

PUBLIC

Code Assessment

of the Vesu V2

Smart Contracts

September 30, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Open Findings 12

6 Resolved Findings 13

7 Notes 19

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help VESU with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Vesu V2 according to Scope
to support you in forming an opinion on their security risks.

VESU implemented Vesu V2 focusing on simplifications of the original Vesu V1 design. Separate pools
are deployed by the factory instead of the singleton architecture used in V1.

The most critical subjects covered in our audit are functional correctness and asset solvency. One low
severity issue highlighting the effect of rounding in partial liquidations with bad debt has been reported,
see Bad debt rounding can be exploited to pay off less debt. All the uncovered issues have been properly
addressed.

The general subjects covered are usability, code quality and potential risks.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 3

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Vesu V2 repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 10 September
2025

37d0e422addc84f445f66ed5ef8bc5f31901e0b
7

Initial Version

2 27 September
2025

9e681bcf76f168698e84b8e3e9d90106ea0ca3
70

After Intermediate Report

3 30 September
2025

977a04feb7efb67bdf6669c1d7885adb099d53
08

Final Changes

For the cairo smart contracts, the compiler version 2.11.4 was chosen.

The following files are in scope of this review:

pool.cairo
pool_factory.cairo
oracle.cairo

In addition, changes in the following files are in scope. Previously reviewed logic is excluded:

v_token.cairo
units.cairo
packing.cairo
math.cairo
interest_rate_model.cairo
data_model.cairo
common.cairo
lib.cairo

2.1.1 Excluded from scope
Unchanged logic previously audited is excluded from this review. Test files and deployment scripts are
also excluded from scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 5

https://github.com/vesuxyz/vesu-v2/tree/37d0e422addc84f445f66ed5ef8bc5f31901e0b7
https://github.com/vesuxyz/vesu-v2/tree/37d0e422addc84f445f66ed5ef8bc5f31901e0b7
https://github.com/vesuxyz/vesu-v2/tree/9e681bcf76f168698e84b8e3e9d90106ea0ca370
https://github.com/vesuxyz/vesu-v2/tree/9e681bcf76f168698e84b8e3e9d90106ea0ca370
https://github.com/vesuxyz/vesu-v2/tree/977a04feb7efb67bdf6669c1d7885adb099d5308
https://github.com/vesuxyz/vesu-v2/tree/977a04feb7efb67bdf6669c1d7885adb099d5308
https://chainsecurity.com

VESU implemented Vesu V2, a permissionless lending protocol (with emergency features restricted to a
Vesu admin address), focusing on simplifications of the original Vesu V1 design, built on four main
contracts: PoolFactory, Pool, Oracle and the VToken. Separate pools are deployed by the factory
instead of the singleton architecture used in v1.

2.2.1 Pool Creation
Pools are created permissionlessly through the factory.

When create_pool is called, a new pool is deployed with the specified name, curator, oracle and fee
recipient. The function registers the initially supported assets and their pair configurations, selectively
enabling loans per pair. For each listed asset, the factory deploys an associated VToken. The factory
exposes helpers to look up the VToken for an asset and the asset for a VToken.

Curators can also add new assets to existing pools through the factory's add_asset function.

2.2.2 Modify Position
modify_position is the main entry point for users and delegates to modify their position in a pool. It
changes collateral and debt of positions, ensures invariants and returns the applied deltas.

The function updates the interest accumulator for the debt asset, computes utilization, and applies fees. It
enforces collateralization using current prices from the oracle. It supports four operation types through
the amount denomination:

• Collateral in asset units

• Collateral in collateral shares

• Debt in asset units

• Debt in nominal debt units

Transfers of underlying tokens are executed via safe transfer helpers that support legacy ERC20
interfaces.

For simple lending to earn interest, one can open a position with no debt on any pair whose collateral
asset is the desired lending asset. The choice of the pair is indifferent, as the interest rate is configured
per-asset, not per-pair. The Vtoken makes use of this.

2.2.3 Position Delegation
Positions remain tied to their original owner address and cannot be transferred. However, users can
grant management permissions through modify_delegation.

The relevant functions are:

• modify_delegation(delegatee, delegation) - grants or revokes delegation rights

• delegation(delegator, delegatee) - checks current delegation status

Delegatees can call modify_position on behalf of the owner (funds move to/from the caller, not the
position owner), but cannot transfer ownership. Users retain full control and can revoke delegation at any
time.

2.2.4 Liquidate Position
liquidate_position lets third parties repay debt of unhealthy position and seize collateral according
to the pair configuration.

Health is evaluated using the oracle price and pair risk parameters. The function updates interest first
then computes repayment and collateral seizure, including liquidation fees and reserve updates. If bad
debt is caused to the system by a position going underwater, it gets socialized upon liquidation.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.5 Price feed
Prices come from the Oracle contract, which serves as an adapter to integrate with Pragma price feeds.
The oracle stores per asset configuration with fields:

• pragma key

• timeout in seconds

• number of sources

• start time offset

• time window

• aggregation mode

The oracle queries Pragma contracts and processes the responses according to the configuration,
validating freshness and source requirements. The pool calls the oracle to obtain an AssetPrice for
collateral and debt assets when evaluating health, mint, burn, and liquidation.

The curator can update the oracle address on the pool. The oracle's manager can update per asset
oracle config on the oracle itself.

2.2.6 Pausing
The pool supports pausing. The owner, curator, or pausing agent can pause the pool. Only the owner or
curator can unpause.

When paused, interactions with the pool are generally inhibited. Some configuration functions, e.g.
set_oracle(), remain possible when the pool is paused, allowing configuration issues to be fixed in a
paused state.

2.2.7 Tokenization of Collateral Shares
VToken implements an ERC4626 style vault interface for each supported asset. It exposes:

• asset and total_assets

• convert_to_shares and convert_to_assets

• preview_deposit and deposit

• preview_mint and mint

• preview_withdraw and withdraw

• preview_redeem and redeem

• the standard ERC20 views and transfers

Underlying the VToken there is a regular pool position, therefore the usual limitations apply: e.g. a
max_utilization limit may prevent token redemptions.

2.2.8 Interest Rate Model
The pool embeds an interest rate model component. The adaptive interest rate is crucial to incentivize
user interaction for the pool to reach/maintain it's target utilization. The curator can update the interest
settings per asset of the pool using set_interest_rate_parameter.

The model computes the new rate accumulator and the full utilization rate based on current utilization
and the previous state. Helper views expose the interest rate configuration.

2.2.9 Changelog
Version 2In , the following changes were made to the system:

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

1. The factory is now upgradable without delay by the owner.

2. A new update_v_token() method was added to the factory, allowing to update the vToken-asset
mapping.

Version 3In , the following changes were made to the system:

1. New setter functions have been added to the pool factory allowing the owner to update the class
hashes for the pool, v_token and oracle. Future deployments will use these updated class hashes.

2.3 Trust Model

2.3.1 Factory

• Owner owns all deployed pools and can upgrade the factory contract itself.

Trust level: fully trusted. Worst case: can upgrade all deployed pools and the factory with malicious
logic.

• Anyone can call create_pool with valid parameters.

Trust level: untrusted. Pools created under the correct class hashes remain safe.

• Factory deploys VToken instances per asset and wires them to the pool.

2.3.2 Pool

• Owner (the factory owner) can upgrade the contract via upgrade.

Trust level: fully trusted. Worst case: replace pool implementation with malicious logic.

• Curator can set pausing agent, fee recipient, oracle address, and nominate successor curator;
adjusts risk parameters via pair and asset configuration setters.

Trust level: fully trusted. Worst case: switch to malicious oracle, making borrowers liquidatable then
liquidating them himself. The owner is expected to detect such misbehaviour in time and remedy
through an upgrade.

• Pausing agent can pause (but not unpause).

Trust level: partially trusted. Worst case: cause denial of service by pausing, and cause losses if in
times of market volatility users become liquidatable due to the DoS. The curator is expected to
detect such misbehaviour in time and revoke the role from the compromised address.

• Fee recipient receives protocol fees through claim_fees

Trust level: untrusted. No control over user funds.

• Users control their own positions and can grant or revoke delegation with modify_delegation

Trust level: untrusted from protocol perspective. Can only affect their own balances.

2.3.3 Oracle

• Owner controls ownership transfer and can upgrade the oracle contract.

Trust level: fully trusted. Worst case: replace oracle with malicious implementation / configuration.

• Manager can set per asset OracleConfig and nominate a new manager.

Trust level: fully trusted. Worst case: misconfigure oracle sources, leading to wrong prices used
within the pool. This may allows to steal assets. The owner is expected to detect this misbehaviour
in time and remedy with an upgrade so as to revoke the role from the compromised address.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• The oracle reads from upstream Pragma contracts and aggregates per the stored configuration

Assumption: Pragma sources report correct prices.

2.3.4 VToken

• Users interact through ERC20 and ERC4626 interfaces.

Trust level: untrusted. They can only affect their own balances.

2.3.5 Special Observations

• Some emergency situations (like a pool curator compromise) are expected to only be remedied
through an upgrade by the Vesu owner address.

• The pool curator has to have an understanding of risk parameter design, since it's the one in charge
of configuring the oracle and the asset/pairs in the pools.

• Upgrades are restricted to the Vesu owner address, even though pools can be curated by anyone.
As explained, the curator can still rug-pull users through malicious configurations, but users can be
sure that the pools are running legit Vesu code.

2.3.6 External Dependencies

• Pragma Oracle provides price data through IPragmaABI and ISummaryStatsABI

Trust level: fully trusted. The system assumes Pragma is properly configured, returns accurate
prices, and remains available. Worst case: Incorrect or manipulated Pragma prices could lead to
wrongful liquidations or undercollateralized borrowing.

• ERC-20 Tokens used as assets in the pool

Trust level: fully trusted. The system assumes tokens are standard compliant without special
behaviors. Required properties: No blacklists, no transfer fees, non-rebasing, standard
transfer/transferFrom behavior. Worst case: Tokens with special mechanics could break
accounting, prevent withdrawals, or cause loss of funds.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Correctedclaim_fees() Rounding up

• Code CorrectedBad Debt Rounding Can Be Exploited to Pay off Less Debt

• Code CorrectedVToken Checks Invariants on the Caller Address

Informational Findings 10

• Code CorrectedLiquidation Rounding May Prevents Full Liquidation in Edge Cases

• Code CorrectedNatspec Describes Wrong Asset Approval

• Code CorrectedUnused Constant

• Code CorrectedEvent SetOracleConfig

• Code CorrectedOutdated Comment

• Code CorrectedRedundant Multiplication and Division by SCALE

• Code CorrectedRedundant Non-Zero Address Checks

• Code CorrectedRedundant Position Argument

• Code CorrectedSmall Liquidation Factor Implies Immediate Bad Debt

• Code CorrectedVToken Configuration Allows Debt Asset Equal to Asset

6.1 claim_fees() Rounding up
Design Low Version 2 Code Corrected

CS-VESUV2-013

In Version 2, the claim_fees function was refactored. Among other changes, the calculation of the fee
amount was modified to round up instead of down.

This rounding direction is inconsistent with regular share to asset conversions during withdrawals, which
round down. The (privileged) caller could exploit this by repeatedly calling claim_fees() with 1 wei of
fee shares per call. Each call would round up the resulting fee amount, allowing the caller to extract
slightly more fees than the shares entitle them to. Through repeated calls, this can accumulate.

The get_fees() preview function also implements the same rounding up behavior.

Code corrected

The fee amount calculation was changed to round down.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.2 Bad Debt Rounding Can Be Exploited to Pay
off Less Debt
Security Low Version 1 Code Corrected

CS-VESUV2-007

In case there is bad debt, for partial liquidations the function compute_liquidations_amounts()
rounds up the calculated bad_debt; also, the code does not enforce a minimum amount of debt to
repay. Therefore, one can supply a debt_to_repay parameter equal to e.g. 1 wei, and if the position is
slightly underwater, the returned bad_debt will be equal to 1 wei. This means that the liquidator repays
1 wei, but writes off 2 weis from the position's debt. This 2-to-1 ratio is skewed from the intended one,
particularly when the position is only slightly underwater (therefore the ratio between the debt value and
the discounted collateral value is slightly above 1).

Notice that an "external" liquidator cannot profit from this, since the collateral to be received and the loan
amount to be repaid are not affected by roundings in the bad debt. The only effect is that the loss inflicted
to the system (written off from the position's debt) proportionally exceeds the real one. This can therefore
be exploited by the position owner himself liquidating his own position, and thus achieving a better
effective liquidation discount than configured by the curator.

The attached PoC shows how the owner of a position that is slightly underwater can iterate this several
million times to bring the position back to health, by repaying almost half of the needed debt amount.

Code corrected

The issue was fixed by always rounding down the bad debt (which renders the PoC's exploit scenario
impossible), and enforcing a minimum liquidation amount for partial liquidations (which removes the root
cause, i.e. that large relative errors were possible).

6.3 VToken Checks Invariants on the Caller
Address
Correctness Low Version 1 Code Corrected

CS-VESUV2-003

The function can_modify_position() of v_token.cairo() invokes check_invariants() on
the pool, but wrongly passes get_caller_address() as a parameter, instead of
get_contract_address(). This can unduly block access to the VToken for a user who, for example,
has a dusty position (hence assert_floor_invariants() reverts).

Code corrected

The check was fixed to pass get_contract_address().

6.4 Liquidation Rounding May Prevents Full
Liquidation in Edge Cases
Informational Version 2 Code Corrected

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

CS-VESUV2-011

In Version 2, the rounding direction in compute_liquidation_amounts() was changed from
Rounding::Ceil to Rounding::Floor when determining whether to perform a full or partial
liquidation in case of bad debt:

if collateral_value < debt_value {
 // limit the bad debt by the outstanding collateral and debt values (in usd)
 if collateral_value < u256_mul_div(
 debt_to_repay, context.debt_asset_price.value, context.debt_asset_config.scale, Rounding::Floor,
) {

This condition checks whether the position's collateral value is less than the value of the debt the
liquidator is attempting to repay. If true, the position is fully liquidated (entering this branch). If false, only
a partial liquidation occurs.

In edge cases, this introduces a one wei gap between the debt_value (rounded up) in the outer
condition and the recomputed value (rounded down) here. If collateral_value equals the
rounded-down value, the code incorrectly enters the partial liquidation branch, writing off almost all debt
and leaving a dusty position that violates the floor invariant and reverts.

Code corrected

In Version 3, the rounding direction was changed back to Rounding::Ceil.

6.5 Natspec Describes Wrong Asset Approval
Informational Version 2 Code Corrected

CS-VESUV2-009

In Version 2, the vToken was refactored. The functionality for the vToken to grant the pool allowance to
spend its underlying asset was moved into its own function.

While the function implementation is correct, the natspec incorrectly states "Approves the pool contract to
spend the vToken".

Code corrected

The natspec was updated to "Approves the pool contract to spend the underlying asset of the vToken".

6.6 Unused Constant
Informational Version 2 Code Corrected

CS-VESUV2-001

Version 2As of , the constant SCALE_DECIMALS is unused and can be removed from the codebase

Code corrected

The constant has been removed.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.7 Event SetOracleConfig
Informational Version 1 Code Corrected

CS-VESUV2-002

Oracle.cairo defines an event SetOracleConfig.

#[derive(Drop, starknet::Event)]
pub struct SetOracleConfig {
 asset: ContractAddress,
 oracle_config: OracleConfig,
}

Contrary to other events in the contracts, no field is annotated with #[key]. Annotating the field asset
with #[key] would enable filtering by the asset.

Code corrected

The event field is now annotated with #[key].

6.8 Outdated Comment
Informational Version 1 Code Corrected

CS-VESUV2-006

The comment above compute_liquidation_amount() mentions recovery mode which no longer
exists in this version of Vesu.

Code corrected

The comment was removed.

6.9 Redundant Multiplication and Division by
SCALE
Informational Version 1 Code Corrected

CS-VESUV2-008

The function calculate_collateral() of common.cairo uses a precision of SCALE to compute its
proportion. This is, however, redundant, because the result is immediately divided by SCALE after the
multiplication, without any intermediate divisions actually requiring the upscaled precision.

Code corrected

The scaling was removed.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.10 Redundant Non-Zero Address Checks
Informational Version 1 Code Corrected

CS-VESUV2-012

The functions accept_manager_ownership() of oracle.cairo and
accept_curator_ownership() of pool.cairo perform a redundant non-zero check on the pending
manager/curator. It can be omitted because it is already checked to be equal to
get_caller_address(), therefore it cannot be 0.

Code corrected

The check was removed.

6.11 Redundant Position Argument
Informational Version 1 Code Corrected

CS-VESUV2-004

calculate_collateral_and_debt_value() in common.cairo takes context (which is bound to
a user address) and position as arguments. This is redundant since the context already holds the user
position.

Code corrected

The redundant argument was removed.

6.12 Small Liquidation Factor Implies Immediate
Bad Debt
Informational Version 1 Code Corrected

CS-VESUV2-005

If liquidation_factor < max_ltv, then a position incurs bad debt as soon as it becomes
liquidatable. This is because, as soon as the position is liquidatable, we have
debt_value > collateral_value * max_ltv, but that implies debt_value > collateral_v
alue * liquidation_factor = discounted_collateral_value.

If, instead, liquidation_factor > max_ltv, then there is some leeway between the time where a
position is liquidatable and the time where it causes bad debt to the system.

Code corrected

A check now enforces that liquidation_factor >= max_ltv. Note that, in case of equality, the
issue still applies. In general, the curator has to choose a large-enough leeway that is appropriate for the
asset.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6.13 VToken Configuration Allows Debt Asset
Equal to Asset
Informational Version 1 Code Corrected

CS-VESUV2-010

The VToken creation flow allows to configure it with asset == debt_asset. However, this
configuration will lead to reverts in the user flows, as the function pool.context() always reverts if
collateral_asset == debt_asset.

Code corrected

A sanity check was introduced in the function pool_factory.create_v_token() to prevent this
particular misconfiguration. The VToken constructor, however, does not feature this sanity check.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Liquidations Must Always Be Possible
Note Version 1

The liquidation of unhealthy positions is crucial to maintain a pool's health.

Vesu allows pools to configure a max_utilization per asset. Liquidations are not subject to this limit
and can draw from the full asset reserve of the pool. The buffer created by the max utilization setting is
intended to ensure that enough liquidity is always available for liquidations. When liquidity is constrained,
liquidators can work around this by first supplying liquidity to the pool and then liquidating, achieving the
same result as receiving collateral shares directly.

However, this workaround relies on liquidators having sufficient capital and willingness to supply liquidity
first. In extreme market conditions, liquidators may lack the resources or risk appetite to do so. If
liquidations are delayed, positions can deteriorate further if the collateral value drops, if the debt value
rises, or if the debt increases over time due to interest accrual. If the liquidation is delayed and the
collateral no longer covers the debt, this results in bad debt.

Worse, before the liquidation occurs, this bad debt isn't socialized. Anyone who recognizes a liquidation
resulting in bad debt early has a strong incentive to withdraw their position before that liquidation
happens.

Pool operators should therefore set conservative max_utilization parameters to minimize reliance
on the liquidity-supply workaround during stressed market conditions.

VESU - Vesu V2 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Pool Creation
	2.2.2 Modify Position
	2.2.3 Position Delegation
	2.2.4 Liquidate Position
	2.2.5 Price feed
	2.2.6 Pausing
	2.2.7 Tokenization of Collateral Shares
	2.2.8 Interest Rate Model
	2.2.9 Changelog

	2.3 Trust Model
	2.3.1 Factory
	2.3.2 Pool
	2.3.3 Oracle
	2.3.4 VToken
	2.3.5 Special Observations
	2.3.6 External Dependencies

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 claim_fees() Rounding up
	6.2 Bad Debt Rounding Can Be Exploited to Pay off Less Debt
	6.3 VToken Checks Invariants on the Caller Address
	6.4 Liquidation Rounding May Prevents Full Liquidation in Edge Cases
	6.5 Natspec Describes Wrong Asset Approval
	6.6 Unused Constant
	6.7 Event SetOracleConfig
	6.8 Outdated Comment
	6.9 Redundant Multiplication and Division by SCALE
	6.10 Redundant Non-Zero Address Checks
	6.11 Redundant Position Argument
	6.12 Small Liquidation Factor Implies Immediate Bad Debt
	6.13 VToken Configuration Allows Debt Asset Equal to Asset

	7 Notes
	7.1 Liquidations Must Always Be Possible

