

PUBLIC

Code Assessment

of the Arbitrum v2

Smart Contracts

January 27, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Informational 10

7 Notes 12

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help with this security audit. Our executive summary provides an overview of
subjects covered in our audit of the latest reviewed contracts of Arbitrum v2 according to Scope to
support you in forming an opinion on their security risks.

In this project, the second version of the Arbitrum Extension of the TetherToken is implemented. This
version of the token migrates the bridging functionalities from the Arbitrum Bridge to LayerZero.

The most critical subjects covered in our audit are functional correctness, access control, and
upgradeability. No significant vulnerabilities were identified during this review, therefore security
regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Arbitrum v2 repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 22 Jan 2025 01cdf1d74c1bd4d9a664de4755ac5112f2a9988c Initial Version

For the solidity smart contracts, the compiler version 0.8.4 was chosen. The following files in the folder
contracts are in scope:

Wrappers/ArbitrumExtension.sol
Wrappers/OFTExtension.sol

2.1.1 Excluded from scope
Any file not listed explicitly above and any third-party library used in the codebase were not in scope of
this review and are assumed to behave correctly and according to their specification. Furthermore,
proxies that are already deployed, Arbitrum bridge, and LayerZero infrastructure are not in scope of this
review, and we assume they work correctly and according to their specifications. Finally, the
configuration of the LayerZero Endpoint is also excluded from this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

This project is an upgrade to the USDT contract on the Arbitrum blockchain that changes the token's
bridge from the Arbitrum token bridge to LayerZero's Omnichain infrastructure. Additionally, EIP-3009
and EIP-1271 functionalities are added, and the token name can be changed (expected to be named
"USDT0", which will be used for all USDT tokens external to mainnet). Furthermore, trusted accounts
(mapping isTrusted) are no longer supported.

On mainnet, the non-upgradeable USDT contract will be used in conjunction with the
OAdapterUpgradeable contract which locks tokens when they are bridged to other chains using the
LayerZero infrastructure. On Arbitrum, the OUpgradeable contract is used as a counterpart. It holds
special privileges on the Arbitrum USDT contract (ArbitrumExtensionV2) to mint / burn tokens when
they are received / sent over the bridge.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

The ArbitrumExtensionV2 contract is an upgrade to the ArbitrumExtension contract currently
deployed. During the proxy upgrade, the function migrate() will be called. It resets the native Arbitrum
bridge that is currently in use and replaces it with the new LayerZero bridge. This is done by:

1. Sending a message to the L1 Arbitrum gateway that unlocks all tokens.

2. Transferring the tokens to the new OAdapterUpgradeable contract.

3. Setting the ArbitrumExtensionV2.l1Address to zero so that any remaining (or new) transfers
from L1 to L2 are automatically returned back to L1 by the Arbitrum L2 gateway.

2.3 Trust Model & Assumptions
There are assumptions that are critical for the system to work as intended.

1. USDT.basisPointsRate fee is assumed to be 0. The OAdapterUpgradeable._credit()
function relies on lossless transfers of tokens.

2. USDT.deprecated is assumed not to be set to true, as it might break other assumptions.

3. OAdapterUpgradeable is assumed not to be blacklisted in USDT, as it will break bridging
functionality.

4. OUpgradeable is assumed to be set as l2Gateway in ArbitrumExtensionV2.

5. LayerZero contracts and off-chain infrastructure are assumed to be fully trusted and acting
non-maliciously.

6. OAdapterUpgradeable is assumed to be deployed on mainnet.

7. OUpgradeable is assumed to be deployed on Arbitrum.

8. The USDT contract on Arbitrum is assumed to be upgraded to ArbitrumExtensionV2.

9. ArbitrumExtensionV2.migrate() is assumed to be called atomically during the proxy
upgrade as it does not have access control.

10. LayerZero send confirmations from Mainnet to Arbitrum are set to a sufficiently high number until
the tokens withdrawn from the Arbitrum bridge have been released to the OAdapterUpgradeable
contract.

Certain roles within the system have privileged access to critical functions and are thus considered
trusted:

1. The owner of the ArbitrumExtensionV2 contract is assumed to be trusted, as they might set a
malicious l2Gateway to freely mint new tokens.

2. The owner of OUpgradeable is assumed to be trusted, as they can set a malicious peer address.

3. The owner of OAdapterUpgradeable is assumed to be trusted, as they can set a malicious
peer.

4. The delegate of OUpgradeable is assumed to be trusted, as they can set a malicious SendLib
contract.

5. The delegate of OAdapterUpgradeable is assumed to be trusted, as they can set a malicious
SendLib contract.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Compiler Version Outdated
Informational Version 1 Acknowledged

CS-USDT0-Arbv2-001

The solidity compiler is fixed to version 0.8.4. A more recent, non-breaking version is available. Known
bugs in version 0.8.4 are: https://github.com/ethereum/solidity/blob/9b97e52d45b4d94df22b3599dc041
1317b056668/docs/bugs_by_version.json#L1922.

More information about these bugs can be found here: https://docs.soliditylang.org/en/latest/bugs.html

6.2 Contract Version in Domain Separator Not
Upgraded
Informational Version 1 Acknowledged

CS-USDT0-Arbv2-002

The contract ArbitrumExtensionV2 is used as the new implementation contract of a proxy contract
which is already deployed. The function migrate() allows the caller to specify a new name and symbol
for the token. However, it does not allow upgrading the version specified in EIP-712 and used by
domainSeparator().

It is worth highlighting that if the name of the token, which is also used by domainSeparator(),
changes, any existing signatures become invalid even without a corresponding change of the version.

6.3 Known Issues in OpenZeppelin Dependency
Informational Version 1 Acknowledged

CS-USDT0-Arbv2-003

The codebase uses version 4.2.0 of the OpenZeppelin contracts. This version has known issues that
are listed on the following page: https://github.com/OpenZeppelin/openzeppelin-contracts/security.

6.4 Misleading State Variable Names
Informational Version 1 Acknowledged

CS-USDT0-Arbv2-004

The contract ArbitrumExtensionV2 introduces a new state variable isMigrating which is used to
ensure that migrate() is executed only once:

function migrate(
 ...
) public {

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 10

https://github.com/ethereum/solidity/blob/9b97e52d45b4d94df22b3599dc0411317b056668/docs/bugs_by_version.json#L1922
https://github.com/ethereum/solidity/blob/9b97e52d45b4d94df22b3599dc0411317b056668/docs/bugs_by_version.json#L1922
https://docs.soliditylang.org/en/latest/bugs.html
https://github.com/OpenZeppelin/openzeppelin-contracts/security
https://chainsecurity.com

 require(!isMigrating, "ALREADY_MIGRATED");
 ...
}

However, the variable name is potentially misleading as it hints that its value is true only while
migrate() is executing, which is not the case.

Similarly, the variable name l2Gateway now stores the address of OUpgradeable contract on Arbitrum
and is, therefore, misleading.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Excess Amount in Arbitrum L1 Gateway
Note Version 1

The function migrate() in ArbitrumExtension initiates an outbound transfer on Ethereum mainnet to
move locked funds from the Arbitrum L1 Gateway into the LayerZero adapter contract
(OAdapterUpgradeable):

function migrate(
 string memory _name,
 string memory _symbol,
 address _oftContract
) public {
 ...
 ARBITRUM_L2_GATEWAY_ROUTER.outboundTransfer(l1Address, USDT0_L1_LOCKBOX, totalSupply(), bytes(""));
 ...
}

The amount specified for the transfer is the totalSupply of USDT on Arbitrum. However, this
totalSupply is smaller than the USDT balance of the L1 Gateway on Ethereum mainnet. Therefore,
the L1 Gateway might still have a significant USDT balance after the migration. This excess amount
corresponds to the pending withdrawals according to the dev team of USDT.

7.2 Upgrade and Migrate Should Be Executed
Atomically
Note Version 1

The function ArbitrumExtensionV2.migrate() is permissionless and of high importance as it sets
the new address for l2Gateway which can call mint(). Therefore, the upgrade of the proxy to the new
implementation and the migration should be executed atomically, otherwise, an adversary receives the
minting rights.

USDT0 - Arbitrum v2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 Trust Model & Assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Informational
	6.1 Compiler Version Outdated
	6.2 Contract Version in Domain Separator Not Upgraded
	6.3 Known Issues in OpenZeppelin Dependency
	6.4 Misleading State Variable Names

	7 Notes
	7.1 Excess Amount in Arbitrum L1 Gateway
	7.2 Upgrade and Migrate Should Be Executed Atomically

