PUBLIC

Code Assessment

of the Epoch Governor

Smart Contracts

January 13, 2025

Produced for

@ velodrome

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o b~ WDN P

Informational

@ Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG

10
11
13
19

https://chainsecurity.com

1 Executive Summary

Dear Velodrome team,

Thank you for trusting us to help Velodrome with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Epoch Governor according to
Scope to support you in forming an opinion on their security risks.

Velodrome implements two governance mechanisms to direct the emission rate of the VELO token. The
SimpleEpochGovernor allows a trusted EOA or MultiiSig to change the emission rate, and the
EpochGovernor implements a system where stakers of VELO in the Velodrome protocol can vote on how
to change the emission rate.

The most critical subjects covered in our audit are proposal execution correctness, proposal sanitization
during creation, and signature handling. Issues reported in the first version of the code were satisfactorily
addressed. Security regarding all aforementioned topics is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

Code Corrected

L]
Y Specification Changed
¥ Risk Accepted

|

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Epoch Governor repository based on
the documentation files. The table below indicates the code versions relevant to this report and when

they were received.

V | Date Commit Hash Note

1 | 25 November 2024 | a2elec9d1e720e7c79416cc19f393d2d31c337f2 Initial Version

2 | 13 December 2024 | bfd33ad4c8630be5e82a28b0f31820c6273944a5 Second version
3 | 20 December 2024 | e8e91ccf2fa90d29901576131060a0b0e3b5691b fixed voting start

For the solidity smart contracts, the compiler version 0. 8. 25 was chosen.

The following files are considered in scope for this assessment:

contract s/ gover nance/ EpochGover nor Count i ngFracti onal . sol
contract s/ gover nance/ Gover nor Conmrent abl e. sol

cont ract s/ gover nance/ Gover nor Proposal W ndow. sol

cont ract s/ gover nance/ Gover nor Si npl e. sol

cont ract s/ gover nance/ Gover nor Si npl eVot es. sol

contract s/ EpochGover nor. sol

contracts/ Si npl eEpochGover nor. sol

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. Namely, third-party
libraries are explicitly out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Velodrome offers a governance voting system that allows users to propose and vote on the tail emission
rate of the VELO token.

The Velodrome protocol operates in epoch, where each epoch is 1 week long. Each epoch, VELO tokens
are minted and distributed to LP stakers depending on the amount of votes each gauge received, and to
VELO stakers to compensate them against dilution. Emissions start initially at 15M tokens per epoch with
a decay rate of 1% per epoch. Once the emission rate reaches 6M tokens per epoch (after 92 epochs)
the weekly emissions enter a tail regime where they become a percentage of the token's total supply.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Initially this percentage is set to 30 basis points, however it can be increased by 1 bps, decreased by 1
bps, or left unchanged by a governance vote each epoch. The tail emission rate can't exceed 100 bps.

2.2.1 SimpleEpochGovernor

The Si npl eEpochGover nor contract provides a basic governance mechanism for the Velodrome
protocol. The contract allows the gover nor role, defined within the Vot er contract, to set Resul t () of
the tail emission rate update decision. The governor can then execute the decision using
execut eNudge() , which calls M nt er . nudge() to apply the result of the decision to the tail emission
rate of the VELO token. The M nt er calls back into Si npl eEpochGover nor. resul t () to query the
intended action.

The result of the decision can either be : Succeeded, Def eat ed or Expi red. Which respectively
correspond to increasing by 1 bps, decreasing by 1 bps, or leaving the tail emission rate unchanged.

2.2.2 EpochGovernor

The EpochGover nor contract offers a more advanced governance framework, utilizing a forked version
of OpenZeppelin governance. It allows users to propose and vote on the tail emission rate using their
veVELO tokens as voting power. Every epoch, a proposal for the emission rate update is created, voted,
and executed.

Users of Velodrome can lock their VELO tokens for a specific amount of time in the Vot i ngEscr ow
contract to receive a NFT whose balance represents the voting weight of the escrowed tokens. The
voting weight is calculated based on the amount of VELO tokens locked and the duration of the lock and
decays linearly over time, from a maximum of four years. An NFT is represented by at okenl d.

2.2.2.1 Proposal Creation

A proposal can be created by the owner of the EpochGover nor contract within the first 24 hours of the
epoch through pr opose() . If no proposal is made within this time, anyone can create a proposal until
the end of the epoch. A proposal consists of a list of _t ar get s to call with _val ues and _cal | dat as.
In this case, EpochGover nor. _propose() constrains these values to only allow the M nt er contract
as the single target and the nudge() function as calldata.

A proposal can only be created if another proposal with the same pr oposal | d is not already existing.
Since proposal I d is a function of the epoch in which the proposal is created, the amount of new
proposals is limited to one per epoch. A proposal always consists of three options to vote on: AGAI NST,
FOR and ABSTAI N.

2.2.2.2 Proposal States

A proposal can have multiple states in the system :
* Pending : The proposal has been created but the voting period has not yet started.
« Active : The proposal is open for voting.

» Succeeded : The proposal has passed with a majority vote of FOR, determined after the voting
period has ended.

» Defeated : The proposal has been rejected with a majority vote of AGAI NST, determined after the
voting period has ended.

» Expired : The proposal has been resolved with a majority vote of ABSTAI N, determined after the
voting period has ended.

» Executed : The proposal has been successfully executed.

» Cancelled : The proposal has been cancelled. This state is not reachable, as cancellations are not
implemented.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

* Queued : The proposal has been queued for execution. This state is not reachable as the queuing
mechanism is disabled.

2.2.2.3 Voting

Once a proposal is in the Active state, when the current timestamp is between the proposal snapshot
(exclusive) and the voting end (inclusive), users can vote on it. The voting power of a user is determined
by the amount of veVELO held by the veVELO NFT they own. A user can own multiple veVELO NFTSs, in
which case he can vote with each one of them. The voting power of a user is queried from the historical
balances of the voting escrow, at the timestamp defined as the "proposal snapshot", the time of the next
block after the proposal creation or 1 hour after the epoch start (whichever comes later). Only the owner
of the NFT at the snapshot time can vote with its assigned voting power, and since the shapshot is in the
past, the NFT can't be transferred and its voting power reused. A proposal is active from the next block
after the snapshot and remains active for the duration of the voting period.

Users can vote by directly calling the following functions in Si npl eGovernor : castVote(),
cast Vot eWt hReason(), cast Vot eW t hReasonsAndPar ans(), or by generating a signature that
can be executed by a third party using cast Vot eBySi g() or
cast Vot eW t hReasonAndPar ansBySi g() .

Votes can either be cast for a specific outcome, or fractional voting can be used. In fractional voting, the
user can specify how much of their voting weight each option should receive.

A r eason can be specified by the user when voting to provide additional context to the decision made.

2.2.2.4 Proposal Execution

After the voting period has ended, the proposal will have one for the three following states : Succeeded
representing an increase in tail emission rate, Def eat ed, representing a decrease, or Expired,
representing no change. However, if there is a tie between two majority outcomes, the proposal will be
marked as Expi r ed indicating that the tail emission rate will be left unchanged.

The proposal can be executed by anyone during the hour that follows the end of the voting period. If the
proposal is not executed between the voting period end and the epoch end, it is impossible to ever
execute it. Not executing the proposal will result in the tail emission rate remaining unchanged.

2.2.2.5 Contract Inheritance and Functionality
EpochGover nor inherits from the following contracts:

* Gover nor Proposal W ndow. Implements the logic to restrict proposal creation during the first
pr oposal W ndow hours of the epoch, after which any user can create a proposal if one has not
been created yet. By default, the pr oposal W ndow is set to 24 hours.

* Gover nor Conmrent abl e: Allows users holding a sufficient fraction of the voting power to
coment () on proposals. The required fraction is configurable by the contract owner through
set Conmrent Wi ght i ng(), with the default threshold being 0.0004% of the total veVELO supply.

» Gover nor Si npl eVot es: Retrieves the historical voting power of veNFTs owned by users at the
shapshot time.

» Gover nor Si npl e: A modified version of OpenZeppelin's Gover nor contract. Key modifications
include the removal of the cancel () function and the introduction of a t okenl d argument
representing a veNFT when casting a vote.

* EpochGover nor Count i ngFracti onal : Implements vote counting in _count Vot e(), allowing
users to assign voting power in different ways. Additionally, it implements the _sel ect W nner ()
logic to determine the outcome of a proposal.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3 Roles & Trust Model

EpochGover nor has an owner that can set the pr oposal W ndow parameter (limited to 24 hours max),
and the coment i ng\Wei ght i ng parameter. A malicious owner cannot tamper with the voting process
and result. Si npl eEpochGover nor is controlled by Vot er . gover nor () which is fully trusted.

It is assumed that:
« proposal creation happens before the last hour of an epoch
* proposals are executed before the end of the epoch.

e updat ePeri od() has already been called on M nt er for the current epoch before a proposal is
executed.

2.2.4 Changes in Version 2

The computation of the proposal | d has been modified such that the result is a hash of all proposal
parameters (target address, calldata and value) and the time of the end of voting for the current epoch.
On proposal creation, it is enforced that the proposal has a single target, equal to the M nt er, calldata
equal to the nudge() function selector, and a value of 0.

The signatures used to vote with cast Vot eBySi g() and cast Vot eW t hReasonAndPar anmsBy Si g()
have been maodified to include the t okenl d in the signed data.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

(EIT=D-Severity Findings 0
(CZD-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 5

« EpochGovernor Should Not Receive ETH or Other Tokens
« Voting Power Queried by comment() Could Bein Future(_)

5.1 EpochGovernor Should Not Receive ETH or
Other Tokens
(Design (VTR Risk Accepted)

EpochGover nor derives from Gover nor Si npl e which exposes a non reverting r ecei ve() function,
and methods onERC721Recei ved(), onERC1155Recei ved(), and onERC1155Bat chRecei ved()
which allow EpochGovernor to receive ETH, and ERC1155 and ERC721 tokens through the
saf eTr ansf er Fron() functions.

CS-VELOGOV-004

There is no way to transfer out ETH or tokens that have been received by EpochGover nor, so there is
no reason to expose functions to accept tokens.

Risk accepted:
Velodrome accepts the risk with the following statement:

"These changes will not prevent ERC20s from being transferred in. The risk for such events are low as
well, given that these contracts will mainly be interacted with through a UL."

5.2 Voting Power Queried by comment () Could

Be in Future
[Low] [Version 1][]

CS-VELOGOV-009

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The comment () method requires the proposal to be in the Pendi ng or Act i ve state. If the proposal is
in the Pendi ng state, the proposal snapshot is in the future or present, and the voting power queried
through _get Vot es() is not finalized yet. A user could use the voting power of a given t okenl d to
create a comment, and then transfer the t okenl d for its voting power to be reused by another user.

Since the only effect of commenting is event emission, there are no adverse consequences.

Acknowledged:
Velodrome acknowledges the issue with the following statement:

The voting power restriction’s primary use case is as a spam filter, so we acknowledge the risk. For
the EpochGover nor, it is unlikely to make a huge difference given that the maximum time between
proposal creation and the vote starting is less than an hour.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

(CL:0)-Severity Findings il
« Arbitrary Payload in execute()

(Medium)-Severity Findings 2

* Missing Checks in propose()
» Signature Does Not Include tokenld

(Low)-Severity Findings 5
» Incorrect supportsinterface() Result
« Vote Duration Is Two Seconds Too Long
« _countVote() Can Revert With Incorrect Error Message
« getVotes() Uses Past Timestamp With Current Owner @il RS ENFCE)
« votingPeriod() Returns Incorrect Value

Informational Findings 4

* Incorrect NatSpec for _castVote() il LR e EN-)

» Missing Events (SR En
* Unused Imports and Variables (SRSl

» Voting Escrow Public View Exposed Multiple Times

6.1 Arbitrary Payload in execut e()
(Security [High \ZZZZ2B Code Corrected)

The execute() method of EpochGover nor accepts _targets, values, and _call datas as
parameters, which are supposed the same as the one specified during proposal creation through
propose() . However, this is not enforced, and the execut e() arguments can be arbitrarily specified
by the untrusted caller.

CS-VELOGOV-001

Generally, the execut e() function of OpenZeppelin Governance module hashes all arguments to
produce the proposalld, so the proposalld is linked to the proposal payload. However,
EpochGover nor only hashes the timestamp of the vote end to obtain the proposal | d, so the
execut e() payload is not validated implicitly by the hashing function.

EpochGover nor is not expected to have special privileges in the overall Velodrome/Aerodrome systems
except for the nudge() function of Minter, so arbitrary calls are not expected to pose a critical threat.
However, a malicious caller controlling the payload of execut e() would be able to mark the proposal as
executed without calling M nt er . nudge() .

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Code corrected:

hashPr oposal () is no longer overridden in EpochCover nor . Therefore, the proposal parameters are
now taken into account when calculating the proposal hash. This ensures that the proposal can only be
executed with the parameters specified during proposal creation.

6.2 Missing Checks in propose()
7D (Viedium) (Version 1) (CXTXLIED)

The arguments of EpochGover nor. propose() can be misused in multiple ways to create invalid
proposals for which execution will fail:

CS-VELOGOV-002

* The _val ues array, which specifies the ETH values transferred with every call to _t ar get s, is not
enforced to only contain zero values. As a consequence, calls to M nt er . nudge() with a non-zero
value will fail because nudge() is non-payable, and EpochGover nor does not hold ETH.

e _cal | dat as[0] is enforced to start with the 4 bytes of the nudge() selector, but there is no bound
to the maximum length of the calldata. A malicious proposer creator can specify a very long calldata
string, such that the gas cost of calling execut e() becomes problematic.

Code corrected:

The propose() function has been modified to check that the _val ues array only contains zero values.
The function now also checks that the calldata only contains the 4 bytes of the nudge() selector.

6.3 Signature Does Not Include t okenl d

(D (Miedium) (Version 1) IR

The digest signed for methods cast Vot eBySi g() and cast Vot eW t hReasonAndPar ansBySi g()
does not include the _tokenl d argument. This means that a user's signature can be used with any
t okenl d owned by the user.

CS-VELOGOV-003

This could be exploited by a malicious actor to invalidate signatures of legitimate users:
1. Donate t okenl d with a dust amount of veVELO balance to victim.
2. Acquire signature of victim.

3. Use signature of victim to cast vote with dust t okenl d.

The risk is significantly mitigated by the sequencer being centralized on Optimism/Base and not having a
public mempool, where signatures could be acquired and front-run.

Code corrected:

The _t okenl d argument is now included in the digests signed for methods cast Vot eBySi g() and
cast Vot eW t hReasonAndPar ansBySi g() .

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.4 Incorrect supportslnterface() Result

(D (Low) (Version 1) (RIS

Method supportsinterface() of Governor Sinpl e returns true if argument _i nterfaceld is
equaltotype(l Governor).interfaceld ~ | QZGovernor. cancel . sel ector.

CS-VELOGOV-005

Since | Gover nor does not include the cancel () method, XORing | Gover nor. i nterfacel d with
cancel . sel ect or amounts to defining an i nt er f acel d that includes all methods of | Gover nor plus
cancel . However, cancel is not implemented in Gover nor Si npl e, so the i nt er f acel d should not
include it.

Code corrected:
support sl nt erface() has been modified to not include cancel . sel ect or inthei nt erfacel d.

6.5 Vote Duration Is Two Seconds Too Long

(Correctness JICTEEZTRY Code Corrected)

In EpochCGover nor. _propose(), the snapshot timestamp (pr oposal . vot eSt art) is computed by
adding vot i ngDel ay() tothe vot eSt art variable, so that it is at least two seconds in the future:

CS-VELOGOV-008

ui nt 256 voteStart Mat h. max({a: clock(), b: Vel odroneTi neLi brary. epochVoteStart ({tinestanp: block.tinmestanp})});
proposal . voteStart Saf eCast . t oUi nt 48({val ue: voteStart votingDel ay()});
proposal . vot eDur at i on Saf eCast . t oUi nt 32(epochVot eEnd voteStart);

proposal . vot eDur ati on is computed so that the voting should end exactly at epochVot eEnd.
However, in

proposal . vot eDurati on Saf eCast . t oUi nt 32(epochVot eEnd voteStart);

voteStart is used instead of proposal.voteStart. voteStart is 2 seconds less than
proposal . vot eSt art . As a result, proposals end at epochVot eEnd + 2.

Code corrected:

In (Version3) voteDuration in _propose() is now correctly computed as
epochVot eEnd - voteStart, andvoteStart is now equal to proposal . voteStart.

6.6 _count Vot e() Can Revert With Incorrect
Error Message

(Design (EDIUEETBY Code Corrected)

_count Vot e(), defined in EpochGovernor Counti ngFracti onal , reverts with error message
CGover nor Al r eadyCast Vot e if r emai ni ng\Wei ght is 0. However, r enai ni ng\Wei ght == 0 could
also mean that the user voting does not own the given _t okenl d, so that _t ot al Wi ght ==

CS-VELOGOV-010

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

In this case, the revert is not happening because the vote has already been cast, like the error message
would suggest, but because the user does not have voting power for the given _t okenl d.

Code corrected:

_cast Vot e() now reverts with error Gover nor Zer oVot i ngPower if the user has 0 voting weight (
they do not own the _t okenl d). The internal function _count Vot e() is no longer reached if the user
has 0 voting weight.

6.7 get Vot es() Uses Past Timestamp With
Current Owner

[Low] [Version 1) Specification Changed

External view method get Vot es(), defined in Gover nor Si npl eVot es should return the voting power
of _t okenl d at the given _t i mepoi nt . It is defined as follows:

CS-VELOGOV-006

function getVotes(uint256 _tokenld, uint256 _tinmepoint) external viewreturns (uint256) {
addr ess account ve. owmner O ({t okenl d: _tokenld});
return _getVotes(account, _tokenld, _tinmepoint, "");

}

If _timepoint is in the past, the statement account = ve.owner O (_t okenl d) is incorrect, as
owner O () returns the current owner, not the owner at _t i mepoi nt . Since the current owner and the
past owner could differ, the following _get Vot es(account, _tokenld, _tinepoint, "") could
incorrectly return 0, if in the past _t okenl d was owned by another account.

Specification changed:

The documentation for get Vot es() has been maodified to include information on expected behavior
when the user does not own the NFT. This function is currently only used for tests, and should not be
used by integrators unless this quirk in behavior is fully understood.

6.8 votingPeri od() Returns Incorrect Value

(Desigi J(ED|UZTBY Code Corrected

View method voti ngPeri od() is specified to be the time between vote start and vote end in
| Gover nor. sol :

CS-VELOGOV-007

In EpochGovernor it is implemented to return 1 week, however the voting time is at most
1 week - (2 hours and 2 seconds), since the voting starts at earliest 1 hour and 4 seconds after
the epoch start, and finishes (inclusive) 1 hour before the epoch end.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code corrected:

voti ngPeri od() has been modified to return the maximum possible length of time a vote can be
active.

6.9 Incorrect NatSpec for _cast Vot e()

[Informational] [Version 1] Specification Changed

The NatSpec of Si npl eGover nor. _cast Vot e() says:

CS-VELOGOV-011

““Internal vote casting mechanism Check that the vote is pending,

However, the function requires that the proposal is Act i ve, not Pendi ng.

Specification changed:

The documentation has been modified to reflect the correct behavior of the function.

6.10 Missing Events
[Informationalj [Version 1]

In Gover nor Conmrent abl e, event Set Corment Wei ghti ng is not emitted when the commenting
weight is initalized to 4000 in the (implicit) constructor.

CS-VELOGOV-013

In Gover nor Proposal W ndow, event Pr oposal W ndowSet is not emitted when pr oposal W ndowis
setto 24 hour s in the (implicit) constructor.

Events Set Comrent Wi ght i ng and Pr oposal W ndowSet also do not share the same naming style.

Code corrected:

The events are now emitted in the constructors of the respective contracts and the naming style has
been corrected.

6.11 Unused Imports and Variables

(Informational) (Version 1)

1.1 Vot i ngEscr owis not used in EpochGover nor.

CS-VELOGOV-015
2. The library Del egati onHel perLi brary in EpochGover nor is unused. No variable of type
IVotingEscrow exist in EpochGover nor . The following statement has no use:
usi ng Del egati onHel perLi brary for |VotingEscrow,

3. Private constant ALL_PROPOSAL_STATES BI TMAP is unused in Gover nor Si npl e. Since it is
private it cannot be used in a derived contract either.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

4. The constructor of Gover nor Corment abl e accepts _vot er as a parameter, but it is only used to
guery the voting escrow address. The voting escrow could be passed directly instead.

Code corrected:
The unused imports and variables have been removed.

6.12 Voting Escrow Public View Exposed Multiple
Times

[Informational] [Version 1]

The Voting Escrow address is exposed multiple times in EpochGover nor with different getters:

CS-VELOGOV-016

1.ve(), implemented in Gover nor Si npl eVot es.
2.token(), implemented in Gover nor Si npl eVot es.
3. escrow(), implemented from Gover nor Conmrent abl e.

Code corrected:

CGover nor Si npl e now stores the address of the voting escrow in a single variable, ve. This allows it to
be used in all contracts derived from Gover nor Si npl e.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Unreachable Code
(Informational] [Version 1](]

CS-VELOGOV-014

Some code and conditions are unreachable:

1. lines 68-70 of EpochGover nor . sol : a proposal cannot be cancelled, so the following block
cannot be entered.

I T (proposal Cancel ed) {
return Proposal State. Cancel ed,;

}

2.lines 206-213 and 224-226 of EpochGovernor.sol in execute(). _executor() is
hard-coded to addr ess(t hi s), so the conditions _executor() != address(this) are
never true. Moreover, the second condition _targets[i] == address(this) can not be
satisfied since _t ar get s can only contain the M nt er address.

Acknowledged:

Velodrome acknowledges that the code is unreachable and states that there will be no changes.

I:$: Velodrome - Epoch Governor - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 SimpleEpochGovernor
	2.2.2 EpochGovernor
	2.2.2.1 Proposal Creation
	2.2.2.2 Proposal States
	2.2.2.3 Voting
	2.2.2.4 Proposal Execution
	2.2.2.5 Contract Inheritance and Functionality

	2.2.3 Roles & Trust Model
	2.2.4 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 EpochGovernor Should Not Receive ETH or Other Tokens
	5.2 Voting Power Queried by comment() Could Be in Future

	6 Resolved Findings
	6.1 Arbitrary Payload in execute()
	6.2 Missing Checks in propose()
	6.3 Signature Does Not Include tokenId
	6.4 Incorrect supportsInterface() Result
	6.5 Vote Duration Is Two Seconds Too Long
	6.6 _countVote() Can Revert With Incorrect Error Message
	6.7 getVotes() Uses Past Timestamp With Current Owner
	6.8 votingPeriod() Returns Incorrect Value
	6.9 Incorrect NatSpec for _castVote()
	6.10 Missing Events
	6.11 Unused Imports and Variables
	6.12 Voting Escrow Public View Exposed Multiple Times

	7 Informational
	7.1 Unreachable Code

