

PUBLIC

Security Audit
of DOT CRYPTO Smart Contracts

November 21, 2019

Produced for

by

Table Of Contents

Foreword . 1

Executive Summary . 1

Audit Overview . 2

1. Methodology . 2

2. Limitations . 2

3. Scope . 2

4. Depth . 3

5. Terminology . 3

System Overview . 5

1. System Roles . 5

2. Trust Model . 6

Best Practices in UNSTOPPABLE DOMAINS’s project . 7

1. Hard Requirements . 7

2. Best Practices . 7

3. Smart Contract Test Suite . 8

Security Issues . 9

1. Locked token possible when sent to Registry contract L 3 Acknowledged 9

Trust Issues . 10

1. Whitelisted accounts can add/renounce a Minter M 3 Fixed 10

2. Label allowed to have "." (dot) M 3 Acknowledged . 10

3. Multiple Minters/WhitelistAdmins possible L 3 Acknowledged 11

Design Issues . 12

1. Unused _tokenResolvers mapping M 3 Fixed . 12

TOC https://chainsecurity.com

https://chainsecurity.com

2. Resolution._burn is never called H 3 Fixed . 12

3. Unused imports L 3 Fixed . 13

4. Missing third "safe" mint functions L 3 Fixed . 13

5. Intermediate child can be burned M 3 Acknowledged . 13

6. transferFromChildFor visibility could be external L 3 Fixed 13

7. Inconsistent ordering of parameters L 3 Fixed . 14

8. Empty data present in signed data, but not forwarded M 3 Fixed 14

9. Fallback function is unnecessarily payable M 3 Fixed . 14

10. Unnecessary Multiplexer M 3 Fixed . 15

11. Missing tokenId parameter in event Sync H 3 Fixed . 15

12. Missing sync call in setFor H 3 Fixed . 15

13. onlyController can be more specific M 3 Acknowledged 15

14. Confusing name resolveSunriseSLD M 3 Fixed . 16

15. Missing error messages M 3 Acknowledged . 16

16. Missing function that returns sunrise L 3 Fixed . 16

17. Use Checks-Effects-Interactions pattern M 3 Fixed . 16

18. Unnecessary ownerOf check in isSunrise L 3 Fixed . 17

19. Unnecessary complex call to ownerOf M 3 Fixed . 17

20. Over-complicated use of inheritance M 3 Fixed . 17

ChainSecurity Audit Report TOC

Recommendations / Suggestions . 19

Addendum and General Considerations . 20

1. Dependence on block time information . 20

2. Forcing ETH into a smart contract . 20

Disclaimer . 21

TOC https://chainsecurity.com

https://chainsecurity.com

Foreword

We would like to thank UNSTOPPABLE DOMAINS for choosing CHAINSECURITY to audit their smart contracts.
This document outlines our methodology, limitations and results.

– ChainSecurity

Executive Summary

UNSTOPPABLE DOMAINS engaged CHAINSECURITY to perform a security audit of DOT CRYPTO, an Ethereum-
based smart contract system. The DOT CRYPTO smart contracts of UNSTOPPABLE DOMAINS implements an
on-chain naming system similar to ENS. Each Domain and subdomain is represented by an ERC721 token.
Minting of SLDs can only be performed by UNSTOPPABLE DOMAINS, it is centralized.

CHAINSECURITY audited the smart contracts which are going to be deployed on the public Ethereum chain.
Audits of CHAINSECURITY use state-of-the-art tools for detection of generic vulnerabilities and checks of cus-
tom functional requirements. Additionally, a thorough manual code review by leading experts helps to ensure
the highest security standards. During the audit, CHAINSECURITY was able to help UNSTOPPABLE DOMAINS
in addressing several security, trust and design issues of high, medium and low severity.

The employed coding practices and partial documentation increased the complexity of the audit. However,
the great communication with UNSTOPPABLE DOMAINS during the audit has lead to swift answering of any
questions from CHAINSECURITY.

All of the reported issues have been fixed/acknowledged by UNSTOPPABLE DOMAINS. CHAINSECURITY
has no further concerns regarding this project.

ChainSecurity Audit Report 1

Audit Overview

Methodology

CHAINSECURITY’s methodology in performing the security audit consisted of four chronologically executed
phases:

1. Understanding the existing documentation, purpose and specifications of the smart contracts.

2. Executing automated tools to scan for generic security vulnerabilities.

3. Manual analysis covering both functional (best effort based on the provided documentation) and security
aspects of the smart contracts by one of our CHAINSECURITY experts.

4. Preparing the report with the individual vulnerability findings and potential exploits.

Limitations

Security auditing cannot uncover all existing vulnerabilities: even a contract in which no vulnerabilities are
found during the audit is not a guarantee of a secure smart contract. However, auditing enables the discovery
of vulnerabilities that were overlooked during development and areas where additional security measures are
necessary.

In most cases, applications are either fully protected against a certain type of attack, or they are completely
unprotected against it. Some of the issues may affect the entire smart contract application, while others lack
protection only in certain areas. This is why we carry out a source code review aimed at determining all issues
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed a security
audit in order to discover as many vulnerabilities as possible.

Scope

Source code files received October 18, 2019

Git commit c466643b82836a5e0dacee344e871706965654c3

EVM version PETERSBURG

Initial Compiler SOLC compiler, version 0.5.11

Final code update received November 13, 2019

Final commit 685035e1bae9231e71320e0baaa8009276c51c84

Final Compiler SOLC compiler, version 0.5.12

The scope of the audit is limited to the following source code files.

2 https://chainsecurity.com

https://chainsecurity.com

In Scope File SHA-256 checksum

X� registry/Children.sol 5823fe9f426503a5078ce0c3b534549eaa9c3c38cde5ca73306a2ffdcc1c4568

X� registry/IChildren.sol 3c945d0217aa37ad957f52f4e680b2c906ecd4148ba0eff578e9e2dc2cfa5d8d

X� registry/Metadata.sol 043ad1527d5c9e6ed8d8303a0bac42975308cc4ca805bccced1c7d2dc70c9fa9

X� registry/Resolution.sol 9ffe75b69a4bded1e412f0b970fdb843f4f747491a2274aada5ce5387fe3eeaf

X� registry/Root.sol 6d4ab99f8c535681023bca721a5f1044770cb873f4bd853be7e8aecb70b3fa3d

X� IRegistry.sol 08798140d0de868170b8ae2d92067552213b94ed1dce7a83db9f7967cce7c201

X� Registry.sol ffa1c4f39e663acd43ecb9939a39a214fd49c67737ecbeddade05c1bb483c2ac

X� controllers/ISunriseController.sol 83a9b0c6e8a7c5b856add4a0912645da5d55bf712af08c3cc850e25186b1f631

X� controllers/SunriseController.sol 7fc1f810a5220cafdd84566c06d4bdd5679c669bb32ccf8620fe6df13d5ae948

X� controllers/IMintingController.sol 9268ae61106e541dfa99e97bafec4b181d21db1d78053fa4ae6bfa41a70e93ea

X� controllers/ISignatureController.sol 229093bdd2b855a36682d1bcc6ad67ca9a311198b52f872483ee6848d9f3a488

X� controllers/IURIPrefixController.sol b0df7d5fe763de07af1c410011fcf32bd9120abc3b09d410f245262b25380079

X� controllers/MintingController.sol 633732d9e95f375264a453d339a4d6aa3404e42c776ef375dca6034d08bf0a3c

X� controllers/SignatureController.sol 5d629726dfee9c37755e717f21e76df3a3f4237411b6cde5e96f465e5859ca9d

X� controllers/URIPrefixController.sol 74f370aa6fe7d210a58236f7c35455fbc35ce4bacdc7e2cffc3d33d89ffa7c42

X� resolver/Resolver.sol ce27300387ba9aa82167849a4c210304da606cffa5fd45a43c40b184b9d4f515

X� resolver/SignatureResolver.sol a236f3887de24f8fcc72bf1ba0cc08b5dfbac4e9ab3dc3627a2f8c5be7d0ca2a

X� util/BulkWhitelistedRole.sol 9eb456fae5f36a18f23e82a3ee7001ef29aaecdeb017a7297a00f2f3791f4070

X� util/ControllerRole.sol ab1a0ed6376aa43e03e14bca6a0d8003fae8173da2efcb561b1d86bd49a6361c

X� util/SignatureUtil.sol 0c3b65dbb7c4d5d6f580fb57a5c285853d159094f27f7597487c29c3eea14785

X� util/Multiplexer.sol 4bf790fbdcd4eea7795892fc9d8c8adba511eb63afd7b423c418bef9b47fb206

X� util/WhitelistedMinter.sol 1ed575b9cf2436328f7e649e84b683748855306b069801b37fc350679caee797

For these files the following categories of issues were considered:

In Scope Issue Category Description

X� Security Issues Code vulnerabilities exploitable by malicious transactions

X� Trust Issues Potential issues due to actors with excessive rights to critical functions

X� Design Issues Implementation and design choices that do not conform to best practices

Depth

The security audit conducted by CHAINSECURITY was restricted to:

• Scanning the contracts listed above for generic security issues using automated systems and manually
inspecting the results.

• Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, CHAINSECURITY has adopted the following terminology. For security vulnerabili-
ties, we specify the likelihood, impact and severity (inspired by the OWASP risk rating methodology1).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.

Impact specifies the technical and business-related consequences of an exploit.

1https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

ChainSecurity Audit Report 3

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Severity is derived from the likelihood and the impact calculated previously.

We categorise the findings, depending on their severities, into four distinct groups:

• L Low: can be considered less important

• M Medium: should be fixed

• H High: we strongly recommend fixing it before release

• C Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the table below, following a standard
approach in risk assessment.

IMPACT
LIKELIHOOD High Medium Low

High C H M

Medium H M L

Low M L L

During the audit, concerns might arise or tools might flag certain security issues. After carefully inspecting
the potential security impact, we assign the following labels:

• 3 No Issue no security impact

• 3 Fixed the issue is addressed technically, for example by changing the source code

• 3 Addressed the issue is mitigated non-technically, for example by improving the user documentation
and specification

• 3 Acknowledged the issue is acknowledged and it is decided to be ignored, for example due to conflict-
ing requirements or other trade-offs in the system

Findings that are labeled as either 3 Fixed or 3 Addressed are resolved and therefore pose no security
threat. Their severity is listed simply to give the reader a quick overview of what kind of issues were found
during the audit.

4 https://chainsecurity.com

https://chainsecurity.com

System Overview

The DOT CRYPTO smart contract system implements an on-chain name system. It is similar to ZNS (Zilliqa
Name Service), and inspired by ENS (Ethereum Name Service). The TLD of the DOT CRYPTO name system
is crypto. Domains that are minted will therefore be of the form: myname.crypto. Each minted domain is
represented by an ERC721 NFT, provided by the OpenZeppelin ERC721 contract.

Minting of the second level domains (SLD) is centralized and can only happen through the MintingControll
er. However, once a domain is minted to an account, that account can perform a number of actions on it. Be-
sides being able to perform actions on the domain itself, a domain owner also has control over it’s immediate
child domain(s). To prevent the owner of the root level domain (crypto) to control its children (SLDs), the root
level domain is immediately burned by transferring ownership to address 0xdead.

Besides actions that can be performed on a (child) domain, each domain has a number of attributes:

• tokenURI, always starting with the set prefix (default is unr:udc:), and set when minted.

• An optional resolver address, can be updated at any time.

• Optionally one or multiple records inside the Resolver. A record is a key/value pair for a specific do-
main(=tokenId).

• An optional approved account which can perform actions on the token owner’s behalf.

System Roles

In this section we outline the different roles and their permissions and purpose within the system.

Registry Controller A Controller can grant other accounts the Controller role and renounce its own Con-
troller role. It can not take away the Controller role of another account. The deployer of Registry
is granted the Controller role at deployment. This deployer will then add the MintingController,
SignatureController and URIPrefixController as Controllers. If on mainnet, this will be followed by
a call where the deployer renounces his Controller role. There are several functions which can only be
called by a Controller. The three controllers will each call a specific set of onlyController functions.

MintingController Minter The Minter role contract is identical to the above Controller role in what it can do.
The deployer of MintingController is granted the Minter role at deployment, This deployer will then
add the WhitelistedMinter as Minter. If on mainnet, this will be followed by a call where the deployer
renounces his Minter role. Any whitelisted account in the WhitelistedMinter can call the mint functions
of the MintingController.

WhitelistedMinter WhitelistAdmin The deployer of WhitelistedMinter will be granted the WhitelistAdmin
role. A WhitelistAdmin can grant other accounts the WhitelistAdmin role, renounce its own WhitelistAdmin
role, and add/remove accounts to the whitelist. It can not take away the WhitelistAdmin role of another
account. It’s only purpose is to add/remove accounts to the whitelist (see below role).

WhitelistedMinter Whitelisted The WhitelistAdmin is the only Role which can add/remove accounts to the
whitelist. A Whitelisted account can at any time renounce their Whitelisted role. Furthermore, a Whitelisted
account can call three functions of the MintingController.

Domain Owner Each (sub)domain is represented by an ERC721 NFT, which has an owner. Therefore, the
NFT owner is the Domain Owner. A domain owner can:

• Transfer ownership to another account.

• Burn the domain.

• Set the Resolver address.

• Add/Remove a record inside the Resolver.

• Set an account as Approved for this Domain.

• Mint an immediate child domain to any account.

• Burn an immediate child domain.

• Transfer ownership of an immediate child domain to any account.

ChainSecurity Audit Report 5

Any of the above actions (except add Approved) can also be performed by the Owner off-chain signing
the function call. This signed call can then be submitted on-chain by any account through calling the
appropriate function inside the SignatureResolver.

Domain Owner Approved A Domain Owner can set a single address as Approved for that domain. The
Approved address can do any of the actions of the above Domain Owner.

Approved for All Any address can set one address as being Approved for All. This works the same as
the above Domain Owner Approved, except that Approved for All is global instead of per domain. The
Approved for All can perform any action on a domain that is owned by the account which set it as
Approved for All.

User Can only call view functions.

Trust Model

Here, we present the trust assumptions for the roles in the system as provided by DOT CRYPTO. Auditing the
enforcement of these assumptions is outside the scope of the audit. Users of DOT CRYPTO should keep in
mind that they have to rely on DOT CRYPTO to correctly implement and enforce these trust assumptions.

Deployer The deployer is fully trusted to use the correct code during deployment and set the right parameters.

Registry Controller A Controller is trusted to act honestly at all times and not abuse its powers.

MintingController Minter A Minter is trusted to act honestly at all times and not abuse its powers.

WhitelistedMinter WhitelistAdmin A WhitelistAdmin is trusted to act honestly at all times and not abuse its
powers.

WhitelistedMinter Whitelisted A Whitelisted account is trusted to act honestly at all times and not abuse its
powers.

User, Domain Owner, Domain Owner Approved, Approved for All These roles are untrusted and assumed
to be potentially malicious. They are expected to only execute attacks which are economically beneficial
for them.

6 https://chainsecurity.com

https://chainsecurity.com

Best Practices in UNSTOPPABLE DOMAINS’s project

CHAINSECURITY is determined to deliver the best results to ensure the security of a project. To enable us to do
so, we are listing Hard Requirements which must be fulfilled to allow us to start the audit. Furthermore we are
providing a list of proven best practices. Following them will make audits more meaningful by allowing efforts
to be focused on subtle and project-specific issues rather than the fulfilment of general guidelines.

Hard Requirements

These requirements ensure that the UNSTOPPABLE DOMAINS’s project can be audited by CHAINSECURITY.

X� All files and software for the audit have been provided to CHAINSECURITY

The project needs to be complete. Code must be frozen and the relevant commit or files must have
been sent to CHAINSECURITY. All third party code (like libraries) and third-party software (like the solidity
compiler) must be exactly specified or made available. Third party code can be located in a folder
separated from client code (and the separation needs to be clear) or included as dependencies. If
dependencies are used, the version(s) need to be fixed.

X� The code must compile and the required compiler version must be specified. When using outdated
versions with known issues, clear reasons for using these versions are being provided.

X� There are migration/deployment scripts executable by CHAINSECURITY and their use is documented.

X� The code is provided as a Git repository to allow reviewing of future code changes.

Best Practices

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable.

X� There are no compiler warnings, or warnings are documented.

X� Code duplication is minimal, or justified and documented.

X� The output of the build process (including possible flattened files) is not committed to the Git repository.

X� The project only contains audit-related files, or, if this is not possible, a meaningful distinction is made
between modules that have to be audited and modules that CHAINSECURITY should assume are correct
and out-of-scope.

X� There is no dead code.

X� The code is well-documented.

� The high-level specification is thorough and enables a quick understanding of the project without any
need to look at the code.
EXPLANATION: There is no specification.

� Both the code documentation and the high-level specification are up-to-date with respect to the code
version CHAINSECURITY audits.
EXPLANATION: There is no specification.

X� Functions are grouped together according to either the Solidity guidelines2, or to their functionality.

2https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

ChainSecurity Audit Report 7

https://solidity.readthedocs.io/en/v0.4.24/style-guide.html#order-of-functions

Smart Contract Test Suite

In this section, CHAINSECURITY comments on the smart contract test suite of DOT CRYPTO. While the test
suite is not a component of the audit, a good test suite is likely to result in better code.

Although the number of provided tests seems to be ok, CHAINSECURITY is unsure if the test coverage
is high enough (UNSTOPPABLE DOMAINS should add an npm script to get the test coverage). Furthermore,
multiple checks seem to be done inside a single test instead of splitting them into separate tests. There are
several contracts in which only the happy path is tested. For contracts where errors are also checked the
returned error message is not checked. This could lead to another error besides the expected error being
thrown, resulting in the error check in the test to pass, even though the expected error is not the cause of the
rejection. CHAINSECURITY found some issues which could have been discovered with more elaborate tests.

8 https://chainsecurity.com

https://chainsecurity.com

Security Issues

This section relates to our investigation into security issues. It is meant to highlight times when we found
specific issues, but also mentions what vulnerability classes do not appear, if relevant.

Locked token possible when sent to Registry contract L 3 Acknowledged

Every (sub)domain in the DOT CRYPTO project is represented with an ERC721 token. It is possible to transfer
a DOT CRYPTO ERC721 token to the Registry contract itself. If this happens the token will be locked forever
as there is no way to transfer tokens sent to the Registry contract to another address. UNSTOPPABLE DO-
MAINS should consider either disallowing tokens to be send to the Registry contract, or implementing a way
to transfer such tokens from the Registry to another address.

Likelihood: Low
Impact: Medium

Acknowledged: UNSTOPPABLE DOMAINS explained this is not a major concern at this moment.

ChainSecurity Audit Report 9

Trust Issues

This section reports functionality that is not enforced by the smart contract and hence correctness relies on
additional trust assumptions.

Whitelisted accounts can add/renounce a Minter M 3 Fixed

The SunriseController inherits from the MintingController contract, which inherits from MinterRole. An
address having the MinterRole can perform the following actions:

• It can assign the MinterRole to another address.

• It can renounce its own MinterRole.

• It can call any of the functions inside SunriseController, including those with onlyMinter.

In the DOT CRYPTO project the Multiplexer contract is assigned the MinterRole. The Multiplexer
contract only implements a fallback function. This fallback function uses call() to call any function inside
the SunriseController based on the function selector. Only addresses added to the whitelist inside the
Multiplexer are allowed to call this fallback function. For an address to be whitelisted the WhitelistAdmin of
the Multiplexer needs to add it to the whitelist.

There are several problems caused by this setup. First off, since the fallback function uses call() with
a function selector, a whitelisted address can call SunriseController.addMinter. This works because the
caller of the addMinter function needs to be a Minter, which is the case since the Multiplexer contract
will call it. This allows a whitelisted address in the Multiplexer to add any address as Minter inside the
SunriseController.

Another problem is that a whitelisted address could call SunriseController.renounceMinter to make
the Multiplexer contract renounce its MinterRole inside the SunriseController. If this happens there is no
way to add back the Multiplexer as a Minter since only a Minter can add another Minter, and the only Minter
on mainnet is the Multiplexer (according to the deployment script). Ofcourse, if the first problem has been
used to add another Minter this doesn’t apply as that Minter could add another Minter. But as explained above
that is a problem in itself which should be prevented.

As explained above the usage of call() makes it possible to call any function inside the SunriseControlle
r. UNSTOPPABLE DOMAINS should prevent above issues. As can be read in another issue the Multiplexer
could be better removed entirely.

Fixed: UNSTOPPABLE DOMAINS replaced the Multiplexer with a new contract WhitelistedMinter which
does not use call().

Label allowed to have "." (dot) M 3 Acknowledged

A label in a child node is allowed to contain "." (dot). There is no check preventing this.
Due to this, there could be a possible attack scenario: The attacker tries to successfully register an already

registered URI. In the example, we will use donate.ethereum.crypto. The attacker has no powers over the
ethereum.crypto domain and donate.ethereum.crypto has been successfully minted and a resolver has
been set.

The attacker registers donate.ethereum. Hence, it instructs a minter to call mintSLD(attackerAddress,
"donate.ethereum"). Here, it might have to trick a minter, but there are generally no guarantees on the checks
a minter has in place.

The minting process will generate the following childId: keccak256(abi.encodePack(_CRYPTO_HASH,
keccak256(abi.encodePack("donate.ethereum")))). This does not collide with the existing entry as it has
the following childId: keccak256(abi.encodePack(keccak256(abi.encodePack(_CRYPTO_HASH, keccak25
6(abi.encodePack("ethereum")))), keccak256(abi.encodePack("donate")))). Hence, the IDs will not
collide.

After successful minting, the attacker can set the resolver using the resolveTo function. As a result of the
attack, the attacker has a tokenId, which successfully resolves to donate.ethereum.crypto and where it
totally controls the resolver. This can now be used for social engineering.

However, ENS (Ethereum Name Service) also allow "." (dot) character as a part of the domain name.

10 https://chainsecurity.com

https://chainsecurity.com

Acknowledged: UNSTOPPABLE DOMAINS acknowledges the problem but explained the back-end of UNSTOP-
PABLE DOMAINS can disallow purchasing SLDs that include a dot, and that an uncompromised client app will
not show such domains.

Multiple Minters/WhitelistAdmins possible L 3 Acknowledged

The Minter and WhitelistAdmin roles will in the current setup only be assigned to a single account. It is possible
for a Minter or WhitelistAdmin to assign the same role to other addresses. Both the Minter and WhitelistAdmin
roles are allowed to execute powerful actions. Since the roles are only assigned to a single account, having
the possibility to assign the roles to multiple accounts is simply not needed. Users need to currently trust the
roles to not be assigned to multiple accounts. If instead the code is updated such that there can only ever be
one WhitelistAdmin and Minter, the users would not have to put trust in UNSTOPPABLE DOMAINS, as the code
enforces having only a single Minter/WhitelistAdmin.

Acknowledged: UNSTOPPABLE DOMAINS acknowledged the issue and explained that future features might
require more than one Minter/WhitelistAdmin.

ChainSecurity Audit Report 11

Design Issues

This section lists general recommendations about the design and style of UNSTOPPABLE DOMAINS’s project.
These recommendations highlight possible ways for UNSTOPPABLE DOMAINS to improve the code further.

Unused _tokenResolvers mapping M 3 Fixed

In the Metadata contract the _tokenResolvers mapping is defined as:

// Mapping from token ID to resolver address
mapping (uint256 => address) internal _tokenResolvers;

However, this mapping is not used in the Metadata contract. Inside the Resolution contract the same
variable is declared, and in this contract it is used. Therefore, the unused variable _tokenResolvers should be
removed from Metadata. This is another reason CHAINSECURITY recommends to get rid of the unnecessary
complex inheritance hierarchy in the Registry contract.

Fixed: UNSTOPPABLE DOMAINS removed the unused mapping.

Resolution._burn is never called H 3 Fixed

The Registry contract (in)directly inherits Resolution and Metadata. Both of these contracts define an
internal function called _burn.

// Metadata.sol
function _burn(uint256 tokenId) internal {

super._burn(tokenId);
// Clear metadata (if any)
if (bytes(_tokenURIs[tokenId]).length != 0) {

delete _tokenURIs[tokenId];
}

}

// Resolution.sol
function _burn(uint256 tokenId) internal {

super._burn(tokenId);
// Clear resolver (if any)
if (_tokenResolvers[tokenId] != address(0x0)) {

delete _tokenResolvers[tokenId];
}

}

If we track the calling of _burn in the Registry contracts we see that:

• Children.burnChild calls Metadata._burn, which calls ERC721._burn.

• Resolution._burn calls ERC721._burn.

Looking at the above list it becomes apparent that Resolution._burn is never called. This means the
tokenResolver for a burned token is not wiped from contract storage. Although this does not lead to any
problems, the tokenResolver should still be wiped when a token is burned.

As was explained in another issue, the over-use of inheritance might have contributed to this bug. Also,
more tests would have likely uncovered this bug. UNSTOPPABLE DOMAINS should make sure the tokenResolv
er inside Resolution is wiped when a domain is burned.

Fixed: UNSTOPPABLE DOMAINS merged the two _burn functions.

12 https://chainsecurity.com

https://chainsecurity.com

Unused imports L 3 Fixed

The Root contract imports Resolution.sol and IRegistry.sol. However, these are not used inside Root.
Also, inside the Multiplexer contract there is an unused import of OpenZeppelin Address.sol. Hence,
UNSTOPPABLE DOMAINS should either use or remove the unused imports.

Fixed: UNSTOPPABLE DOMAINS removed the unused imports.

Missing third "safe" mint functions L 3 Fixed

In the ERC721 contract there are three functions defined to transfer a token:

• transferFrom: Transfers token, without notification on receiver address.

• safeTransferFrom: Transfers token and calls the onERC721Received function on receiver address, if
the function exists. Also takes bytes memory _data parameter to be used inside the receiver’s contract.

• safeTransferFrom: Transfers token and calls the onERC721Received function on receiver address, if
the function exists. However, does not have a _data argument, but will pass in an empty string to
onERC721Received.

UNSTOPPABLE DOMAINS has chosen to also add the ability to do a "safe" mint, which will call onERC721Recei
ved in the recipient contract, if it is a contract. These "Safe" mint functions reside in the Children contract and
are called mintChild, safeMintChild, controlledMintChild, and controlledSafeMintChild.

When comparing the above functions to the three-function pattern used inside ERC721.sol for transferring
a token, it becomes clear that the "safe" mint function without a _data argument is missing in both cases. How-
ever, the transferFrom related functions inside Children do use the three-function pattern. UNSTOPPABLE
DOMAINS should consider also adding the missing third function for the mint related functions.

Fixed: UNSTOPPABLE DOMAINS added the third safe mint function.

Intermediate child can be burned M 3 Acknowledged

Using the burnChild function, an Approved or Owner of a parent token can burn its child tokens.

function burnChild(uint256 tokenId, string calldata label) external
onlyApprovedOrOwner(tokenId) {

_burn(_childId(tokenId, label));
}

If there is a child node which has itself child nodes, than deleting an intermediate child node does not delete
all its sub-child nodes.

For example: a node like child3.child2.child1.crypto is present. However, when deleting the child2
node from the contract, the child3 node would still exist and would resolve to the child3.child2.child1.cry
pto address.

Acknowledged: UNSTOPPABLE DOMAINS acknowledged and explained that all child tokens can be controlled
with a combination of transactions. Even if an intermediate child is burnt, it can be recovered and used to
burn/manage all subdomains.

transferFromChildFor visibility could be external L 3 Fixed

The transferFromChildFor function has array arguments and visibility set to public. This function is not
called internally. Therefore it can be set to external instead. If a function with array arguments and visibility
public is called externally, it will cost more gas to execute. If the function has visibility external array argu-
ments will be directly read from calldata. If on the other hand it is public, the array arguments will first be
copied to memory. This makes the function cheaper to execute when it is marked as external. UNSTOPPABLE
DOMAINS should set the function visibility to external. CHAINSECURITY would also like to note that all the
other functions inside the SignatureController are set to external, so this function being public likely is
a mistake.

ChainSecurity Audit Report 13

Fixed: UNSTOPPABLE DOMAINS updated the visibility of the function to external.

Inconsistent ordering of parameters L 3 Fixed

In the SignatureController contract the safeTransferFromFor function ABI encodes the parameters:

function safeTransferFromFor(address from, address to, uint256 tokenId, bytes
calldata signature) external {

_validate(keccak256(abi.encodeWithSelector(msg.sig, from, to, "",
tokenId)), tokenId, signature);

_registry.controlledSafeTransferFrom(from, to, tokenId, "");
}

Unlike all the other functions inside this contract, this function does not put the empty string as last param-
eter in the ABI encode call. To be consistent, UNSTOPPABLE DOMAINS should also put the empty string as last
parameter here.

Fixed: UNSTOPPABLE DOMAINS updated the order of parameters.

Empty data present in signed data, but not forwarded M 3 Fixed

Inside the SignatureController the ABI encoding call always includes an empty string as argument. This
makes sense when the called Registry function is called with the empty string. If however the called Registry
function is not called with an empty string, it does not make sense to add it in the ABI encoding call. The
following functions do not call a Registry function with an empty string argument:

• transferFromFor

• safeTransferFromFor

• resolveToFor

• burnFor

• mintChildFor

• transferFromChildFor

• safeTransferFromChildFor

• burnChildFor

UNSTOPPABLE DOMAINS is advised to remove the empty string from the ABI encoding call in the above
functions.

Fixed: UNSTOPPABLE DOMAINS removed the empty string from the signed data of mentioned functions.

Fallback function is unnecessarily payable M 3 Fixed

The fallback function inside Multiplexer is payable. However, there are no other contracts that accept
ETH in the DOT CRYPTO smart contracts. Hence, UNSTOPPABLE DOMAINS should remove payable from the
Multiplexer fallback function.

Fixed: UNSTOPPABLE DOMAINS removed the Multiplexer.

14 https://chainsecurity.com

https://chainsecurity.com

Unnecessary Multiplexer M 3 Fixed

The Multiplexer contract has a variable account, set at deployment, which is the contract to forward all calls
to. This is set to the SunriseController inside the deployment script (and cannot be changed afterwards).
The only function implemented inside Multiplexer is a fallback function, which makes use of assembly to
call any function inside the SunriseController. The use of assembly is generally not recommended, unless
there is a real need for it.

The Multiplexer contract inherits WhitelistedRole from OpenZeppelin. This contract inherits Whitelist
AdminRole from OpenZeppelin. The deployer of Multiplexer will be added as a WhitelistAdmin at deploy-
ment. The WhitelistAdmin can add/remove whitelisted accounts, renounce its whitelist admin role, and add
new whitelist admins.

The Multiplexer fallback function can only be called by accounts that are whitelisted (by the whitelist
admin). It can call any method inside the SunriseController. Some functions inside the SunriseController
can only be called by onlyMinter. Therefore, these functions can only be called through the Multiplexer.

CHAINSECURITY thinks this design is overcomplicated. If the SunriseController (and MintingControll
er) would inherit from WhitelistedRole and onlyMinter was replaced with onlyWhitelisted, than the
same would be achieved. This would make the use of (dangerous) assembly inside the Multiplexer unnec-
essary. As a matter of fact, the entire Multiplexer contract would be unnecessary.

Therefore, CHAINSECURITY recommends UNSTOPPABLE DOMAINS to remove the Multiplexer contract.

Fixed: UNSTOPPABLE DOMAINS removed the Multiplexer.

Missing tokenId parameter in event Sync H 3 Fixed

The Sync event emitted from Resolution.sync contains two parameters. The resolver contract address that
called this function, and the keccak256 of the set key. The tokenId is not a parameter of this event. Therefore,
this event currently is not useful as it does not tell for which tokenId a key has been set. UNSTOPPABLE
DOMAINS should add the tokenId as a parameter to the event (and set it as indexed).

Fixed: UNSTOPPABLE DOMAINS added the tokenId parameter to the event.

Missing sync call in setFor H 3 Fixed

The Resolver contract’s set function calls Registry.sync to emit an event that tells which key got updated.
However, the Registry.sync function is not called when SignatureResolver.setFor is executed. CHAIN-
SECURITY thinks this function should also call sync and thereby emit a Sync event.

Fixed: UNSTOPPABLE DOMAINS added the missing sync call.

onlyController can be more specific M 3 Acknowledged

The onlyController modifier allows only a Controller to call certain functions. Inside the deployment script
the SignatureController and SunriseController are added as Controller. Furthermore, the address that
deploys the Registry is also added as Controller. Any of the controllers can call renounceController to
renounce its Controller role. The functions that have this modifier and the Controllers that call each function
are:

• Metadata.controlledSetTokenURIPrefix, called by Controller EOA.

• Resolution.controlledResolveTo, called by SignatureController.

• ControlledERC721.controlledTransferFrom, called by SignatureController.

• ControlledERC721.controlledSafeTransferFrom, called by SignatureController.

• ControlledERC721.controlledBurn, called by SignatureController and SunriseController.

• Children.controlledMintChild, called by SignatureController and SunriseController.

• Children.controlledSafeMintChild, called by SignatureController and SunriseController.

ChainSecurity Audit Report 15

The code could be improved by replacing the generic Controller role with two variables, one for the Signatu
reController and one for the SunriseController. By adding a few modifiers, onlySignatureController,
onlySunriseController, and onlySignatureOrSunriseController, it would become immediately clear
which Controller will call this function. This would increase the overall code readability and quality.

Acknowledged: UNSTOPPABLE DOMAINS acknowledged the problem and explained that because the con-
tracts can’t be altered after the controllers are configured, it’s not critical to make a Role system more complex
than it needs to be.

Confusing name resolveSunriseSLD M 3 Fixed

The SunriseController contract implements a function called resolveSunriseSLD. Inside the Resolution
contract "resolve" means to (un)set the resolver address of a specific tokenId. However, inside the SunriseCon
troller the resolveSunriseSLD function will unset the token sunrise mapping entry for that tokenId, and
optionally also burn that tokenId. Since this is not in any way similar to the resolve inside Resolution,
UNSTOPPABLE DOMAINS is advised to change the name of resolveSunriseSLD.

As explained in an open question it is unclear to CHAINSECURITY how this function is expected to function.
Besides the name of the function not making sense, the intent argument plus the content of the function are
confusing.

Fixed: UNSTOPPABLE DOMAINS removed the sunrise-related code from the project.

Missing error messages M 3 Acknowledged

Some require statements inside the UNSTOPPABLE DOMAINS contracts do not specify an error message.
This means currently if such a require fails it is not immediately clear where/why it failed. This also makes it
possible to test for specific errors being thrown in the tests. UNSTOPPABLE DOMAINS should consider adding
error messages to the require statements.

Acknowledged: UNSTOPPABLE DOMAINS explained that the Registry contract is too large to add error mes-
sages and that it would violate the ERC170 requirement.

Missing function that returns sunrise L 3 Fixed

There is no function present inside the SunriseController that returns the sunrise. However, there are two
view functions that return the time-till-sunrise and is-sunrise-over, respectively. Since the sunrise variable is
defined as private it cannot be directly retrieved. Although having the two mentioned sunrise related view
function gives useful information it could still be of great value to users to be able to get the value of the sunrise
variable. UNSTOPPABLE DOMAINS should consider adding a function which returns the sunrise variable value.

Fixed: UNSTOPPABLE DOMAINS removed the sunrise-related code from the project.

Use Checks-Effects-Interactions pattern M 3 Fixed

The SignatureController has two variants of the mint SLD function, safe and regular. The safe version is
called safeMintSunriseSLD and will call recipient.onERC721Received after the NFT has been minted. It
will only try to call this function if recipient is a contract.

It seems there is a reentrancy bug in the safeMintSunriseSLD function. The _tokenSunrises mapping is
set to true only after the call to mint, and thus after the recipient.onERC721Received call. On closer inspec-
tion it becomes clear this does not cause a problem since the second call to mint the same domain will throw
since it already exists. Furthermore, for this to work the recipient would need to have the Minter role, which
in the current system should not be the case since whitelisted accounts are under control of UNSTOPPABLE
DOMAINS and fully trusted.

There is still a chance, although small, that a Minter and/or WhitelistAdmin account is compromised. This
could allow an attacker to add another whitelisted account in the Multiplexer, or add another Minter in the
SunriseController. If the attacker creates a contract with an onERC721Received function which calls back
into safeMintSunriseSLD, and adds this as Minter/Whitelisted, he could use this to batch add multiple SLDs

16 https://chainsecurity.com

https://chainsecurity.com

in a single transaction. However, this is unlikely to motivate an attacker to invest money/time in such an attack.
In any case, a trusted account’s key needs to be compromised.

Still, UNSTOPPABLE DOMAINS is advised to adhere to the Checks-Effects-Interactions3 pattern and update
the _tokenSunrises mapping to true before calling safeMintSLD inside safeMintSunriseSLD.

Fixed: UNSTOPPABLE DOMAINS removed the sunrise-related code from the project.

Unnecessary ownerOf check in isSunrise L 3 Fixed

Inside the SunriseController the function isSunrise does the following check on the first line:

require(_registry.ownerOf(tokenId) != address(0));

However, the ownerOf function internally already checks the owner is not address zero. Therefore, wrapping
_registry.ownerOf inside a require inside isSunrise is unnecessary. Simply doing _registry.ownerOf(t
okenId); would suffice.

Fixed: UNSTOPPABLE DOMAINS removed the sunrise-related code from the project.

Unnecessary complex call to ownerOf M 3 Fixed

The SunriseController calls _registry.ownerOf inside resolveSunriseSLD. This function is defined in-
side the ERC721 contract. It will throw if the owner is address zero. However, the resolveSunriseSLD
merely wants to know if the token has an owner, it does not use the returned owner address. To prevent
a revert if the onwerOf call throws because the token has no owner, the ownerOf function is called using
address(_registry).call().

This seems overcomplicated. If UNSTOPPABLE DOMAINS were to add a function exists to the Registry
contract, which simply calls ERC721._exists, than there would be no need for the use of .call(). Instead,
_registry.exists(tokenId) could be called the normal way. This would lower the complexity of the code
inside resolveSunriseSLD and increase the overall quality of the project.

Fixed: UNSTOPPABLE DOMAINS removed the sunrise-related code from the project.

Over-complicated use of inheritance M 3 Fixed

The Registry contract makes heavy use of inheritance. The inherited contracts per contract are:

• Registry, inherits: IRegistry, Resolution, Children.

• Children, inherits: IChildren, Metadata.

• Metadata, inherits: Root, IERC721Metadata.

• Resolution, inherits: Root.

• Root, inherits: ControlledERC721.

• ControlledERC721, inherits: ControllerRole, ERC721, ERC721Burnable.

The above inheritance hierarchy is unnecessarily complex. Having many different small contracts which
through a complex inheritance hierarchy are forged into a single contract to be deployed has a number of
downsides. The readability of the code is decreased, and the difficulty of auditing the contracts increases.
Furthermore, the added complexity caused by the inheritance can lead to inheritance related bugs slipping
in. Also, there is more time needed to investigate things such as, in which contract is this internally called
function defined? Another example would be, are there functions with the same name defined in multiple
contracts, which one is executed when? CHAINSECURITY found two inheritance related bugs during this audit.
One related to Resolution._burn never being called, and another related to the duplicate declaration of
_tokenResolvers.

3https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

ChainSecurity Audit Report 17

https://fravoll.github.io/solidity-patterns/checks_effects_interactions.html

When looking at the style of Solidity smart contracts by other respected companies/projects, it becomes
clear that making such heavy use of inheritance used to be the standard, but things have been moving away
from that and towards contracts that are as flat as possible (vyper does not even have inheritance or the ability
to import code from different files). OOP techniques are still used, but to a minimum. Inheritance is mainly
used to inherit interfaces, and composition is used to allow connections to other contracts.

Take for example the ENS4 smart contracts which only use inheritance to inherit interfaces, and use com-
position to define connections to other contracts. They do not use inheritance to combine multiple smaller
contracts into a single big contract.

Another example to look at is the ERC20 implementation of OpenZeppelin. It used to consist of several
small contracts5 which through the use of inheritance were combined into a single ERC20 contract. This style
was later replaced with a single ERC20.sol contract6 which only inherited an ERC20 interface. All of the
functions are now implemented in this single Solidity file.

The last example which shows this move towards a flat style is the OpenZeppelin ERC721.sol contract that
is used by the DOT CRYPTO project. The Registry contract inherits from ERC721.sol. ERC721 is a single
contract which contains all variables and functions that are needed to implement an ERC721 token contract. It
is not divided into several small contract which are then mixed together by inheritance.

UNSTOPPABLE DOMAINS is advised to get rid of the unnecessarily complex inheritance hierarchy in the
Registry contract.

Fixed: UNSTOPPABLE DOMAINS merged the Registry related contracts.

4https://github.com/ensdomains/ens/blob/master/contracts/HashRegistrar.sol
5https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v1.12.0/contracts/token/ERC20/StandardToken.sol
6https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.3.0/contracts/token/ERC20/ERC20.sol

18 https://chainsecurity.com

https://github.com/ensdomains/ens/blob/master/contracts/HashRegistrar.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v1.12.0/contracts/token/ERC20/StandardToken.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v2.3.0/contracts/token/ERC20/ERC20.sol
https://chainsecurity.com

Recommendations / Suggestions

X� In the Metadata._setTokenURI function there are some TODOs still open. CHAINSECURITY recom-
mends that these are addressed before deploying contracts on mainnet.

X� In the SignatureController contract there are multiple functions which can be called by anyone by
providing signed data. Each of these functions calls a function inside the Registry. The parameters
passed to these functions are part of the signed data. However, the address of the Registry contract is
not part of the signed data.

In case there are multiple Registry contracts deployed in the future for different top level domains, these
pre-signed function calls can be replayed on the different Registry contracts. However, if the Registry
contract address is part of the signed data, this replay would not be possible. Still, the replay would be
pointless as the tokenId would never be the same if the top level domain is different.

In case of redeployment of the Registry contract for .crypto due to some technical issue in the first
deployment, adding contract address of Registry contract as the part of signed data would avoid replay
attacks.

Still, it’s best practice to make the contract address part of the signed data. UNSTOPPABLE DOMAINS is
recommended to add the Registry contract address to the signed data.

X� The following line is present inside Resolver, along with a TODO comment:

// TODO: f is this necissary?
require(msg.sender == owner, "SimpleResolver: caller is not the owner");

CHAINSECURITY wants to note that this check is necessary. The ERC721 ownerOf function only checks
that the owner is not address zero. Therefore, if the above require was not present, anybody could set
a key + value for any token.

� The Resolver contract has a modifier called whenResolver which calls a function in the Resolution to
check that the resolver for a certain tokenId is the Resolver contract itself. Inside the Resolution this
same check is performed inside sync. However, in here it is not a modifier. UNSTOPPABLE DOMAINS
could consider also adding the whenResolver modifier to the Resolution contract. This would increase
the readability of the code.

� The SignatureController contract allows calling any function inside the Registry by using pre-signed
function call data by the token owner. However, the ERC721.approve function does not have a pre-signed
variant. UNSTOPPABLE DOMAINS could consider also adding such a function.

� The truffle version used by UNSTOPPABLE DOMAINS allows the use of async/await inside the javascript
code. This includes the migration file. If UNSTOPPABLE DOMAINS where to use async/await inside the
migrations file, the amount of indentation could be lowered. This would increase the readability of the
migration file.

X� The _validate function is defined in both the SignatureController and SignatureResolver contract.
Although it is a bit different, it is still very similar. Because of this UNSTOPPABLE DOMAINS could consider
moving this function into a library, which is imported by both contracts.

ChainSecurity Audit Report 19

Addendum and General Considerations

Blockchains and especially the Ethereum Blockchain might often behave differently from common software.
There are many pitfalls which apply to all smart contracts on the Ethereum blockchain.

In this section, CHAINSECURITY mentions general issues which are relevant to UNSTOPPABLE DOMAINS’s
code, but do not require a fix. Additionally, in this section CHAINSECURITY clarifies or extends the information
from the previous sections of this security report. This section, therefore, serves as a reminder to UNSTOP-
PABLE DOMAINS and to raise awareness of these issues among potential users.

Dependence on block time information

UNSTOPPABLE DOMAINS uses now inside the SunriseController contract. Although block time manipulation
is considered hard to perform, a malicious miner is able to move forward block timestamps by around 15
seconds compared to the actual time. However, in the context of the project and given the required effort, this
is not perceived as an issue7.

Forcing ETH into a smart contract

Regular ETH transfers to smart contracts can be blocked by those smart contracts. On the high-level this
happens if the according solidity function is not marked as payable. However, on the EVM levels there exist
different techniques to transfer ETH in unblockable ways, e.g. through selfdestruct in another contracts.
Therefore, many contracts might theoretically observe “locked ETH”, meaning that ETH cannot leave the smart
contract any more. In most of these cases, it provides no advantage to the attacker and is therefore not
classified as an issue.

7https://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule

20 https://chainsecurity.com

https://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule
https://chainsecurity.com

Disclaimer

UPON REQUEST BY UNSTOPPABLE DOMAINS, CHAINSECURITY LTD. AGREES TO MAKE THIS AUDIT
REPORT PUBLIC. THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESEN-
TATIONS AND WARRANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR
DAMAGE ARISING OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS
REPORT REMAINS WITH CHAINSECURITY LTD..

Contact:
ChainSecurity AG
Krähbühlstrasse 58
8044 Zurich, Switzerland
contact@chainsecurity.com

ChainSecurity Audit Report 21

mailto:contact@chainsecurity.com

	Foreword
	Executive Summary
	Audit Overview
	Methodology
	Limitations
	Scope
	Depth
	Terminology

	System Overview
	System Roles
	Trust Model

	Best Practices in Unstoppable Domains's project
	Hard Requirements
	Best Practices
	Smart Contract Test Suite

	Security Issues
	Locked token possible when sent to Registry contract repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Whitelisted accounts can add/renounce a Minter repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Label allowed to have "." (dot) repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Multiple Minters/WhitelistAdmins possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	Unused tokenResolvers mapping repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Resolution.burn is never called repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unused imports repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing third "safe" mint functions repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Intermediate child can be burned repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	transferFromChildFor visibility could be external repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inconsistent ordering of parameters repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Empty data present in signed data, but not forwarded repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Fallback function is unnecessarily payable repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary Multiplexer repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing tokenId parameter in event Sync repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing sync call in setFor repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	onlyController can be more specific repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Confusing name resolveSunriseSLD repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing error messages repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Missing function that returns sunrise repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Use Checks-Effects-Interactions pattern repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary ownerOf check in isSunrise repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary complex call to ownerOf repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Over-complicated use of inheritance repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Addendum and General Considerations
	Dependence on block time information
	Forcing ETH into a smart contract

	Disclaimer

