaf chain.

* Root Gauge - Root chain size Leaf Gauge contract. It has same address as Leaf Gauge on the Leaf
chain and forwards reward notification messages to the corresponding Leaf Gauge contract using
the Hyperlane protocol. LP stakers cannot claim VELOrewards from this contract.

* Root GaugeFact ory - Factory contract for creating Root Gauge contracts. It has the same address
as the Leaf GaugeFact or y contract on the Leaf chain.

* Root FeesVot i ngRewar d - Root chain size FeesVot i ngRewar d contract. Forwards calls to the
corresponding Leaf FeesVot i ngRewar d contract.

* Root Bri beVot i ngRewar d - Root chain size Br i beVot i ngRewar d contract. Forwards calls to the
corresponding Leaf Br i beVot i ngRewar d contract.

* Root Vot i ngRewar dsFact ory - Factory contract for creating Root FeesVoti ngReward and
Root Bri beVot i ngRewar d contracts. It has the same address as the Vot i ngRewar dsFact ory
contract on the Leaf chain.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 9

https://docs.optimism.io/stack/explainer
https://www.xerc20.com/
https://chainsecurity.com

* Root HLMessageModul e - Contract for sending messages to Leaf chain via Hyperlane. Forwards
messages to the corresponding Leaf HLMessageMbdul e contract.

* Root MessageBri dge - Contract that keeps track of the module that handles outgoing messages.
Assumed to be Root HLMessageModul e for this assessment.

* Vot er - Existing Velodrome V2 Voter contract.
* XERC20 - cross-chain VELOvariant, minted by XERC20Lockbox
* XERC20Lockbox - Contract that holds wrapped VELOtokens on the Root chain
« Emer gencyCounci | - Ownable contract that can kill or revive both Velodrome V2 and Superchain
Gauges.
RootMessageBridge and LeafMessageBridge with Message Modules

Root MessageBri dge with Root HLMessageModul e is deployed on the Root chain and handles
dispatching messages to the Leaf chain. Leaf MessageBri dge with Leaf HLMessageModul e are
deployed on the Leaf chain and handle incoming messages from the Root chain. Communication is one
way, from the Root to the Leaf chain. Root MessageBri dge supports nine message commands, each
designed to manage operations on the Leaf chain effectively:

* DEPCSI T - Triggered when Vot er . vot e() is called on the Root chain. It increases the user's
voting balance in FeesVot i ngRewar ds and Bri beVot i ngRewar ds of the target Leaf Gauge.

« W THDRAW - Triggered when Vot er.reset() is called on the Root chain or as a cleanup
procedure at the start of Voter.votes(). It lowers the users voting balance in
FeesVot i ngRewar ds and Bri beVot i ngRewar ds of the target Leaf Gauge.

* NOTI FY - Triggered when Vot er . di stri but e() is called on the Root chain. It notifies the gauge
about the rewards available for claiming.

« NOTI FY_W THOUT_CLAI M- Notify the gauge about the rewards without claiming Pool trading fees.

e GET_I NCENTI VES - Claim bribes from Leaf chain Br i beVot i ngRewar ds contract.

* GET_FEES - Claim fees from the Leaf FeeVot i ngRewar ds contract.

* CREATE_GAUGE - Create a new Leaf Gauge on the Leaf chain.

* KI LL_GAUGE - Kills a Leaf Gauge. Can only be initiated by Ener gencyCounci | .

* REVI VE_GAUGE - Revives a Leaf Gauge. Can only be initiated by Emer gencyCounci | .
Each DEPCSI T and W THDRAWcommand for a specific Leaf chain includes a nonce. This nonce makes
incoming DEPGCSI T and W THDRAWmMessages on the Leaf chain to be processed in order. This prevents

situations, where the sum of user votes on Leaf chains temporarily exceeds the Root chain voting power.
Note that the use of nonces was abandoned in the next iterations of the codebase.

XERC20

An XERC20 token is an ownable, mintable/burnable ERC20 token. Used to wrap VELO into XVELQO. On
Root chain VELO tokens are locked in XERC20Lockbox and XERC20 tokens are minted. An owner can
assign a cap to any bri dge address, that would enable it to mint/burn XERC20 tokens. The cap/2 value
is the midpoint of the buffer. Buffer value decreases or increases linearly over time until the midpoint is
reached. When XERC20 tokens are minted buffer is decreased by the amount minted. When XERC20
tokens are burned buffer is increased by the amount burned. Transaction is reverted if the buffer is below
zero or above the cap.

In addition to the standard XERC20 interface, mint and burn that were already discussed, the contract
exposes the following interface:

e set Buf f er Cap() : the owner of the contract sets a new non-zero buffer cap for an address
with a buffer cap already specified. The cap should be above 1_000e18.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 10

https://github.com/velodrome-finance/contracts?tab=readme-ov-file#protocol-mechanics-contracts
https://chainsecurity.com

e set Rat eLi mi t Per Second() : the owner of the contract sets a new rate limit for an already
registered address. The rate limit cannot exceed a 25_000e18.

e addBri dge() : the owner instantiates the buffer cap, and the rate limit for an address. The
available buffer is initialized at the midpoint.

erenoveBri dge(): the owner deletes all the data related to a buffer of a specific address
rendering the address unable to mint or burn.

Velodrome Superchain relies on Hyperlane protocol to transfer messages from Root to Leaf chains. A
separate pair of Bridge contract, one on Root and one on Leaf, need to be deployed to facilitate
cross-chain communication. For this assessment, two bridges are in scope. TokenMessageBri dge -
Root MessageBri dge. However, XERC20 can also be transferred through the optimism superchain
bridge. Tokens can be minted and burned by the bridge via the crosschainM nt() and
cr osschai nBur n respectively.

TokenBridge
TokenBri dge - Contract that facilitate XERC20 token transfers between chains.

» Sending tokens: TokenBri dge. sendToken() burns the specified amount of XERC20 tokens on
the origin chain, calls Hyperlane's Mai | box. di spat ch(), and ensures the transaction is routed to
the registered destination chain.

* Receiving Tokens: TokenBri dge. handl e() confirms that the message originates Hyperlane's
Mai | box and mints the specified amount of XERC20 tokens on the destination chain for the
designated recipient.

» Chai nRegi st ry functionality allows the owner to register and deregister chains that can be used
as destinations for cross-chain token transfers.

Note that both minting and burning are constrained by the XERC20 buffer cap.

2.2.3 Important Call Paths

Depositing on the Voting Rewards Contracts

1. veVELO holder calls Vot er . vot e() on the Root chain with list of pool and corresponding vote
weights.

2. Voter.vote() calls_reset (). This "undoes" the previous vote by calling _wi t hdraw() on the
Root FeesVot i ngRewar d and Root Br i beVot i ngRewar d contracts.
* Root Bri beVoti ngRewar d. _wi t hdraw() is a no-op.

* Root FeesVot i ngRewar d sends a W THDRAWmessage to the Leaf HLMessageModul e
on the Leaf chain.

e Leaf HLMessageModul e calls FeeVot i ngReward. _wi t hdraw() and
Bri beVoti ngReward. _wi t hdr aw() on the Leaf chain.

3. Vot er.vote() calls_deposit() onthe Fee and Bribe reward contracts for the new pools.
* Root FeesVot i ngRewar d sends a DEPCSI T message to the FeesVot i ngRewar d on
the Leaf chain.
* Root FeesVot i ngRewar d sends a DEPOSI T message to the Bri beVot i ngRewar d on
the Leaf chain.
Withdrawing from the Voting Rewards Contracts
1. veVELOholder calls Vot er . r eset () on the Root chain.

2. Voter.reset () calls_reset (). As described in the depositing flow above.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Getting Incentives/Bribes

1. veVELO holder calls Vot er. cl ai nBri bes() on the Root chain, specifying the list of reward
tokens to claim.

2. Voter.clainBribes() calls Root Bri beVot i ngRewar d. get Rewar d() .
Root Bri beVot i ngRewar d determines the recipient address of the rewards on the Leaf chain.

It is either the owner of veVELONFT or recipient registered in Root Vot i ngRewar dsFact ory

3. Root Bri beVoti ngRewar d. get Reward() sends a GET_| NCENTI VES message to the
Leaf HLMessageModul e on the Leaf chain via the Root MessageBri dge.

4. Leaf HLMessageMbdul e calls Bri beVot i ngRewar d. get Rewar ds() on the Leaf chain.

5. Bri beVot i ngRewar d. get Rewar ds() transfers the reward tokens to the recipient.

Getting Fees

1. A veVELO holder calls Vot er . cl ai nFees() on the Root chain, specifying the list of fee reward
tokens to claim.

2. Vot er. cl ai nfFees() invokes Root FeesVot i ngRewar d. get Rewar d() . The
Root FeesVot i ngRewar d contract determines the recipient address for the rewards on the Leaf
chain, which is either the owner of the veVELO NFT or a recipient registered in
Root Vot i ngRewar dsFact ory.

3. Root FeesVot i ngRewar d. get Rewar d() sends a CGET_FEES message to the
Leaf HLMessageMdul e on the Leaf chain via the Root MessageBr i dge.

4. Upon receiving the message, Leaf HLMessageMdul e calls
FeesVot i ngRewar d. get Rewar ds() on the Leaf chain.

5. FeesVot i ngRewar d. get Rewar ds() then transfers the fee reward tokens to the designated
recipient.

Pool and Gauge deployment flow

On Leaf chain, a Pool contract can be deployed using Pool Fact ory contract. To stake LP tokens of
this pool, a Vot er . cr eat eGauge() function needs to be called on the Root chain. This call results in
(effects only):

1. Deploys Root Bri besVot i ngRewar ds and Root FeesVot i ngRewar ds contracts on the Root
chain by calling Root Vot i ngRewar dsFact ory. cr eat eRewar ds() .

2. Deploys Root Gauge contract on the Root chain by calling
Root GaugeFact ory. cr eat eGauge() . This creates CREATE GAUGE message that is sent to the
Leaf chain via Hyperlane protocol.

On a Leaf chain, processing of the CREATE_GAUGE message results in:
1. Deployment of the Pool contract, if it is not already deployed.

2. Deployment of FeesVot i ngRewar ds and Bri beVot i ngRewar ds contracts on the Leaf chain by
calling Vot i ngRewar dsFact ory. cr eat eRewar ds() .

3. Deployment of Leaf Gauge contract on the Leaf chain by calling
Leaf GaugeFact ory. creat eGauge() .

As a result, the Gauge created on a Root chain is duplicated on a Leaf chain with the same address, but
with different functionality.

Notifying Rewards

1. Any wuser can initiate distribution of claimable rewards once per week by calling
Vot er . di st ri but e() on the Root chain.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.Voter.distribute() calls Mnter.updatePeriod() to mint new VELO tokens. The
Root Gauge is then approved to withdraw the minted VELO amount from Vot er. This action is
expected to occur once per epoch.

3. VELOtokens are locked on XERC20Lockbox and xVELOtokens are minted.

4. The Root MessageBr i dge burns the X VELO on Root chain and dispatches a NOTI FY message to
the Leaf HLMessageModul e on the Leaf chain.

5. Upon receiving the NOTI FY message, the Leaf HLMessageModul e mints xVELO on the Leaf
chain.

Leaf Gauge. not i f yRewar dAnount () is called.

6. Leaf Gauge. not i f yRewar dAnount () triggers the gauge to claim trading fees from the pool and
increases the reward rate of current epoch.

There exists an alternative process, where trading fees are not claimed from the pool. This starts when a
notify admin calls Root Gauge. not i f yRewar dW t hout d ai m() . In this case
NOTI FY_W THOUT _CLAI Mis bridged and Leaf Gauge. not i f yRewar dW t hout C ai () is called.

2.2.4 Deployment

Root Bri beVot i ngReward and its Leaf chain equivalent Bri beVoti ngReward are deployed by
respectively the Root Vot i ngRewar dFact or y and the Vot i ngRewar dsFact or y with new keyword to
create the contracts. The same factories also deploy the Root FeesVotingReward and
FeesVot i ngRewar d contracts in the same way. Therefore, the reward contracts will be deployed on
different addresses on the Root and the Leaf chains.

Root Pool Fact ory and Pool Fact ory will respectively deploy Root Pool and Pool on the Root and
Leaf chains. While the implementation of such pools will be deployed through CREATE3 as described
above, the pool factories will deploy a new pool through Cl ones. cl oneDet er mi ni sti c() . This will
ensure that the same pool is deployed on all chains. However, the pools will have different addresses on
Root and Leaf as the Root Pool Fact ory uses the chai ni d as part of the salt whereas Pool Fact ory
only uses t okenO and t okenl and st abl e as part of the salt.

Root GaugeFact ory and Leaf GaugeFactory both use CREATEX. depl oyCreate3() to deploy
respectively Root Gauge and Leaf Gauge. Both factories use the same salt parameters therefore the
Root gauge will be at the same address as the Leaf gauge on the Leaf chain.

Leaf Vot er will also be deployed with CREATES, but it is important to note that it will not have the same
address as the Vot er currently deployed on Optimism.

XERC20 and XERC20Lockbox will be deployed on the Root chain while XERC20 without a lockbox will be
deployed on Leaf chains.

2.2.5 VERSION 2

The following changes were introduced in the second version of the codebase:

» DEPCSI T and W THDRAWmMmMessages can only be emitted up until an hour before the end of the
epoch unless the tx.origin is the owner or an approved party to use the token. A
consequence of that is that after the end of the vote, users can only poke() themselves.

* Users cannot claim rewards in an epoch they already voted in.

» To mitigate any potential DoS issues, the use of nonces has been abandoned for DEPCSI T
and W THDRAWmMmessages. Instead, the message includes the bl ock. ti nest anp of the root
chain. This change relaxes the invariant where deposits and withdraw messages are received
in the same order they are emitted. In the current implementation, these messages can be
reordered under the following assumptions:

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

* When voting, bridging of the deposit and the withdraw for a t okenl d will eventually be
processed before the epoch finishes. Therefore, even in the case of reordering the
state will eventually be consistent. It is important to note however, that the state can be
inconsistent during the processing of the messages e.g., two deposits might have
occurred without a withdrawal.

* Rewards are only requested for past epochs and requesting the leaf rewards can only
happen after the flip of an epoch where a specific t okenl d has voted. This guarantees
that both the withdraw and deposit messages will have already been processed.

» For Root HLMessageMbdul e and TokenBri dge, a custom hook is used when quoting or
dispatching a message. In the case of the TokenBri dge, users get refunded for the excessive
gas. It is currently only meant to be used for users (EOAS) to transfer tokens between chains.
This is why a t r ansf er primitive is used to refund users. It will likely not be the only way, nor
the final way for users to transfer tokens between chains.

» Some leaf contracts of the system have been extended to be able to receive rewards when
deployed on the Mode rollup.

2.2.6 VERSION 3

The following changes were introduced in the third version of the codebase:

» GET_FEES/ GET_I NCENTI VES is only allowed an hour after the start of a new epoch until one
hour before the epoch end. This is done to ensure that all deposit and withdrawal messages of
the previous epoch have been processed and that the state is consistent. This change heavily
relies on the following assumption: All messages should be processed within one hour of their
emission. If this assumption breaks the system might end up in an inconsistent state which
some users can benefit from.

* DEPCSI T and W THDRAWmMessages can now be sent to the leaf chain until the end of the epoch
by either any user using poke() or by whitelisted users using vot e() .

2.2.7 VERSION 4

The following changes were introduced in the fourth version of the codebase:

* A GasRout er is introduced to update the gas price of the commands instead of having them
hardcoded. It maintains a mapping between commands and gas limits. The GasRout er is only
used on the Root chain and its mapping is assumed to properly be populated.

* A mapping chainlD <-> hyperlane domain has been added to support Hyperlane
domains where chai nl D ! = donai n. This mapping is used only on the root chain, as it is
assumed that the leaf chains will only bridge to the root chain, where chai nl D == dommi n.

» When bridging XVELO from a leaf to the root chain, it is automatically redeemed into VELO and
sent to the recipient on the root chain.

* It is now possible to bridge and lock xVELO from a leaf chain in one transaction. The XxXVELO s
automatically redeemed for VELO and deposited in the Vot i ngEscr ow for a given t okenl d. If
the deposit fails, the VELOtoken is simply transferred to the provided recipient address.

» XOP Leaf Incentives: Velodrome wants to enable OP token to be wrapped in xOP and used with
restrictions on a leaf chain. Users should be able to claim xOP on a leaf chain, but its utility is
primarily intended to bridge it back to the root chain. Transfers on leaf chains are restricted to
limit the token's broader usage. The same lockbox mechanism is employed to wrap OP to xOP
as with xVELO (see Superchain interoperability report). xOP is bridged to a leaf chain using a
[Root] Restri ct edTokenBri dge. If the destination chain is a chain other than BASE, the
recipient should be a live gauge deployed on that chain. For BASE the recipient can be any

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 14

https://www.chainsecurity.com/security-audit/velodrome-superchain-interoperability
https://chainsecurity.com

2.2.8

In versio
bridge fo

* The

*The
Sup

address including a gauge. Note that for the BASE case it is not possible to enforce further
restrictions as the gauges on BASE are not known on the Root chain. In any case, if the
recipient address is a gauge, xOP is directed to the contract that escrows the bribes/incentives
after being minted for the bridge.

Transferring xOP is restricted on all leaf chains. Transfers can only originate from whitelisted
addresses. An address is whitelisted only if it has received funds from the token bridge. Minting
and burning the token is only restricted by the capped buffer mechanism already discussed
earlier. As the bridge can directly burn xOP, all users are able to bridge back xCOP to the root
chain as long as they're able to interact with the bridge. It is important to note that any entity can
mint or burn xOP should they be given a buffer. Such an entity could simulate transfers by
burning for one address and minting for another one.

As with xVELO, xOP is unwrapped upon receiving from the Root Rest ri ct edTokenBri dge.

Gas sponsoring: Velodrome enables gas sponsoring for the following two cases: 1) sending the
NOTI FY command from the root to the leaf chains during the first hour of each new epoch and
2) for all the messages for a set of whitelisted addresses without further restrictions. Users
(tx. origi n) are whitelisted in Root HLMessageModul e. Moreover, gas sponsoring is also
available for a set of whitelisted nsg. sender addresses on the Root TokenBri dge when
bridging x VELOfrom the root chain to a leaf chain. The whitelist is maintained in the Paymast er
contract which is inherited by the bridge contracts. The funds used for sponsoring are escrowed
in the Paymast er Vaul t . The owner of the vault can withdraw assets, while the vault manager
i.e., the Hyperlane module or the token bridge, can use the funds for sponsoring.

VERSION 6

n 6, several updates were introduced to support the Velodrome Superswaps router's use of the
r asset bridging on behalf of users:

Hyperlane version was upgraded to 5.12.0.

sendToken() function was overloaded to accept a refund address. This allows the Velodrome
erswaps router to specify a refund address when sending tokens through the bridge, as the

router cannot receive ETH transfers.

e Fee

refund calculations were removed, as Hyperlane handles refunds internally and credits the

specified refund address.

« To simplify chainIlD and Hyperlane domain conversions, the bridge now accepts a domain instead of
a chainID. This change shifts the responsibility to the user to provide the correct domain for the
destination chain.

2.2.9

In versio
made to

2.3

VERSION 7

n 7, only fixes for the issues found during the audit were introduced. No major changes were
the system.

Trust Model

General:

The system is assumed to be deployed on the Optimism mainnet and the Superchain network.

VELO:

VELOemissions are distributed weekly and Vot er . di st ri but e() is called once per week.

Create3:

The following contracts are assumed to be deployed on the same address across all chains with
CREATES3 where the address of the deployer is used in the salt:

S

Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

* Root Pool Fact ory and Pool Fact ory

* Root Pool and Pool implementation contracts. Proxies that use these implementations won't
have the same address.

* Leaf GaugeFact ory and Root GaugeFact ory

» Leaf Gauge and Root Gauge

* Leaf HLMessageModul e and Root HLMessageModul e

» Leaf MessageBri dge and Root MessageBri dge

» Leaf Escr owmessageBri dge and Root Escr owMessageBri dge
* Root Vot i ngRewar dFact ory and Vot i ngRewar dsFact ory

* XERC20Fact ory

* XERC20

» TokenBri dge

e Leaf Vot er

Roles:

Some functionality in the system is controlled by parties with elevated privileges:

e gover nor of the Vot er contract.

« owner of the Ener gencyCounci | contract.

* owner of Leaf MessageBri dge and Root MessageBr i dge contracts.

e owner of Leaf Escr owivessageBri dge and Root Escr owvessageBr i dge contracts.
« owner of Leaf HLMessageModul e contract.

» owner of XERC20 contract.

« owner of Chai nRegi stry, CrossChai nRegi stry and TokenBri dge.

All such parties are assumed to be trusted and act in a non-malicious way or configure the system in a
way that exposes it to threats.

Version 4:
For we extend the trust model as follows:

* We assume that the infrastructure for xOP is going to be properly deployed and parametrized.
* For gas sponsoring:

* The whitelist manager is assumed to properly configure the whitelist and the paymaster
vault.

* The whitelisted users are assumed to not try to drain the Paymast er Vaul t by executing
redundant transactions.
Tokens:

The system is expected to interact only with ERC-compliant tokens that are not malicious and present no
specific risks or unusual behaviors (e.g., rebasing, transfers a different amount than requested,
fee-on-transfer, double entry points, non-compliant interface, or hooks)

Hyperlane:
Hyperlane is out of scope for this assessment, however, the following assumptions are made:

» Hyperlane messages are assumed to be processed in less than 1 hour.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

* The hook and ISM contracts used by the different bridges are assumed to properly ensure the
security of the system, to validate the messages are genuine and cannot be replayed. If the
configured hooks or ISM contracts are compromised, the bridge can be exploited to drain funds, or
mint unbacked tokens.

» The non-mandatory hook used by the different token bridges is assumed to refund to the provided
address the part of nsg. val ue that is not used for fees.

» The different GAS LI M T[_LOCK] () constant functions value are assumed to be properly set to
match as close as possible, but not lower than the actual gas cost of the transactions needed to
relay the messages.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 4
ty g

* Reentrancy Due to InterchainGasPaymaster Calling tx.origin

* Relayer Can Prevent Tokens From Being Deposited in the Escrow
» Sequencer Downtime Over Epoch Boundary ()

+ XERC20 Rate Limit Can Prevent Bridging of Funds

5.1 Reentrancy Due to
| nt er chal nGasPaynmast er Callingtx.origin

(D) (Cow) (Version 6) ()

This issue extends the informational issue Potential reentrancy due to InterchainGasPaymaster calling
tx.origin reported in of the system with the new risk brought by the EVM Pectra hardfork.

The Hyperlane Mai | box might have | nt er chai nGasPaymnast er or other similar hooks as one of its
default hooks. The function payFor Gas() of Interchai nGasPaynmaster is triggered as a
post-dispatch hook.

CS-VELO-SC-INOP-020

function payFor Gas(
byt es32 nmessagel d,
ui nt 32 _desti nati onDonai n,
uint 256 gasLimt,
address _refundAddress
) public payable override {
ui nt 256 _requi r edPaynent guot eGasPaynent (
_destinationDomai n,

_gasLimt
JE
require(
nsg. val ue _requi redPaynent ,

"I GP: insufficient interchain gas payment"

@ Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

)

ui nt 256 _over paynent nsg. val ue - _requiredPaynent;
I (_overpaynent 0) {
requi re(_refundAddress address(0), "no refund address");

payabl e(_refundAddress). sendVal ue(_over paynent) ;

}

Since Root HLMessageModul e. _generat eGasMet adata() sets the _refundAddress to
t X. ori gi n, a third-party-controlled address, payFor Gas() might call t x. ori gi n with unbounded gas
if an overpayment has occurred.

Prior to the Pectra hardfork, this was not an issue as t x. ori gi n was always an EOA and could not
reenter the system. However, it is now possible for t x. ori gi n to have some code and reenter the
system in an unexpected way.

Risk accepted:

Velodrome understands and accepts this risk.

5.2 Relayer Can Prevent Tokens From Being
Deposited in the Escrow

(D) (Cow)(Version 6) (R
CS-VELO-SC-INOP-021

In the Root Escr owTokenBr i dge contract, if a message of type SEND TOKEN_AND _LOCK LENGTH is
received in the handl e() function, the token bridge attempts to deposit the underlying tokens into the
escrow contract.

else if (length Commands. SEND_TOKEN_AND_LOCK_LENGTH) {
(address recipient, uint256 anpunt, uint256 tokenld) _nessage. sendTokenAndLockPar ans() ;
| XERC20(xerc20) . mnt ({ _user: address(this), _amount: anount});

| ERC20(xer ¢20) . saf el ncreaseAl | owance({spender: address(lockbox), value: anount});

| ockbox. wi t hdraw({ _anmpbunt: anopunt});

er c20. saf el ncreaseAl | owance({spender: address(escrow), value: anount});

try escrow depositFor({_tokenld: tokenld, _value: anount}) {}

catch {
erc20. saf eDecr easeAl | owance({spender: address(escrow), requestedDecrease: anount});
erc20. safeTransfer({to: recipient, value: anmpunt});

}

A malicious relayer can force the inner call to the escrow contract to fail by providing a carefully chosen
gas limit. Although the inner call would run out of gas, given the 63/ 64 rule, the outer context might still
have enough gas to execute the remaining logic in the handl e() function, depending on the gas
consumption of the deposi t For () function.

This allows a malicious relayer to prevent handl e() from depositing tokens into the escrow contract,
causing the tokens to be sent back to the original recipient instead.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Risk accepted:

Velodrome understands and accepts this risk.

5.3 Sequencer Downtime Over Epoch Boundary
[Low] [Version 2][]
CS-VELO-SC-INOP-014

With the introduction of root timestamps for DEPCSI T and W THDRAWMmessages in of the code,
the system is exposed to a risk of sequencer downtime over an epoch boundary.

The blackout period at the end of an epoch and the distribution window period at the beginning of a new
epoch allow the leaf chains to receive all messages from the root chain for the epoch that just ended and
reach a consistent state after processing all of them.

However, due to sequencer downtime that lasts across the epoch boundary, the system can be exposed
to the reordering of messages belonging to different epochs. This can lead to an inconsistent checkpoint
state in the leaf gauge reward contract. Indeed, Rewar ds. sol relies on the assumption that deposit
timestamps are monotonically increasing across epochs. While, reordering for a single epoch is handled
correctly, receiving messages from epoch E and then E - 1 will create an additional checkpoint, breaking
the assumption that when a message from epoch E is received, no messages from previous will be
received later. Both the user's and supply checkpoint system can be affected. It is therefore crucial that
the gauges are killed before the epoch flip in case of sequencer downtime that can last across an epoch
boundary.

Acknowledged:

Velodrome acknowledges the risk and will update their incident response plan to include the above
scenario.

5.4 XERC20 Rate Limit Can Prevent Bridging of
Funds

(D (Cow) (Version 1) (ETEETED)

XERC20 implements a rate limit for bridges for minting and burning operations. The rate limits are defined
per bridge and thus can be different.

CS-VELO-SC-INOP-004

Situation can arise, where a TokenBr i dge has initiated a token bridging on a chain with high buffer cap.
This Situation can arise naturally or artificially, for example, by a malicious actor. However, the
destination bridge does not have enough buffer cap for the minting operation to succeed.

Choosing appropriate buffer cap is deciding a trade-off between security and usability.

Risk Accepted:

Velodrome accepts the risk.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

» Voting Power Can Be Temporarily Atrtificially Inflated
« RootMessageBridge.sendMessage() Reverts if InterchainGasPaymaster Is Used

(Medium)-Severity Findings 2

+ Chain ID Must Be Mapped
» Voting Period in Epochs Can Be Bypassed by Using poke()

(Low)-Severity Findings 4
« Invalid Comparison of Domain With Chain 1D
* Metadata Misuse in Bridges
+ Killing and Reviving Leaf-Chain Gauges
» deployXERC20WithLockbox() in XERC20Factory Can Be Frontrun

Informational Findings 7

* Gas Limit Discrepancy (SRS ui
* Arbitrary Address Can Be Revived as a Gauge (LRSSl

» Missing chainld Check in TokenBridge.handle()

» Specification Inaccuracy

» Usage of Both transferFrom() and safeTransferFrom()
+ XERC20 Hardcoded 18 Decimals

» assert Statement in XERC20Factory Is Redundant

6.1 Voting Power Can Be Temporarily Artificially
Inflated
(Seccurity | High W28 Code Corrected

CS-VELO-SC-INOP-015

In of the code, nonces for W THDRAWand DEPCSI T messages were removed and replaced by
timestamps. However, this introduces eventual consistency on the Leaf reward contract side as the order
of the messages is not guaranteed. GET_FEE and GET_BRI BES can only be called in the next epoch if
the user voted in the current epoch.

However, the following scenario is now possible:

« User pokes() atthe end of epoch E on a Leaf Gauge G1.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

« User claims rewards/bribes in epoch E+1 on G1.

« If the messages arrive at Leaf in the following order :

1. DEPCSI T on either epoch E or E+1
2. GET_FEES/ BRI BES on epoch E+1
3. W THDRAWonN epoch E+1

Then the user will have claimed rewards with inflated voting power. Note, that there is still a risk for the
user to lose the rewards if the reordering of the messages is:

1. W THDRAWon either epoch E or E+1

2. GET_FEES/ BRI BES on epoch E+1

3. DEPCSI T on epoch E+1

Normal users can perform this with poke() while whitelisted users can perform this with poke() and
vote().

While in the above scenario, the user can inflate its reward by using poke() themself and claim rewards
in the next epoch, it is also possible for a user that didn't vote in the epoch E to claim inflated rewards in
the following scenario:

» Alice pokes/votes at the end of epoch E
* Bob who hasn't voted in this epoch claims rewards at the end of epoch E.

« If the messages arrive at Leaf in the following order in epoch E + 1 :

1. Alice:WITHDRAW
2. Bob:CLAIM_FEES
3. Alice:DEPOSIT

Bob will be able to claim rewards with inflated voting power as Alice's DEPCSI T message will be
processed after Bob's CLAI M_FEES message.

However, Bob can also lose rewards if the messages are reordered as follows:
1. Alice:DEPOSIT
2. Bob:CLAIM_FEES
3. Alice:WITHDRAW

In this case, Alice's voting power and the total votes will be inflated temporarily, reducing Bob's
rewards.

Code corrected:

The code has been modified such that rewards cannot be claimed during the blackout period (the last
hour before the epoch flip) and during the distribution window (the first hour after the epoch flip). This
allows for enough time for the messages to be processed such that the reward contracts reach a
coherent state before rewards can be claimed.

(S: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.2 Root MessageBri dge. sendMessage()
Reverts if | nt er chai nGasPaynast er Is Used

Design | High (LZZZBY Code Corrected)

When Root MessageBri dge. sendMessage() is called, first the fee is queried using
Root HLMessageModul e. quot e(), then Root HLMessageModul e. sendMessage() is called to send
the message, with fee as msg.value.

CS-VELO-SC-INOP-001

This flow has two problems.

First, Root HLMessageMbdul e. quot e() will query quot eDi spat ch() without metadata. Default
I nt er chai nGasPaymast er hook will use default 50k gas limit to estimate the fee. However, during
Root HLMessageModul e. sendMessage() the gas metadata will be computed using
Root HLMessageModul e. _gener at eGasMet adat a() 50k gas is not enough, to fulfill any of the
GasLi m t s contract limits. Thus, it will lead to the Hyperlane IGP hook reverting as the nsg. val ue will
always be smaller than the required gasLi m t passed to when calling Mai | box. di spat ch() call.
Therefore, no message can be dispatched to the leaf chain.

Second, the _nessageBody used Root HLMessageMdul e. quote() will be modified in the
Root HLMessageModul e. sendMessage() if command <= Commands. W THDRAW For those two
commands (DEPOSIT and WITHDRAW), nonce is appended to the message body. We did not find any
Hyperlane hook at this moment that relies on the content or length of the message body, however,
modular nature of Hyperlane hooks might introduce such hook in the future.

Code corrected:

Changes were made to include the metadata in the gas quote. The nonce has been removed as part of
another change, therefore the second issue is no longer relevant.

6.3 Chain ID Must Be Mapped
(Correctness TSI \VIZTIED] Code Corrected)

As the Hyperlane's domains do not necessarily match the chain ID, a mapping must be used to ensure
the correctness of the data for the message being sent. In Root MessageBr i dge. sendMessage(),
_chai ni d is used directly as _desti nati onDormai n when requesting a quote. To cover the cases
where dormai n ! = chai nl D, the mapping of Root HLMessageModul e should be used to get the
correct domain.

CS-VELO-SC-INOP-016

Code corrected: Root HLMessageModul e. quot e() now converts the chainlD to domain ID.

6.4 Voting Period in Epochs Can Be Bypassed by

Using poke()
Design [CIZMDINZETTBY) Code Corrected)

CS-VELO-SC-INOP-002

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Due to synchronization between the Root chain and the leaf chain, voting is disabled 1 hour before the
end of the epoch and enable 1 hour into the epoch such that for example DEPOSI T messages emitted
from the root chain have time to be processed on the leaf destination chain.

Vot er . vot e() allows a user to reassign his voting weight and Vot er . poke() allows a use to revote
the same weights as before.

However, while Vot er . vot e() only allows whitelisted NFT to vote during the voting blackout period,
Vot er . poke() allows any user to vote during it. Any user can poke() any other user. Thus, users are
at risk of getting their rewards denied by malicious users who would poke() them near the end of the
epoch if their votes are cast on leaf gauges and the cross-chain messages are processed on the leaf
chain in the next epoch, but the withdrawals are processed in the current epoch.

Code corrected:

During the voting blackout period (1 hour prior to epoch flip, which occurs at 00:00 GMT time each
Thursday), only the owner or approved user for a given NFT will now be able to vot e() or poke() . This
prevents other users from being able to poke a user maliciously prior to epoch flip.

6.5 Invalid Comparison of Domain With Chain ID
7D (Low) (Version 6) (XS

In the Domai nRegi st ry contract, the owner can call the r egi st er Donai n function to register a new
Hyperlane domain. Functions inheriting from Domai nRegi stry use this mechanism to ensure that a
remote domain is registered before sending a message to it or receiving messages from it.

CS-VELO-SC-INOP-018

function registerDomai n(ui nt 32 _dormai n) external onl yOmer {
i f (_domain bl ock. chainid) revert InvalidDomain();
i f (_domains.contains({value: _domain})) revert AlreadyRegistered();
_donmi ns. add({val ue: _domain});
em t Domai nRegi stered({_domain: _domain});

}

As highlighted in the Hyperlane documentation, Hyperlane domains do not necessarily correspond to the
chain ID, even for EVM-compatible chains. For instance, the domain for RARI Chain is 1000012617,
whereas the actual chain ID is 1380012617. Consequently, the check _domai n == bl ock. chai ni d
will not always prevent the current chain's domain from being registered.

Code corrected:

The Domai nRegistry was updated and now compare the provided domain against
Mai | box(mai | box) .| ocal Dormai n() instead of bl ock. chai ni d.

6.6 Metadata Misuse in Bridges
(Correctness (XY AIRTRN)] Code Corrected)

In BaseTokenBri dge, the gener at eGasMet adat a() function is used to generate the metadata that
is passed to the Hyperlane Mailbox along with the message to be sent.

CS-VELO-SC-INOP-019

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

functi on _generat eGasMet adat a(address _hook, uint256 _value, address _refundAddress, bytes nenory _message)
i nternal
Vi ew
vi rtual
returns (bytes nmenory)

ui nt 256 gasLimt _hook addr ess(0) GAS _LIM T() | HookGasEst i mat or (_hook) . est i mat eSendTokenGas() ;
return Standar dHookMet adat a. f or mat Met adat a({
_msgVal ue: _val ue,
_gasLimt: gasLinit,
_refundAddress: _refundAddress,
_cust omvet adat a
B
}

Similarly, Leaf Escr owTokenBri dge and Root HLMessageMdul e respectively override and define
the _gener at eGasMet adat a() function in a comparable manner.

According to Hyperlane's documentation, the _nsgVal ue field of the standard metadata is expected to
represent the nsg. val ue that will be sent along with the message on the destination chain by the
relayer.

However, the metadata constructed and passed to Mai | box. di spat ch() in Leaf TokenBri dge,
Root TokenBri dge, and Root HLMessageModul e misuses this value. Instead of representing the
neg. val ue for the destination chain, it provides the fee being paid on the source chain as _nsgVal ue
(i.e., _msgVal ue is set to the nsg. val ue provided to di spat ch()).

«In Leaf TokenBri dge, the metadata includes nsg. val ue as the _val ue parameter. However,
neg. val ue is also used to pay the bridge's fee.

e Similarly, in both Root TokenBridge and Root HLMessageModul e, the metadata sets
_megVal ue = nsg. val ue if the transaction is not sponsored. If the transaction is sponsored,
_megVal ue is set to f ee, where f ee represents the bridge fee covered by the Paymast er Vaul t
for whitelisted senders.

Note that if the hooks being used by the bridges do not rely on the _nsgVal ue field of the metadata, this
issue will be ignored by the Hyperlane system when quoting and charging fees.

Code corrected:

The _gener at eGasMet adat a() functions were updated to hardcode the _nsgVal ue field to O as the
bridges are not expected to handle native token transfers.

6.7 Killing and Reviving Leaf-Chain Gauges
7D (Low) (Version 1) (CXESIZET)

Emer gencyCounci | . ki | | Root Gauge() kills RootGauge only via the call to Vot er. ki | | Gauge() .
Emer gencyCounci | . ki | | Leaf Gauge() attempts to kil first the RootGauge via
Voter.kill Gauge() and then the LeafGauge via a KILL_GAUGE message sent to the
Root MessageBr i dge. If the RootGauge is already killed, the Vot er . ki | | Gauge() call will revert with
GaugeAl readyKi I | ed error. This design prevents killing a gauge on the leaf chain if it was already
killed on the root chain.

CS-VELO-SC-INOP-003

The same holds for Emer gencyCounci | . revi veRoot Gauge() and
Emer gencyCounci | . revi veLeaf Gauge() .

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

The ki Il and r evi ve functions for root gauges now revert if called on a leaf gauge. The check is done
by checking for the presence of a chain id on the root contract.

6.8 depl oyXERC20W t hLockbox() in
XERC20Fact ory Can Be Frontrun
T (Low) (Version 1) AT

XERC20Fact ory. depl oyXERC20W t hLockbox() can be called by anyone. It deploys the
XERC20Lockbox and the XERC20 contract using cr eat e3 function. The salt does not depend on
_erc20 parameter. Therefore, front-runing with a non-VELO _erc20 parameter is possible. A
redeployment of all XERC20Fact or y contracts on all chains and all XERC20 contracts will be necessary
to fix this issue.

Code corrected:

The ERC20 token is now set in the constructor, which prevents the front-running from having an impact.

6.9 Gas Limit Discrepancy
[Informational] [Version 6]

The BaseTokenBri dge contract defines the GAS_LI M T() function as follows:

CS-VELO-SC-INOP-026

function GAS LIMT() public pure virtual returns (uint256) {
return 200_000;

}

The Root TokenBri dge contract inherits from BaseTokenBri dge but does not override the
GAS LI M T() function.

The Root EscrowTokenBri dge contract, which inherits from Root TokenBri dge, overrides the
GAS LI M T() function as follows:

function GAS LIMT() public pure override(BaseTokenBridge, |TokenBridge) returns (uint256) {
return 76_000;

}

However, since the Leaf Escr owTokenBri dge contract does not override the handl e() function
defined in Leaf TokenBri dge, messages processed by both Leaf Escr owTokenBri dge and
Leaf TokenBri dge should consume a comparable amount of gas.

Additionally, note that the Leaf Escr owTokenBr i dge contract overrides the GAS_LI M T() function to
return 190_000, whereas the Leaf TokenBri dge contract inherits a GAS LI M T() of 200_000 from
BaseTokenBri dge. This discrepancy suggests that messages processed by the Root TokenBri dge
may consume more gas than the Root Escr owTokenBr i dge, despite the code hinting the opposite.

Code corrected:

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

The Root Escr owTokenBri dge no longer overrides the GAS LIM T() function. Moreover, the
BaseTokenBri dge contract now defines the GAS_LI M T() function to return 76_000 gas. If a bridge
requires a higher wvalue, it wil need to override the function, which done by the
Leaf Escr owTokenBri dge with 190_000 gas.

6.10 Arbitrary Address Can Be Revived as a

Gauge
[Informational] [Version 1]

In Emer gencyCounci | , revi veRoot Gauge can be called on an arbitrary address that is not registered
as a gauge. Indeed, Voter.reviveGauge() will also not verify that the provided address is a
registered gauge and update the i sAl i ve mapping accordingly. This can lead to a situation where an
arbitrary address can be considered as an alive gauge from an external perspective.

CS-VELO-SC-INOP-006

This behavior differs from r evi veLeaf Gauge which will in Leaf Vot er check that the provided address
is indeed a registered gauge through the i sGauge mapping.

Code corrected:

Both r evi veRoot Gauge and r evi veLeaf Gauge now check that the provided address is a registered
gauge with Vot er . i sGauge() .

6.11 Missing chai nl d Check in
TokenBri dge. handl e()
[Informational] [Version 1]

In TokenBri dge. handl e() there is no verification that the cross-chain message originated from a
registered chain. Therefore, a small risk exists that a malicious actor manages to deploy a contract at the
same address as the TokenBri dge contract on a different chain which could then send a message to
the TokenBri dge contract on the main chain to mint x VELO tokens. However, this requires the attacker
to deploy a contract at a specific address which is highly unlikely.

CS-VELO-SC-INOP-017

Code corrected:

A check was added to ensure that only messages from registered chains are processed.

6.12 Specification Inaccuracy

(Informational] [Version 1] Specification Changed

In the specification file SPECI FI CATI ON. nd the following description is given for the format of
CGET_I NCENTI VES and GET_FEES messages :

CS-VELO-SC-INOP-008

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

#H#### Get I ncentives & Get Fees
Thi s payl oad consists of:

- 1 byte command

- 20 byte gauge address

- 32 byte recipient address

- 32 byte token id

- 1 byte tokens array |length

- 20 - 100 bytes of token addresses

However, the reci pi ent address is not 32 byte long but a 20 byte address. Furthermore, the
t oken addr esses are not 20-100 bytes long but can vary from 0 to 160 bytes (5 * 32) as elements of
an array that is encodedPacked are still padded according to the specification

Specification changed:

The specification have been updated to reflect the correct length of the recipient address and the token
addresses.

6.13 Usage of Both transfer Fron() and
saf eTransfer From)

(Informational] [Version 1]

CS-VELO-SC-INOP-009

Vot er. noti f yRewar dAmount () uses saf eTransfer From() with rewar dToken.
Voter.distribute() first, calls rewardToken with safeApprove() and then e.g.
Root Gauge. not i f yRewar dAnount () . Root Gauge. not i f yRewar dAnount () uses

transferFrom) with rewardToken. As the reward token is assumed to be VELO this is not
immediately an issue. However, the use of transfer Fron{() restricts which tokens can be used as
reward token.

Code corrected:

Code now uses safeTransferFrom() in Root Gauge. notifyRewardAmount() and
Root Gauge. _noti fy() instead oft ransf er Fron{).

6.14 XERC20 Hardcoded 18 Decimals
(Informational] [Version 1]

XERC20 decimals are fixed to 18. However, the XERC20Lockbox can be created and mint 1:1 any
arbitrary ERC20 token. XERC20Lockbox and XERC20Fact ory don't enforce that the decimals of the
wrapped ERC20 token are 18. It is therefore assumed that XERC20 is only used to wrap ERC20 tokens
with 18 decimals, such as VELO.

CS-VELO-SC-INOP-012

Specification changed:

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 30

https://docs.soliditylang.org/en/latest/abi-spec.html
https://chainsecurity.com

Velodrome acknowledges the issue and updated the specification in the XERC20Fact ory to make
support for 18 decimals explicit.

6.15 assert Statement in XERC20Fact ory Is
Redundant
[Informational] [Version 1]

In XERC20Fact ory. depl oyXERC20W t hLockbox(), the following assertion is performed after
depl oyCreat e3() has been invoked to deploy both the lockbox and the XERC20 contract:
assert (_XERC20 == expect edAddress);. As expect edAddr ess is computed using CREATEX
with the same parameters as in depl oyCr eat e3() , the assertion is redundant and can be removed.

CS-VELO-SC-INOP-013

Code corrected:
The assert statement has been removed.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Savings
(Informational) (Version 6)()

CS-VELO-SC-INOP-022

In the Dormai nRegi stry contract, both the regi st er Domai n and der egi st er Domai n functions
include logic to check whether a domain is already registered or not, reverting if the condition is met.

function registerDomai n(ui nt 32 _domai n) external onl yOmer {
if (_domain bl ock. chainid) revert InvalidDomain();
i f (_domai ns.contains({value: _domain})) revert AlreadyRegistered();
_donumi ns. add({val ue: _domain});
em t Domai nRegi stered({_domai n: _domain});

}

Since _domai ns. add() and _donmi ns. renove() already handle failure cases by returning false (e.g
add() return false the domain is already registered), the explicit cont ai ns() check could be omitted
and instead, the logic could rely on the return values of add() and r enove() to save the gas consumed
by the storage loads made in cont ai ns() .

Acknowledged:

Velodrome acknowledges this informational issue and decided not to apply the recommendation given
the low impact of the gas savings.

7.2 Locked Funds
[Informational] [Version 6][]

CS-VELO-SC-INOP-023

Funds can become locked in the various bridge contracts defined in the system, with no mechanism to
unlock them.

In the different TokenBr i dge contracts, the handl e() function is marked as payable. However, there is
no implemented method to withdraw native tokens from the contract.

Similarly, there is no function to recover ERC20 tokens that might be sent to the contract by mistake.

Acknowledged:

Velodrome acknowledges this informational issue.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

7.3 Missing Sanity Checks
[Informational] [Version 6][]

CS-VELO-SC-INOP-024

In BaseTokenBri dge. constructor (), the different address being provided as parameters are not
sanity checked. It could be useful to check that the addresses are not zero addresses.

Acknowledged:
Velodrome acknowledges this informational issue.

7.4 Sent Message Event Inaccurately Reflects the

Fee Paid
[Informational] [Version 6] []

CS-VELO-SC-INOP-025

In the Leaf TokenBri dge and Root TokenBr i dge contracts, the event SendMessage is emitted when
a message is sent.

Before (Version 6), this event displayed the exact fee paid for bridging the message. However, it now only
shows the message value provided. The actual fee paid might be smaller if a refund occurred in
Hyperlane.

Acknowledged:

Velodrome acknowledges this informational issue and added:

Hyper|l ane fees are not regularly updated, so this is unlikely to be a material change

7.5 Potential Reentrancy Due to
| nt er chali nGasPaynmast er Callingtx.origin

(Informational] [Version 1]

Hyperlane Mai | box might have | nterchai nGasPaynmaster as one of its default hooks.
I nt er chai nGasPaynast er. payFor Gas() is triggered as a post-dispatch hook.
Root HLMessageModul e. _gener at eGasMet adat a() sets the refundAddress to tx.origin -
3rd party controlled address. In | nt er chai nGasPaynast er . payFor Gas(), might call t x. origin
with unbounded gas if overpayment has occurred.

CS-VELO-SC-INOP-007

The refund should never happen in practice, as the Root MessageBri dge. sendMessage() aims at
transferring the exact amount of gas defined by the gasLi ni t from the user to hyperlane.

However, this case must be considered as a potential reentrancy vector.

Risk accepted:

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

Velodrome acknowledges the risk.

7.6 Whitelisted NFTs Can Double Voting Power
[Informational] [Version 1]

Whitelisted NFTS in Vot er can vot e() during the voting blackout period. Following sequence of events
is possible:

CS-VELO-SC-INOP-010

* Root chain at Epoch E: Alice votes on a leaf gauge deployed on chain C1
* Root chain at the last moment of Epoch E+1: Alice votes on another leaf gauge on chain C2

» Leaf chain C2 at Epoch E+1: The deposit message from the vote for the gauge on chain C2 is
processed

* Leaf chain C1 at Epoch E+2: The withdrawal message from the vote for the gauge on chain C1 is
processed

The order of DEPOSIT and WITHDRAW messages is not guaranteed between leaf chains. If this
situation arises, Alice will be able to claim rewards for epoch E+1 on both C1 and C2 chains.

Risk Accepted:

Velodrome acknowledges the risk and accepts it as is.

7.7 Leaf Gauge. cl al nfFees() Return Values

Are Never Used
(Informational) (Version 1)()

CS-VELO-SC-INOP-011

In Leaf Gauge. _cl ai nFees(), the return value is not used by
Leaf Gauge. noti f yRewar dAnount () - the only place where this it is called.

Acknowledged:

Velodrome acknowledges the issue but does not plan to change the code.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bribes Can Be Added After Voting Is Over

Voting is only available 1 hour into the epoch and closes 1 hour before the epoch ends. This is cooldown
period serves as buffer to ensure that Withdrawal and Deposit actions has been finalized on the leaf
chain. However, bribes can be added at any time to a BribeVoti ngReward contract using
not i f yRewar dAmount () . Users will not be able to react to these bribes after the voting period is over.
Distributing bribes with significant time left in the epoch is encouraged to allow users to react to the
bribes.

8.2 Bridging From Leaves

When bridging from the Root chain to a Leaf, the target chain ID is translated into the corresponding
Hyperlane domain ID.

However, when bridging from a Leaf, no such translation occurs. Currently, the only whitelisted chain is
the Root chain, which does not require translation. If a new whitelisted chain were added that does
require translation, bridging from a Leaf to this chain would fail.

8.3 ChainRegistry Contracts Can Be
Misconfigured

If chain A can send messages to chain B, Chai nRegi stry contract on chain A must have chain B
registered by the owner. However, there is no guarantee that chain B has chain A registered in his
Chai nRegi stry contract. Thus, a situation can occur where A sends message to B but B cannot send
back to A.

I:$: Velodrome - Superchain Interoperability - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Velodrome V2 Core Components
	2.2.2 Superchain Protocol Components
	2.2.3 Important Call Paths
	2.2.4 Deployment
	2.2.5 VERSION 2
	2.2.6 VERSION 3
	2.2.7 VERSION 4
	2.2.8 VERSION 6
	2.2.9 VERSION 7

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Reentrancy Due to InterchainGasPaymaster Calling tx.origin
	5.2 Relayer Can Prevent Tokens From Being Deposited in the Escrow
	5.3 Sequencer Downtime Over Epoch Boundary
	5.4 XERC20 Rate Limit Can Prevent Bridging of Funds

	6 Resolved Findings
	6.1 Voting Power Can Be Temporarily Artificially Inflated
	6.2 RootMessageBridge.sendMessage() Reverts if InterchainGasPaymaster Is Used
	6.3 Chain ID Must Be Mapped
	6.4 Voting Period in Epochs Can Be Bypassed by Using poke()
	6.5 Invalid Comparison of Domain With Chain ID
	6.6 Metadata Misuse in Bridges
	6.7 Killing and Reviving Leaf-Chain Gauges
	6.8 deployXERC20WithLockbox() in XERC20Factory Can Be Frontrun
	6.9 Gas Limit Discrepancy
	6.10 Arbitrary Address Can Be Revived as a Gauge
	6.11 Missing chainId Check in TokenBridge.handle()
	6.12 Specification Inaccuracy
	6.13 Usage of Both transferFrom() and safeTransferFrom()
	6.14 XERC20 Hardcoded 18 Decimals
	6.15 assert Statement in XERC20Factory Is Redundant

	7 Informational
	7.1 Gas Savings
	7.2 Locked Funds
	7.3 Missing Sanity Checks
	7.4 SentMessage Event Inaccurately Reflects the Fee Paid
	7.5 Potential Reentrancy Due to InterchainGasPaymaster Calling tx.origin
	7.6 Whitelisted NFTs Can Double Voting Power
	7.7 LeafGauge._claimFees() Return Values Are Never Used

	8 Notes
	8.1 Bribes Can Be Added After Voting Is Over
	8.2 Bridging From Leaves
	8.3 ChainRegistry Contracts Can Be Misconfigured

