

PUBLIC

Code Assessment

of the Unstoppable Wallet

Smart Contracts

February 7, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 18

8 Notes 19

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Unstoppable Team,

Thank you for trusting us to help Unstoppable with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of the Unstoppable Wallet
according to Scope to support you in forming an opinion on their security risks.

Unstoppable implements a smart contract wallet that supports authentication via WebAuthn, and enables
ownership transfers via an inheritance, and a social recovery mechanism.

The most critical subjects covered in our audit are the safety of the funds, the security of the ownership
recovery mechanisms and their resistance against malicious actors, the signature validation, and the
correct configuration of the wallet. Our most important findings concerned the different recovery
mechanisms of the wallet, as described in the issues Ownership transfer race conditions and Social
recovery with less than minConfirmations possible. All the issues have been addressed by Unstoppable
and security regarding the afore mentioned areas is high.

The general subjects covered are interactions with other addresses, access control, and gas efficiency.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase could provide a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 2

• Code Corrected 2

Low -Severity Findings 4

• Code Corrected 3

• Specification Changed 1

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Unstoppable Wallet repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 10 Dec 2024 8769d48adcf45a04e1cbb3f6ae7dc342a21ca7d9 Initial Version

2 14 Jan 2025 6c57943cd6809a5b03a45d547cf7a745e47ec74c Fixes

3 7 Feb 2025 c7dfcee29686a85c878230c5bbc10a9e85b30289 Final version

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

The following contracts are in the scope of the review:

src/
 GlobalConfig.sol
 UpgradeableBeacon.sol
 Wallet.sol
 WalletFactory.sol
 interfaces/
 IGlobalConfig.sol
 IUpgradeableBeacon.sol
 IWallet.sol
 IWalletFactory.sol

2.1.1 Excluded from scope
The contracts in scope make use of the OpenZeppelin library. The library is assumed to function
correctly. The contracts are intended to be deployed, initially on Arbitrum, where the execution
environment is assumed to be equivalent to Ethereum. Wallet owners can use WebAuthn for
authentication. We assume that the server creates valid messages for the users to sign through the
authenticator. Any attacks on the front-end of the application (e.g., DNS hijacks) are considered out of
scope. The authentication scheme was reviewed only for replayability and malleability resistance on the
smart contract level. For signature verification, the verifier deployed at
0xc2b78104907F722DABAc4C69f826a522B2754De4 is used and assumed to function properly.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Unstoppable offers the implementation of the Unstoppable wallet, a smart contract wallet that supports
user authentication via WebAuthn, wallet inheritance after a specified period of inactivity and a social
recovery mechanism.

An Unstoppable Wallet defines an owner and an operator. The owner is identified by an Ethereum
address, while the operator is defined by secp256r1 public key material used for verifying
WebAuthn-compliant signatures. Both owner and operator can make the wallet interact with other
addresses by making calls or sending native assets. Upon initialization, only the operator is defined. As
long as there's no owner (s_owner == address(0)), the operator is the most privileged role. This
means that in addition to making external calls, the operator can change various configurations of the
wallet. If an owner is set, then the owner is the most privileged role. This hierarchy is enforced by the
onlyOwnerOtherwiseOperator modifier. As the operator cannot sign messages, all their actions are
initiated by executeCalls which verifies the operator's signature. Therefore, calling an admin function
is achieved by having the wallet call itself. This means that an action initiated by the operator is checked
by asserting that msg.sender == address(this). On the other hand, calls to the wallet from the
wallet are not allowed for the owner. Note that this check is not very strict as in theory an owner can
simply craft a callpath that will allow them to initiate an operator's action and vice versa.

2.2.1 Call execution interface

• The owner of the contract can execute a batch of calls via executeCalls(). The whole batch
reverts if any call fails. A call is considered failed if it reverts during its runtime or if it targets a
non-contract address with some non-empty calldata. The exception to this rule is when calling
the wallet itself during its construction which is still allowed. The wallet keeps track of the
timestamp of the latest executed call.

• Any user can call executeCalls() on behalf of the operator as long as they provide a valid
operator signature. If s_verifyContract is set, these calls are verified by a verification
contract. For P256 signature verification, the wallet uses the P256Verifier contract at
0xc2b78104907F722DABAc4C69f826a522B2754De4. Upon receiving signed data via
executeCalls(), it is first verified that the signed message contains the correct data; this
includes the input parameters, the wallet's current nonce, the wallet address, and the chain ID.
The Base64 URL-encoded hash of this data is compared against the challenge data found at a
specific offset within the signed message (_clientDataJSON). It is then verified that the
signature was produced by the operator's private key via the P256Verifier contract. If this
verification fails, the call reverts. For every successful execution of calls signed by the operator,
the wallet's nonce is incremented by one. Apart from the described signature verification,
external calls signed by the operator behave identically to those initiated by the owner.

2.2.2 2-step Ownership Transfer
The wallet implements a 2-step ownership transfer where the owner or the operator can propose a new
owner by calling proposeOwner() and in the second step the new owner can accept the ownership by
calling acceptOwnership(). Moreover, the owner can call renounceOwnership() which sets the
owner of the wallet to the zero address.

2.2.3 Ownership Inheritance

• The owner or the operator can set up the inheritance mechanism by calling
updateInheritanceSetup() where they specify the hash of the heir's address and the
inheritance delay.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• If the wallet does not execute any call for the time period of the inheritance delay, the heir can
call inheritOwnership() and become the new owner. After that the heir and the inheritance
delay are reset.

Note that the inheritance mechanism is optional.

2.2.4 Social Recovery Mechanism
Ownership of the Unstoppable Wallet may also be transferred via the social recovery mechanism. While
not in recovery mode, the owner or the operator can define a set of guardian address hashes
([add|remove]Guardian()) which form a quorum to propose a new owner. The lifecycle of a
proposal is as follows:

• initiateRecovery(): at any point in time, a guardian can propose a hashed address of a
new owner and set the wallet to recovery mode. There can only be exactly one proposal for a
specific new owner during a recovery period. A guardian can make a new proposal every
s_recoveryRecreationDelay seconds. When making a new proposal their previous
proposal is deleted.

• supportRecovery(): other guardians can support an already existing proposal. If a minimum
number (s_recoveryMinConfirmations) of guardians agrees on the same owner, the new
owner can claim the ownership after s_recoveryMinConfirmationsDelay seconds. Any
additional vote for a specific proposal further decreases the required waiting time in a linear
fashion. If all guardians agree on the same owner then the ownership becomes claimable after
s_recoveryFullConfirmationsDelay seconds. The wallet tracks the guardian's votes by
populating the s_recoveryProposalConfirmations mapping.

• recoverOwnership(): after the required delay time has elapsed, the new owner can call to
claim the ownership. The wallet exits the recovery state and all proposals and votes are deleted.
Moreover, any pending proposed owner is deleted.

• cancelRecovery(): can be executed by the owner or the operator to switch off the recovery
mode and delete all pending proposals.

• updateRecoverySetup(): while the wallet is not in recovery mode the owner or the operator
can specify the minimum required confirmations for a social recovery, the delay when these
confirmations are given and the delay if all guardians agree on a proposed owner.

Note that the social recovery mechanism is optional. The default setting of social recovery requires only 2
guardians to be set. Moreover, by default there's no delay if all guardians agree on a new owner (instant
ownership transfer possible). Moreover, there are no constraints for the minimum and the full
confirmation delay.

2.2.5 Supported Standards
The wallet supports the following standards:

• EIP-1271 (isValidSignature())

• EIP-721 (onERC721Received())

• EIP-1155 (onERC1155[Batch]Received())

2.2.6 Trust Model and Assumptions
Besides the owner and the operator who are in full control of the funds, the wallet defines the guardian
role which is granted by the owner/operator. The guardians are not necessarily fully trusted. The
owner/operator can optionally define a delay (s_recoveryFullConfirmationsDelay) to allow them
to cancel a proposal even if all guardians collude to propose a new owner. The configuration of the social
recovery directly correlates with the trust of the owner in the guardians.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.7 Changes in Version 2
Version 2In the following changes are introduced:

• All owner/operator actions, all actions from the new owners e.g., acceptOwnership, and all
ownership transfers of the wallet update the last action timestamp, resetting the countdown for
inheritance.

•
Version 1

The social recovery countdown for a specific proposal starts as soon as a proposal is created,
as opposed to of the code where it would start as soon as the minimum number of
confirmations were collected.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedSocial Recovery With Less Than minConfirmations Possible

Medium -Severity Findings 2

• Code CorrectedInconsistent Computation of claimableAt Timestamp

• Code CorrectedOwnership Transfer Race Conditions

Low -Severity Findings 4

• Code CorrectedActive Recovery Proposals Transferred to New Owner

• Code CorrectedResetting s_verifyContract

• Code CorrectedSetting a Single Guardian

• Specification ChangedUpdating Operator's Public Key

Informational Findings 5

• Code CorrectedEvent Indexing

• Code CorrectedFailing Early

• Code CorrectedFloating Pragma

• Code CorrectedGas Inefficiencies

• Code Correctedstaticcall Succeeds on EOAs

6.1 Social Recovery With Less Than
minConfirmations Possible
Correctness High Version 1 Code Corrected

CS-UNSTW-009

The supportRecovery() function allows guardians to support a social recovery proposal, thereby
increasing the proposal's number of confirmations. The social recovery mechanism is specified to work
as follows:

• Ownership of the wallet can be recovered if the respective proposal has at least
s_recoveryMinConfirmations confirmations from guardians.

• Transferring the ownership of a wallet via social recovery enforces a delay. The ownership is only
claimable through recoverOwnership() after the delay has passed.

• If a proposal has exactly the minimum number of confirmations, a delay of
s_recoveryMinConfirmationsDelay should be incurred.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

• If all guardians confirm a proposal, a delay of s_recoveryFullConfirmationsDelay should be
incurred (note: the full confirmations delay must be less or equal to the minimum confirmations
delay)

• For any number of confirmations between s_recoveryMinConfirmations and the total number
of guardians, the delay should be linearly interpolated between
s_recoveryMinConfirmationsDelay and s_recoveryFullConfirmationsDelay.

The current implementation of the supportRecovery() function enables social recovery, even if less
than s_recoveryMinConfirmations guardians confirm. Consider the number of registered guardians
to be 10 and the minimum confirmations required to be 6. The first guardian calling the
supportRecovery() function on a given proposal will increase the confirmationsCount to 2 which
should not be enough to execute social recovery. The following code snippet shows how the timestamp
at which ownership becomes claimable is set. The second confirmation will trigger the else branch which
falsely sets the incurred delay to less than s_recoveryMinConfirmationsDelay. Essentially, with
less than the minimum number of confirmations, the delay is smaller than with the threshold number of
confirmations. This is a violation of the intended behavior of the social recovery mechanism.

if (s_recoveryProposal.confirmationsCount == s_recoveryGuardians.length()) {
 s_recoveryProposal.claimableAt = Math.min(s_recoveryProposal.claimableAt,
 block.timestamp + s_recoveryFullConfirmationsDelay);

} else if (s_recoveryProposal.confirmationsCount == s_recoveryMinConfirmations) {
 s_recoveryProposal.claimableAt = block.timestamp + s_recoveryMinConfirmationsDelay;

} else {
 // What percentage of the guardians confirmed?
 uint percConfirmed = s_recoveryProposal.confirmationsCount * 100 / s_recoveryGuardians.length();
 // Calculate the delay based on the above percentage.
 // The more confirmations, the less delay
 uint recoveryDelay = (s_recoveryMinConfirmationsDelay - s_recoveryFullConfirmationsDelay)
 * (100 - percConfirmed) / 100;
 s_recoveryProposal.claimableAt = Math.min(s_recoveryProposal.claimableAt, block.timestamp + recoveryDelay);
}

Code corrected:

The case where:

s_recoveryProposal.confirmationsCount < s_recoveryMinConfirmations

is handled separately and does not set claimableAt. Therefore, the recovery countdown does not start
in this case. Note that in the new version, when the number of confirmations is above the minimum
required, the delay depends on the following term:

uint delayToSubtract = totalTimeBetweenMinimumAndFull / numberOfGuardiansAboveMinimum * numberOfGuardiansAboveMinimumThatSupported;

This term introduces a rounding error due to division before multiplication. However, the error is
negligible in practice.

6.2 Inconsistent Computation of claimableAt
Timestamp
Correctness Medium Version 1 Code Corrected

CS-UNSTW-003

In the case where fewer than all guardians confirm a proposal, the time at which the ownership of a wallet
is claimable through social recovery is computed as follows:

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

uint recoveryDelay = (s_recoveryMinConfirmationsDelay - s_recoveryFullConfirmationsDelay)
 * (100 - percConfirmed) / 100;
s_recoveryProposal.claimableAt = Math.min(s_recoveryProposal.claimableAt,
 block.timestamp + recoveryDelay);

The computation has the following issues:

• It is missing the offset of s_recoveryFullConfirmationsDelay. As such, depending on the
value of recoveryDelay, the delay incurred by not all guardians supporting the proposal might be
less than when all guardians confirm the proposal.

• In case s_recoveryMinConfirmationsDelay = s_recoveryFullConfirmationsDelay,
the incurred delay will be 0.

Code corrected:

supportRecovery correctly updates claimableAt when a guardian supports a proposal that already
has at least the minimum number of confirmations required for social recovery.

6.3 Ownership Transfer Race Conditions
Design Medium Version 1 Code Corrected

CS-UNSTW-010

The s_lastActionTimestamp is set whenever _executeCall() successfully executes. The
timestamp of the last action is used to determine when the heir can claim the wallet. Ownership
inheritance is allowed as soon as s_inheritanceDelay seconds after the last action timestamp has
been set has passed.

Currently, it is possible that the heir of the wallet inherits the ownership just after a transfer of ownership
has happened through another mechanism. The race conditions between the different ownership transfer
mechanisms is due to the s_lastActionTimestamp not being reset when ownership is transferred
through the social recovery or the propose-accept mechanism.

Code corrected:

Whenever an action is executed by the owner/operator or ownership of the wallet is transferred,
_updateLastActionTimestamp() is called which updates the s_lastActionTimestamp. This
eliminates the race conditions described.

6.4 Active Recovery Proposals Transferred to
New Owner
Design Low Version 1 Code Corrected

CS-UNSTW-008

The active recovery proposals kept in the wallet's storage are not reset upon ownership transfer. Despite
the new owner being able to call cancelRecovery() in order to remove the ongoing social recovery
processes, this puts an extra burden on the new owner. Imagine the following scenario:

• Bob inherits Alice's wallet with an active recovery proposal that is close to being claimable.

• Bob is not aware of the ongoing recovery process and does not call cancelRecovery().

• Bob may lose access to the wallet right after inheriting it due to the ongoing recovery process.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

Code Corrected:

acceptOwnership(), inheritOwnership() and recoverOwnership() correctly reset the social
recovery mechanism by setting the recovery state to INACTIVE and removing all active proposals.

6.5 Resetting s_verifyContract
Design Low Version 1 Code Corrected

CS-UNSTW-012

The owner of the contract can specify additional logic to limit certain calls made by the operator. The
additional logic is stored in s_verifyContract. However, the operator is not able to modify this
address. In case the owner renounces the ownership, a bug in s_verifyContract could lead to the
wallet being stuck.

Code corrected:

renounceOwnership() now reverts if s_verifyContract is set.

6.6 Setting a Single Guardian
Design Low Version 1 Code Corrected

CS-UNSTW-013

An operator or an owner can specify the minimum number of required confirmations to initiate the social
recovery by calling updateRecoverySetup(). Note that the function doesn't enforce a minimum
number for this value. Therefore a user could set this to 0 or 1 and specify a single guardian. In this case,
the recovery process can be initiated by this guardian by calling proposeOwner(). However, such
proposal would never be claimable. Therefore, the ownership of the wallet is not recoverable through
social recovery with 0 or 1 guardians.

Code corrected:

The updateRecoverySetup() function has been updated so that _minConfirmations and
consequently s_recoveryMinConfirmations must be at least MIN_CONFIRMATIONS_LOWERBOUND.
Currently, MIN_CONFIRMATIONS_LOWERBOUND is set to 2, ensuring the social recovery mechanism is
not inherently blocked.

6.7 Updating Operator's Public Key
Security Low Version 1 Specification Changed

CS-UNSTW-002

Transferring the ownership of the wallet happens in two steps. The owner needs to first
proposeOwner() and then the new owner should acceptOwnership(). However,
updateOperatorPublicKey is performed in one step. Note that the update can happen without an
owner being set. Therefore a wrong update could lead to loss of funds.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Specification changed:

The modifier of updateOperatorPublicKey() has changed to onlyOwner. This prevents an
operator from incorrectly updating the operator public key and therefore losing access to the wallet, i.e.
only the owner can update it and thus in case of an incorrect update the owner can simply update it
again.

6.8 Event Indexing
Informational Version 1 Code Corrected

CS-UNSTW-006

The OwnerUpdated event emitted upon ownership transfer of the wallet does not index the addresses of
the old and the new owner.

Indexing the above-mentioned fields may be useful for filtering events.

Code corrected:

Indexing was added accordingly.

6.9 Failing Early
Informational Version 1 Code Corrected

CS-UNSTW-004

When executing calls, _executeCalls() checks whether the target address of a call contains code
and reverts if it doesn't. Note that the revert doesn't depend on the result of the call. As a matter of fact, a
call to a target without code will always succeed. Therefore, _executeCalls() could fail earlier saving
some gas.

Code correct:

The code has been restructured so failure happens early.

6.10 Floating Pragma
Informational Version 1 Code Corrected

CS-UNSTW-005

The contracts use a floating solidity pragma: ^0.8.22. Contracts should be deployed with the same
compiler version and flags that have been used during testing and audit. Locking the pragma helps to
ensure that contracts do not accidentally get deployed using, for example, an outdated compiler version
that might introduce bugs that affect the contract system negatively.

Note that for interfaces a less restrictive version could be used so that third parties can easily reuse the
interfaces.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Code correct:

pragma solidity is fixed to version 0.8.28.

6.11 Gas Inefficiencies
Informational Version 1 Code Corrected

CS-UNSTW-011

Some operations consume more gas than necessary. Below is a non-exhaustive list of gas inefficiencies:

1. Wallet.updateInheritanceSetup() and Wallet.updateRecoverySetup() perform
multiple storage loads of the same slots that could be avoided.

2. s_recoveryRecreationDelay could be an immutable given it's only set during
construction.

Code corrected:

1. updateInheritanceSetup() and updateRecoverySetup() cache storage values.

2. RECOVERY_PROPOSAL_RECREATION_DELAY constant set to 1 day has replaced the state
variable.

6.12 staticcall Succeeds on EOAs
Informational Version 1 Code Corrected

CS-UNSTW-007

When called by the operator, executeCalls() executes some arbitrary logic stored in
s_verifyContract address. If the address doesn't contain code then the static call will succeed. In
case the owner has set the address wrongly, the operator could never realize it giving a false sense of
security.

Code corrected:

A check is added to ensure that s_verifyContract is not an EOA.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Instant Inheritance
Informational Version 1 Acknowledged

CS-UNSTW-001

updateInheritanceSetup() doesn't enforce a minimum inheritance delay. Setting the delay to 0
therefore makes inheritance equivalent to proposeOwner().

Acknowledged:

Unstoppable responded:

Technically correct but no sensible minimum can be defined that covers correctly all potential use
cases. Therefore up to the user to decide.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Challenges When Deploying a Contract to the
Same Address
Note Version 1

Users might wish to have the same address for their wallet on all EVM-compatible chains.

However, certain networks and deployment strategies may pose challenges to this requirement:

1. Optimism-stack-based chains: when bridging funds to an OP chain, the nonce of the from
account is incremented. See https://specs.optimism.io/protocol/deposits.html#nonce-handling.
This should be taken into account in cases where the deployer of the deployer contract
(WalletFactory) has bridged funds. This would increase their nonce and thus affect the
address of the factory contract as the address depends on the nonce of the deployer.
Consequently, the address of the token contract will be also affected as it depends on the
address of the CREATE2 caller (which is the factory contract). Affected chains: Optimism,
Base, etc.

2. Since the same EOA needs to be used for deploying the deployer on all the networks, the
private key of the EOA must be used to sign multiple transactions. Factors such as bad setup,
insider threat, malicious code or infrastructure, bad key generation, etc. may lead to the private
key leak. It is important that the deployer of deployer contract does not have any special
permissions and does not have access to funds.

3. zkSync Era: CREATE_PREFIX used in zkSync is different from the mainnet one. In addition,
to use CREATE2 in a deployer contract, zkSync requires that the deployed contract bytecode
is already known to the compiler as states here.

8.2 Maximum Number of Guardians
Note Version 1

There is no limit to the maximum number of guardians that can be defined. Each guardian could initiate a
new social recovery proposal. All proposals are deleted in case one of the proposals passes the wallet, is
inherited, or the owner explicitly cancels social recovery. However, if the number of proposals is too big,
the gas cost for deletion could exceed the block gas limit, essentially blocking the wallet. Unstoppable
mentioned that there's an upper bound enforced off-chain (12-16 guardians). In practice, the scenario
described above is highly unlikely.

8.3 State After Ownership Transfer
Note Version 1

Users should be aware that upon ownership transfer, most of the wallet's state is not reset. More
specifically, the following remain unchanged:

• The verification contract for external calls

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 19

https://specs.optimism.io/protocol/deposits.html#nonce-handling
https://github.com/matter-labs/era-system-contracts/blob/d42f707cbe6938a76fa29f4bf76203af1e13f51f/contracts/Constants.sol#L78
https://docs.zksync.io/build/developer-reference/ethereum-differences/evm-instructions
https://chainsecurity.com

• The operator's public key

• The heir (if ownership is transferred via social recovery or a 2-step transfer)

• Active social recovery proposals (if ownership is transferred via a 2-step transfer)

• Registered recovery guardians

• The operator and owner storage

This can lead to unexpected behavior if the new owner makes assumptions on the wallet’s existing state.

Unstoppable - Unstoppable Wallet - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Call execution interface
	2.2.2 2-step Ownership Transfer
	2.2.3 Ownership Inheritance
	2.2.4 Social Recovery Mechanism
	2.2.5 Supported Standards
	2.2.6 Trust Model and Assumptions
	2.2.7 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Social Recovery With Less Than minConfirmations Possible
	6.2 Inconsistent Computation of claimableAt Timestamp
	6.3 Ownership Transfer Race Conditions
	6.4 Active Recovery Proposals Transferred to New Owner
	6.5 Resetting s_verifyContract
	6.6 Setting a Single Guardian
	6.7 Updating Operator's Public Key
	6.8 Event Indexing
	6.9 Failing Early
	6.10 Floating Pragma
	6.11 Gas Inefficiencies
	6.12 staticcall Succeeds on EOAs

	7 Informational
	7.1 Instant Inheritance

	8 Notes
	8.1 Challenges When Deploying a Contract to the Same Address
	8.2 Maximum Number of Guardians
	8.3 State After Ownership Transfer

