

PUBLIC

Code Assessment

of the Slipstream Dynamic Fee

Smart Contracts

January 13, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 14

8 Notes 15

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Slipstream Dynamic Fee
according to Scope to support you in forming an opinion on their security risks.

Velodrome implements the Slipstream Dynamic Fee module. A fee module that integrates with the
Slipstream Concentrated Liquidity AMMs to provide the pools with dynamic fees which depend on market
volatility.

The most critical subjects covered in our audit are soundness of the design, safety of arithmetics, and
integration with concentrated liquidity oracles. Security regarding all aforementioned subjects is high.

In summary, we find that the codebase has a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code Corrected 1

Low -Severity Findings 3

• Code Corrected 3

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Slipstream Dynamic Fee repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V
Date Commit Hash Note

1 24 November
2024

797c70acd9989621f6f7566132c7e0bd03f94d4
c

Initial Version

2 12 December
2024

479f512de8c72b863168d5b46788d21618d4e5
9f

After Intermediate Report

For the solidity smart contracts, the compiler version 0.7.6 was chosen.

The following files are considered in scope for this assessment:

contracts/core/fees/CustomSwapFeeModule.sol
contracts/core/fees/CustomUnstakedFeeModule.sol
contracts/core/fees/DynamicSwapFeeModule.sol

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Namely, third-party
libraries are explicitly out of the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome offers a dynamic fee module for Velodrome Slipstream.

Velodrome Slipstream implements Concentrated Liquidity pools, which are a fork of Uniswap V3,
implementing extra logic for rewards distribution for staked liquidity and custom fees. The current audit
focuses on the integration of custom fees into the concentrated liquidity pool, and in particular reviews a
new dynamic fee module which sets the swap and flashloan fees of the CL pool depending on the current
market conditions.

The fee rate for swaps (and flashloans) is represented in the Slipstream Concentrated Liquidity pool
(CLPool) as a part-per-million amount. This amount represents the portion of the swap's input amount
that is payed as fee. Slipstream Concentrated Liquidity pools (CLPool) obtain the fee rate from the
Concentrated Liquidity pool factory (CLFactory). In the CLFactory, the swapFeeManager can set the

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

swapFeeModule, which is a contract that implements the getFee(address pool) method.
getFee() takes a pool address as input, and returns the current fee for that pool. In CLFactory, a
stipend of 200k gas is set when calling the swapFeeModule.getFee(), and the fee returned is capped
to 10%. In case the swapFeeModule is not set, or the call to the swapFeeModule reverts, the default
fee for the pool's tick spacing is returned, which is configured in the tickSpacingToFee mapping of
CLFactory.

Velodrome implements two Swap fee modules:

• CustomSwapFeeModule: allows the swapFeeManager to set a custom fee per pool.

• DynamicSwapFeeModule: returns a fee for the queried pool that depends on the observed volatility
in the pool.

2.2.1 CustomSwapFeeModule
The contract CustomSwapFeeModule is a simple contract that allows the swapFeeManager defined in
CLFactory to set custom fees for specific pools, through the setCustomFee() method. The fee has to
be in a range of 0 to 3%. To set a zero fee, the sentinel value 420 has to be passed. The reason is that a
value of 0 in the customFee mapping represents an unset custom fee for a pool. If a pool doesn't have a
custom fee set, the default value in the tickSpacingToFee mapping of CLFactory is used.

The custom fees are queried with the getFee(pool) method.

2.2.2 DynamicSwapFeeModule

Version 1

Version 2

The DynamicSwapFeeModule contract implements a getFee(pool) method that returns a fee that is
dependent on the volatility that is observed in the specified pool. The formula used in of the
code (then revised in : Changes in Version 2), for a given pool, is:

fT = min(fb + K|1 − i
itwap

|, fC)

where is the total fee, f_b is the base fee, that is the constant part of the fee that is independent of the
volatility, is a scaling factor that makes the dynamic fee more or less sensitive to volatility, i is the
current tick, is the time-weighted average tick. is the fee cap, the maximum fee that
DynamicSwapFeeModule will return for a given pool.

The time-weighted average is evaluated over a time frame of length secondsAgo, which is a global
variable shared by all pools. To know the time-weighted average tick of a pool, the observe() method
is used to obtain snapshots of the "cumulative" tick at secondsAgo seconds in the past, and at the
current time. The logic is the same as with Uniswap V3 oracles. The value returned by observe([t]) is
an integral of tick * dt at a given time t since the first operation in the pool. To obtain the average
tick value between times t1 and t2, observe([t1, t2]) returns the values (a1, a2). We can
take the difference and divide by the time delta to obtain the average tick: (a2 - a1)/(t2 - t1).

Parameters (baseFee), (scalingFactor), (feeCap) are configurable on a per pool basis. If
baseFee is not defined, the default value returned by tickSpacingToFee() of CLFactory is used. If
scalingFactor is not set, the default values defaultScalingFactor and defaultFeeCap are
used.

The parameters can be set by the swapFeeManager, defined in CLFactory. baseFee (per pool) has to
be less than 3e4 (3%), and a value of 420 is a sentinel value for a zero base fee (0 being reserved for
unset baseFee, i.e. defaulting to tickSpacingToFee). feeCap (per pool) and defaultFeeCap
(global) have to be smaller than 5%. scalingFactor (per pool) and defaultScalingFactor have to
be smaller than 1e18, and scalingFactor for a pool can only be set if feeCap has already been
configured.

The following setters are available to swapFeeManager:

• setCustomFee(): sets the baseFee for a pool.

• bulkUpdateFees(): allows setting the baseFee for multiple pools at once.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• setDefaultFeeCap(), setDefaultScalingFactor(): set the defaults.

• setFeeCap(): sets the feeCap for a pool.

• setScalingFactor(): sets the scalingFactor for a pool.

• resetDynamicFee(): clears the dynamic fee settings (feeCap and scalingFactor) of a pool.

• setSecondsAgo(): sets the global lookback time of ticks time-weighted average.

When setting the dynamic fee parameters for a given pool, three calls must be performed:

1. setCustomFee()

2. setFeeCap()

3. setScalingFactor()

Velodrome communicated that after deployment the defaultScalingFactor will be 0 and the
defaultFeeCap will be 50_000 such that only the base fee is used for a pool that has not been
configured with a dynamic fee. The base fee for a pool can be set in the constructor of the
DynamicSwapFeeModule contract or with setCustomeFee().

The swapFeeManager can registerDiscounted() addresses, which will benefit from a discount on
the fees. The discount value is set per address, and can be set to a value of up to 50%.
deregisterDiscounted() removes the discount for an address and is only callable by the
swapFeeManager.

2.2.3 CustomUnstakedFeeModule
The fees levied by a pool are distributed to Liquidity Providers and voters of the pool's gauge in the
Velodrome voting system. Liquidity providers that choose to stake their LP tokens in the pool's gauge
forfeit their portion of the fees, and those go to the gauge voters instead. LP providers that do not stake
their LP tokens receive the corresponding fees. However, a portion of the fees generated by the liquidity
of LP providers who do not stake (unstaked liquidity) is anyway directed to the gauge voters. This "tax",
aimed to incentivize staking, is called unstakedFee() in the CLPool codebase, and is queried by the
pool by calling the getUnstakedFee(address pool) method of the CLFactory. The factory in turn
queries the unstakedFeeModule through its getFee(address pool) method. The
unstakedFeeModule address can be configured by the unstakedFeeManager role. The factory
accepts a value of up to 100% for the unstaked fee, and otherwise defaults to defaultUnstakedFee,
which is configurable by the unstakedFeeManager to a value of less than 50%.

The contract CustomUnstakedFeeModule implements the getFee() method and allows the
unstakedFeeManager to set pool specific custom unstaked fees. Pools which are not configured
default to an unstaked fee of 10%, and the maximum value accepted by setCustomFee() is 50%. A fee
of 0 can be configured by setting the sentinel value 420, as 0 is reserved to signal a non-configured pool.

2.2.4 Changes in Version 2
Version 2In , the dynamic fee module has been updated to use a new formula for the fee calculation. The

new formula is:

fT = min(fb + K|i − itwap|, fC)

where is the total fee, f_b is the base fee, is a scaling factor, i is the current tick, is the
time-weighted average tick. is the fee cap, the maximum fee that DynamicSwapFeeModule will return
for a given pool.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Code CorrectedDynamic Fee Depends on the Price Value

Low -Severity Findings 3

• Code CorrectedDynamic Fee Is Ignored When Tick Is 0

• Code CorrectedMissing Checks in Constructor

• Code CorrectedMissing Event Emission in Constructor

6.1 Dynamic Fee Depends on the Price Value
Correctness Medium Version 1 Code Corrected

CS-VELODYNFEE-001

Version 1

The dynamic fee computation in DynamicSwapFeeModule is meant to depend on the price volatility.
From any price p, an increase of 0.01% in the price should result in the same increase in the fee.
However, the implementation in does not reflect this behavior as the dynamic fee depends on
the current price value.

For example, let's consider the following scenario:

1. Case 1:

We have the following values :

• twAvgTick = 1

• currentTick = 2

The dynamic fee is computed as follows:

|K ⋅ (1 − 2
1)| = = K

1. Case 2

We have the following values :

• twAvgTick = 69081

• currentTick = 69082

This corresponds to a price of 1000.

The dynamic fee is computed as follows:

|K ⋅ (1 − 69082
69081)| ≈ 0

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

In the first case, the dynamic fee is equal to K while in the second case, the dynamic fee is equal to 0
while the increase in price is 1 tick (0.01%) in both cases.

Code corrected:

The formula has been modified to use the difference in ticks, such that the fee depends only on the
change of price (difference in logarithms), and not on the magnitude of the price.

The new formula is:

f = K|tick − TWAVG(ticks)|

6.2 Dynamic Fee Is Ignored When Tick Is 0
Correctness Low Version 1 Code Corrected

CS-VELODYNFEE-003

Due to the nature of the dynamic fee computation, the twAvgTick value cannot be 0 as it would result in
a division by zero. In this case a dynamic fee of 0 is returned. This is not correct as it does not account for
the fact that the currentTick value could be larger or smaller than the twAvgTick value indicating
volatility in the price. Therefore, pools where tokens are traded at a price close to 1 can have a dynamic
fee of 0 even if the price is volatile.

Code corrected:

This issue has been fixed together with CS-VELODYNFEE-001, by modifying the formula for dynamic fee
computation.

6.3 Missing Checks in Constructor
Correctness Low Version 1 Code Corrected

CS-VELODYNFEE-004

In DynamicSwapFeeModule, the constructor does not verify that defaultScalingFactor is less or
equal to the MAX_SCALING_FACTOR and that defaultFeeCap is less or equal to the MAX_FEE_CAP.

Code corrected:

Checks have been added to the constructor to ensure that the values of defaultScalingFactor and
defaultFeeCap are within the expected bounds.

6.4 Missing Event Emission in Constructor
Correctness Low Version 1 Code Corrected

CS-VELODYNFEE-005

In DynamicSwapFeeModule, the constructor does not emit DefaultScalingFactorSet and
DefaultFeeCapSet events after setting the default scaling factor and default fee cap.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

Events are now emitted after setting the default scaling factor and default fee cap in the constructor of
DynamicSwapFeeModule.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Dynamic Fee Always Rounds Towards Zero
Informational Version 1 Acknowledged

CS-VELODYNFEE-007

In DynamicSwapFeeModule, the dynamic fee computation computes the time-weighted average tick in
the following way:

twAvgTick = int24((tickCumulatives[1] - tickCumulatives[0]) / _secondsAgo);

However, tickCumulatives are signed integers and the division operation will always round towards
zero. Thus, if the difference between tickCumulatives[1] and tickCumulatives[0] is negative,
the time-weighted average tick will be rounded up, towards zero while if the difference is positive, the
time-weighted average tick will be rounded down, towards zero. Since ticks represent logarithms of
prices, it amounts to rounding up if the price is below 1.0, and rounding down if the price is above 1.0.

The same applies to (scaledK - scaledK * currentTick / twAvgTick) / PRECISION with
currentTick being a signed integer.

Risk accepted:

Velodrome acknowledges the behavior with the following statement:

The quirk in division is noted but is not considered to significantly change the outcome of the fees
calculated.

7.2 Dynamic Fee Is Always Computed
Informational Version 1 Acknowledged

CS-VELODYNFEE-008

The specification state that :

The default parameters are also mutable. It is possible to set up the dynamic
 fee module such that it is only using the base fee.

While it is indeed possible to set up the dynamic fee module such that it is only using the base fee, this
requires setting the baseFee parameters and feeCap to the same value, and the dynamic fee will still
be computed every time from the oracle observations even though it is not used, resulting in useless gas
consumption.

Risk Accepted:

Velodrome acknowledges the issue with the following statement :

The gas usage by the function is low so this is accepted.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dynamic Fee Is 0 While the Observation
Cardinality Has Not Grown
Note Version 1

In DynamicSwapFeeModule._getDynamicFee(), the following check is performed:

if (observationCardinality < _secondsAgo / MIN_SECONDS_AGO) return 0;

This check ensures that the oracle's observation cardinality is large enough to contain observations from
_secondsAgo in case observation writes are happening every block. If the cardinality is not large
enough, the dynamic fee is 0.

When the pool is first created, the observation cardinality is 1. This means that the dynamic fee will be 0
until the observation cardinality has grown. However, the increase of cardinality of the ring buffer only
happens when the oracle is writing an observation in the last slot of the ring buffer. This means that an
update of the observation cardinality from n to m where n < m will be in the worst case only be reflected
after n blocks. For example, in the typical case where _secondsAgo == 3600 (1 hour),
observationCardinality is required to be 1800. If the cardinality was previously increased to 1799,
it is possible that 1799 observation writes are required before the dynamic fee becomes operative. This
might take 1 hour in the best case, if observation are written every single block.

8.2 Dynamic Fee Updates After the Swap
Note Version 1

Dynamic fees only update after a swap. This means that, in volatile market conditions characterized by
jumps in prices, the arbitrageurs will trade in the pool when the current tick is still close to the historical
one, and they will be able to perform large trades which significantly move the current tick toward the new
price while only paying for the base fee. In the extreme case where all the price evolution of a pool is
characterized by rare price jumps, the dynamic fees will not mitigate the losses of the Liquidity Providers.

Velodrome - Slipstream Dynamic Fee - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 CustomSwapFeeModule
	2.2.2 DynamicSwapFeeModule
	2.2.3 CustomUnstakedFeeModule
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Dynamic Fee Depends on the Price Value
	6.2 Dynamic Fee Is Ignored When Tick Is 0
	6.3 Missing Checks in Constructor
	6.4 Missing Event Emission in Constructor

	7 Informational
	7.1 Dynamic Fee Always Rounds Towards Zero
	7.2 Dynamic Fee Is Always Computed

	8 Notes
	8.1 Dynamic Fee Is 0 While the Observation Cardinality Has Not Grown
	8.2 Dynamic Fee Updates After the Swap

