PUBLIC

Code Assessment

of the Unstoppable Margin Dex

Smart Contracts

29 May, 2024

Produced for

(S: CHAINSECURITY

by

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG

10
11
12
15
29
35

https://chainsecurity.com

1 Executive Summary

Dear Unstoppable team,

Thank you for trusting us to help Unstoppable with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Unstoppable Margin Dex
according to Scope to support you in forming an opinion on their security risks. The Notes section
contains information that users of the system should be aware of.

Unstoppable offers a margin trading platform that leverages the existing liquidity of decentralized
exchanges (DEXS).

The most critical subjects covered in our audit are functional correctness, precision of arithmetic
operations, and front-running.

Front-running protection has improved, as there was previously missing slippage protection, see
Stop-Loss missing slippage protection. Functional correctness has improved, as swaps could previously
fail on external markets, see Position Can Become Impossible to Close Due to Zero Swaps. Precision of
arithmetic operations has been improved as there were previously rounding issues when providing
liquidity, see Inflation Attack on Newly Added Tokens.

The general subjects covered are specification and gas efficiency.

The specification has improved, as the changes made during the fixes review process make the system
more robust than it was previously, see Large Liquidations Can Fail. Gas efficiency has improved, as
there were a large number of unecessary storage writes and reads in the margin dex contract, see
Reading Unused Values from Storage in MarginDex.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

¥ Specification Changed

(Low)-Severity Findings

Code Corrected

¥ Specification Changed

°
o
|\

¥ Risk Accepted

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Unstoppable Margin Dex repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V | Date Commit Hash Note

1 | 04 Feb 2024 | 78242c2b609ea48c0280ff636cc98a484c52793f Initial Version
2 | 14 May 2024 | 1037f8b5114c84e94c33a6eaad8f6e77b7cdfle6 First Fixes

3 | 27 May 2024 | 65a79a48c70f4e7b85b97090eb735563chbch5015 Second Fixes
4 | 29 May 2024 | 6f836493a972690014502f98b959def76dd7c98f Third Fixes

For the vyper smart contracts, the compiler version 0. 3. 10 was chosen.

The following contracts are in the scope of the review:

mar gi n- dex:
SwapRout er . vy
Vaul t . vy
Mar gi nDex. vy

The review was conducted under the assumption that the system is deployed to the Arbitrum blockchain.
The system was analyzed using the Arbitrum FIFO sequencer transaction ordering model. If it is
deployed on another chain in the future, other transaction ordering assumptions may be necessary and
should be carefully evaluated.

2.1.1 Excluded from scope

The following contracts are explicitly not in the scope of the review:

spot - dex:
Dca. vy
LimtOrders. vy
mar gi n- dex:
FeeConfi gurati on. vy
I nt er est Rat eConfi guration. vy
Li qui dat eW t hBounty. vy
testing:
Mock ERC20. vy
MockOr acl eSwapRout er . vy
MockOr acl e. vy
Mock SwapRout er . vy
MockUni swapRout er . vy
MockVaul t . vy
Mul ti Hop. vy

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

utils:
Uni v3Twap. sol

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Unstoppable offers a margin trading platform that leverages the existing liquidity of decentralized
exchanges (DEXSs). It supports advanced order types such as limit, stop-loss, and take-profit orders.
Traders can take on leveraged positions by borrowing funds from LPs, which in turn receive interest
payments. The borrowed funds can only be used in long or short positions, they cannot be withdrawn.
This allows for an undercollateralized loan model. The system will initially be deployed to the Arbitrum
blockchain.

2.2.1 Vault

The vault contract implements the logic for providing liquidity and trading on margin. All assets are stored
in the Vault.

Asset-related operations, such as providing or removing liquidity and depositing or withdrawing margin,
are conducted directly through the vault. Trading-related operations, including opening, reducing, or
closing positions and liquidations, are executed via a whitelisted MarginDex contract.

Liquidity providers can provide single-sided liquidity by depositing whitelisted ERC-20 tokens into the
vault. The tokens can then be borrowed by Traders to open leveraged positions. Interest is charged on
the borrowed amount. The interest rate is calculated in an external InterestRateConfiguration contract
based on the utilization rate, which is the ratio of borrowed tokens to the total amount of liquidity.

Liquidity Providers can provide tokens in two different tranches: They can deposit into the Safety Module
or the Liquidity Module. The Safety Module is the junior tranche of the vault and is the first to cover
protocol losses in case some liquidations create bad debt. Any losses surpassing the Safety Module are
covered by the Liquidity Module. The Safety Module is compensated for its increased risk by receiving a
higher interest rate (the percentage of interest it receives is configurable). For each Liquidity Provider, we
store their pro rata share of the total amount of liquidity in the vault.

share = amount/index

When Traders close or reduce their position, they pay interest to the LPs, and the index increases. A
portion of the interest is allocated to the Safety Module and the remainder to the Liquidity Module. When
a Liquidity Provider withdraws their tokens from the vault, they receive their proportion of the total liquidity
(incl. interest paid):

amount = share * index

Liquidity Providers must wait for a cooldown period (set by admin) after the last deposit before they can
withdraw their tokens.

Traders deposit their initial margin in a whitelisted margin token to the vault. They can open leveraged
positions by borrowing tokens from the vault and trading them for position tokens via the SwapRouter
contract. The vault does not perform any access control on the trader and allows any whitelisted
MarginDex contract to alter the trader's position.

The maximum quantity of tokens a trader can borrow is determined by their leverage ratio. The leverage
ratio is defined as:

leverage = debtValue/(marginValue + positionValue — debtValue)

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The value is the number of tokens times their USD oracle price. Currently, prices are provided only by
Chainlink. The debt value is stored in shares and is calculated as:

debtvalue = debtshares * index
The interest on the debt increases each second:
index = index + (now — lastUpdate) * interestRate * debt

The interest is compounded each time the interest rate or debt is updated. An annual percentage rate of
interest (APR) of 10% therefore adds up to 10.5% in one year if the contract is regularly called. Traders
can reduce or close their positions. The profit or loss is realized, and the trader receives the remaining
margin alongside the profit or loss in their margin token. The maximum leverage a user is allowed to have
without being liquidated is configured per market by the admin. For example, if the maximum leverage of
a market is 10, the user will be liquidated once their position reaches a leverage of 11 (10.99 is ok).
Unstoppable supports margin tokens that are different from the position and debt token used. The
allowed margin tokens per market are also configured by the admin. A separate maximum leverage can
be set per margin token. If the market has a higher leverage limit than the margin token, the lower of the
two limits will be used. Traders can increase or decrease the margin of their open position as long as
their position remains healthy.

When a trader exceeds the maximum leverage, they can be liquidated. The liquidation process forcibly
closes the position (using the oracle price for slippage protection) and potentially sells all margin tokens
to cover the debt. If there is any margin left, the user pays a liquidation penalty that is taken by the
protocol. Note that liquidations are not possible in case the Arbitrum sequencer is down.

If a user's margin and position tokens are not sufficient, the vault will have bad debt after closing the
position. The loss is then covered by the Safety Module (and the Liquidity Module if necessary), by
reducing the LP share price. If the bad debt of one token type becomes larger than its configured
maximum acceptable value, the entire vault (all token types) automatically goes into "defensive mode"
until the administrator disables the mode. In defensive mode no new positions can be opened and no
funds can be added to the system, but users can still close positions and withdraw. Bad debt of the
system can be paid back by anyone, although there is no incentive to do so. This would most likely only
be done by an insurance fund that is funded from fees taken by the protocol. When bad debt is paid back,
the LP share price that was previously reduced is increased again.

2.2.2 SwapRouter

The Swap Router routes all trades via Uniswap V3. It supports direct routes and indirect routes routing
through a base pool. The admin can add/remove new trading pairs to the router. In (Version 1) the
SwapRouter to be used was updated by the Vault admin. In (Version 2), it is set by the MarginDex admin.
In the future, a SwapRouter that routes through additional DEXes, not just Uniswap, could be added.

2.2.3 MarginDex

The Margin Dex checks whether the senders have access rights to create or alter positions. Users can
delegate to other addresses and give them the ability to act on their behalf. The delegate will be able to
trade for the user, but not withdraw any funds from the user's vault margin balance.

To create a position, users can either directly call the open_posi t i on function or create a limit order. A
limit order defines the amount | n and the ni ni nunut Recei ved to ensure that the order can only be
executed if they receive the trade at the specified exchange rate or better. The limit order can only be
executed if the user has a sufficient amount of margin available in the vault. If the user creates multiple
orders using the same margin token and there are not enough margin tokens to cover all, only the first
order will execute. However, if an additional margin is added later, the other limit orders may also
become executable. See also: Limit Orders can Become Executable below Market Price. The execution
of orders is permissionless, meaning any party can call the contract to execute the order.

Users can set stop-loss and take-profit orders to close or reduce an open position. A stop-loss order can
only be executed if the Chainlink price drops below a specified price threshold. The take profit order
enforces the anmount | n and m ni numOut Recei ved, so it can only be executed at the specified

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

exchange rate or better. The execution of both types of orders is permissionless and can be executed by
any party. Take-profit orders and stop-loss orders remove some margin proportionally to the change of
the position size: Reducing the position by x% will reduce the margin by x% as well.

Liguidations must be conducted through the Margin Dex. The account calling the | i qui dat e() function
does not receive any explicit reward for this. It is expected that the "Liquidation Engine" run by
Unstoppable off-chain will call the permissionless functions such as 1iquidate() and
execute_|limt_order() within a short time frame whenever they hit their execution conditions if
nobody else does. However, in many cases, there is an incentive for other entities to call these functions
and profit from them through arbitrage. See also: Sandwiching order execution.

The admin can set i s_accepti ng_new_orders to false, which makes it impossible to create or
execute orders. However, liquidations can still happen. The admin can also set the vault address. If this
address is not set correctly, no orders and no liquidations can be executed.

2.2.4 Trust Model

Delegates are fully trusted by the user delegating to them and have the power to modify the user's
positions and initiate trades on their behalf, including setting their slippage parameters. In the worst case,
the delegate could steal funds from the user by creating trades with high slippage and sandwiching them.

The InterestRateConfiguration is partially trusted. It is expected to return an appropriate interest rate. In
the worst case, it could return very high interest rates, that can make traders with open positions pay all
their margin to LPs and then liquidate them. It could also cause a DoS to the system if it returns values
that are close to ui nt 256. nmax, as _updat e_debt () would revert.

The admin of the Vault is fully trusted. It can modify critical admin parameters including the interest rate,
the slippage limits, the maximum leverage, the trading pairs, pausing new orders, whitelisting new
MarginDex instances, and onboarding new tokens. In the worst case, the admin can steal all funds in the
system by setting malicious oracles and liquidating positions with bad debt, or by enabling bad tokens as
margin.

The admin of the MarginDex is partially trusted. In the worst case, they can cause a DoS, making it
impossible to open/close positions or liquidate them, until the Vault admin replaces the MarginDex
contract. Not being able to liquidate can cause bad debt, which would result in a loss for LPs.

The price oracle (initially only Chainlink is supported) is trusted to provide correct and up-to-date prices.
In the worst case, an incorrect oracle price could lead to swaps with very high slippage, potentially
leading to bad debt, or to a DoS, where all swaps using the system slippage (such as liquidations) revert.

The Arbitrum sequencer is assumed not to go down for extended periods of time. If it does, liquidations
will be impossible, which can lead to bad debt for the system. See also: Behavior in Case of Sequencer
Downtime.

The off-chain "Liquidation Engine" is assumed to execute orders, and especially liquidations, as soon as
possible. To do this, it should have a robust RPC setup, which continues functioning even when the chain
is under high load.

2.2.5 Changes in Version 2
The following changes were made to the specification in of the codebase:

» Trades can now be routed through any contract that supports the P2PSwapper interface, not
just through the SwapRouter. When opening a position, the P2PSwapper to be used must be
the MarginDex. However, when adjusting or closing a position, the caller can specify their own
P2PSwapper to be used. This allows routing trades through any market, which should improve
available liquidity. The price of the trade must still be "fair", meaning it cannot exceed the
configured slippage compared to the price oracle. For trades executed by the user themselves
(not a liquidation, take-profit, or stop-loss), the allowed slippage Ilimit is twice as

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

large. Any implementation of P2PSwapper must ensure it either does not hold tokens, or does
not have open approvals to the vault in between calls.

» An explicit liquidation bonus, on top of any extra price impact captured by the liquidator, has
been added to incentivize quick liquidations.

* Partial liquidations are now possible.
» The SwapRouter is now set by the MarginDex admin, not the Vault admin.

* A liguidator whitelist has been added. Trades that result in bad debt for the protocol (according
to the oracle) can only be executed by addresses on the whitelist. Liquidations that do not result
in bad debt are still permissionless.

2.2.6 Changes in Version 3
The following changes were made to the specification in of the codebase:
* A caller whitelist was added to MarginDex. Only addresses that opt-in to the whitelist can now

be used for the P2PSwapper . fl ash_cal | back call. This was added in response to Users
With Approvals Can Be drained.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies
o (ENTITED: Mismatches between specification and implementation

« @D: Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.
EIED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 0

(Low)-Severity Findings 3
» Flash_callback Can Return Incorrect Values

« Debt Is Rounded in Favor of User ()

« Reading Unused Values From Storage in MarginDex ()

5.1 Flash_callback Can Return Incorrect Values

Correctness YRR Risk Accepted)

In MarginDex, the f | ash_cal | back function returns the act ual _out s array, which lets the vault know
how many tokens were received, so that it can transfer them back.

CS-UNM-031

For exact _i n orders, the return value is calculated as follows:

if swap_type 0:
actual _out: uint256 sel f. _swap(token_in, token_out, anount_in, anount_out)

actual outs[s[1]] actual out
i f actual outs[s[0]] 0:
i f actual _outs[s[0]] anount _i n:
actual _outs[s[0]] amount _in
el se:
actual outs[s[0]] 0

In the last line, we set act ual _out s[s[0]] = 0 if the previous swap did not give us enough tokens to
cover the full trade. However, we may have also transferred some of the same token into the MarginDex
from the Vault. Any remainder from the transferred in amount will not be reflected in the return value. As
a result, some tokens could be remaining in the MarginDex that should have been transferred back to the
Vault. These tokens can be claimed by anyone.

For exact _actual out orders, the return value is calculated as follows:

if swap_type 2:
remai ni ng_needed: ui nt 256 amount _out ERC20(t oken_out) . bal anceOf (sel f)

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

i f remaini ng_needed 0:
actual _in: uint256 sel f. _swap_exact _out (token_in, token_out, remaining needed, anount_in)

actual _outs[s[1]] remai ni ng_needed

actual _outs[s[0]] amount _in-actual _in
el se:

actual _outs[s[0]] amount _in

In the last line, any amount that was transferred from the vault is meant to be accounted, so that it is
correctly transferred back. However, the anmount _i n value can also be from a previous trade. In this
case, the amount was already added in the previous trade. As a result, the same tokens will be added to
the act ual _out s twice. When the Vault tries to t ransf er From() this amount, the balance will be
insufficient and the transaction will revert. However, the user can try again with a different
swap_sequence and succeed.

Risk accepted:
Unstoppable is aware of the issue and accepts the risk of incorrect return values.

Unstoppable responded:

Non issue for real world swap sequences.

5.2 Debt s Rounded in Favor of User
[Low] [Version 1)[]

The function _anmount per _debt share rounds the amount per debt share down, causing
_anount _to_debt _shares to round up and _debt shares_to_anount to round down. This
rounding benefits the user in several functions:

CS-UNM-011

1.reduce_positionroundsupshares_to_burn.
2. _cl ose_position rounds down position_debt anpunt.
3. 11 qui dat e rounds down posi ti on_debt anpunt.

4. effective_l everage rounds down debt val ue.

It is considered best practice to never round in favor of the user and always round in favor of the protocol.

Code partially corrected:

The rounding has been adjusted in favor of the protocol where possible. In change_posi ti on, during
partial liquidations, debt is still rounded in favor of the user.

Unstoppable responded:

The only remaining rounding i ssue we see is that during partial closes the rounding is “in favour”

of the user but at the expense of other debtors (including the remaining debt of that sane user).

This plus the fact that rounding occurs at an extra 18 decinals |eads us to assume this is not an issue in our case.
Any attenpt to adjust for this lead to serious issues in the internal accounting, “negative” debt etc.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5.3 Reading Unused Values From Storage in
MarginDex

[Low] [Version 1] []

The MarginDex reads values that are never used from storage and writes values that are unchanged
back to storage. This causes unnecessary gas consumption.

1. User IDs:

CS-UNM-012

The open trades and limit orders IDs of each user are stored in an array of 1024 elements. In
_cleanup_trade() and _renove |imt_order(), the entire array is copied from storage to
memory, an element is removed, and then the modified array is written back to storage. By operating on
the array in storage instead of copying it to memory, it would be possible to reduce the (average) number
of storage reads by half and write to storage only 2 times.

2. Large Order structs:

Trades and limit orders are stored in large structs (>1.6 kb). The full structs are read from storage in the
following functions, even if only a few elements are used.

Trade
1. close_trade
. partial_close_trade
. update_tp_sl_orders
. add_margin
. remove_margin
. execute_tp_order
. execute_sl_order

. cancel_tp_order

© 00 N O 0o A WODN

. cancel_sl_order

LimitOrder

1. cancel_limit_order

Only accessing (and writing back) the elements of the struct that are used would significantly reduce the
gas cost of these functions.

Code partially corrected:
The code has been changed in some but not all places to improve gas efficiency.
Unstoppable responded:

In sone instances we prefer clean & readable code to minimzed gas costs, especially since we're on an L2.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 5

« Bad Debt Can Be Faked for Profit

« Users With Approvals Can Be Drained

« Large Liquidations Can Fail

« Position Can Become Impossible to Close Due to Zero Swaps
» Stop-Loss Missing Slippage Protection

(Medium)-Severity Findings 7
+ Bad Debt Check Is Ineffective
* Swap Margin Uses Incorrect Fairness Check
« TP / SL Can Increase Debt Exposure
+ Amount Returned From SwapRouter Is Not Validated
» Inflation Attack on Newly Added Tokens
+ MarginDex Admin Is More Trusted Than Required
» Stop-Loss Can Unintentionally Increase Leverage

(Low)-Severity Findings 5
« Reentrancy Into flash_callback
« Bad Debt Check Is Inaccurate
» Blacklisted Tokens Can Be Swapped Into
« Close_position Slippage May Be Too Strict
« Multiple 1Ds for Each Position

» Vault Assumes Chainlink Oracles Have 8 Decimals il il ETTE)

Informational Findings 4

* Floating Pragma (&R &IEE L

» Event Logs Value With Unclear Interpretation
» Vault Uses Incorrect ERC20 Function Interface
+ SwapRouter Admin Cannot Be Changed

6.1 Bad Debt Can Be Faked for Profit
(Correctness | Hig 0ZERIIA) Code Corrected)

CS-UNM-023

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

In Vault, the change_posi ti on function checks that the posi ti on. mar gi n_anount is zero before
realizing bad debt.

i f position.position_anount 0:
i f position.debt_shares 0:

assert self.is_whitelisted_|liquidator[_caller] or self.bad _debt_I|iquidations_all owed,
"only whitelisted liquidators allowed to create bad debt"
assert position. margin_anmount 0, "use margin to | ower bad_debt"

However, the posi ti on. mar gi n_anount is updated later in the function, after this check was made:

if actual _margin_in 0:
self. _safe _transfer fron(position.margin_token, _caller, self, actual _nmargin_in)
posi tion. margi n_anount actual _margin_in

A user could liquidate themselves and trade all of their token value into mar gi n_anount . This would
pass the "fairness check", as the trade would clear at a fair price. Then the user could have their debt
deleted and accounted for as bad debt, as their position margin is zero at the time of the check.
Afterward, they will receive the mar gi n_anount from the trade back. This would allow them to profit
from the bad debt.

However, this is only possible if the bad_debt | i qui dati ons_al | owed flag is set to true, or if the
user is on the liquidator whitelist. If one of these conditions hold, all funds in the contract would be at risk.

Code corrected:

The posi ti on. mar gi n_anount is now updated before the check for bad debt. This resolves the issue.

6.2 Users With Approvals Can Be Drained
(Security | High W28 Code Corrected

Inthe f | ash_cal | back functionality of the Vault, any address can be provided as the _cal | er, which
will be used to swap tokens. In particular, any user's EOA can be used as a "Swapper". The provided
address will receive some tokens, then t r ansf er From() will be called to transfer the received tokens
back to the Vault.

CS-UNM-027

If a user has an open approval to the Vault, for example, because they are about to make a deposit, then
all their approved tokens can be taken by any trader, at a price of zero. This passes the fairness check,
as it is a very good price for the trader.

If all users always deposit to the system using a multicall that approves tokens and deposits them in a
single transaction, and never give more approval than required, then they are safe. The default
Unstoppable frontend uses such a multicall flow for deposits. However, users typically expect it to be safe
to give approval to a contract they trust.

Sophisticated users, that intentionally implement the P2PSwapper interface, must ensure that they never
have open approvals between calls.

Code corrected:

Ais_whitelisted_caller whitelist has been added to the MarginDex. Now, addresses need to
opt-in to the whitelist to be allowed as f | ash_cal | back targets. This ensures that normal users cannot

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

be used as swappers, unless they call the set _i s_whitelisted_call er function and intentionally
add themselves to the whitelist.

Contracts that add themselves to the whitelist must still ensure that they never have open approvals to
the vault between calls, unless they do not hold any tokens.

If a new MarginDex is added to the Vault in the future, it should be ensured that it also has a similar
whitelist mechanism.

6.3 Large Liquidations Can Falil
D D (Version 1) (GRS

Positions in Unstoppable Margin Dex can only be fully liquidated, never partially. Additionally, liquidations
are always done with a Uniswap swap, using a ni n_anount _out based on the oracle price and the
I i qui dat e_sl i ppage set by the admin.

CS-UNM-001

If there is a very large position, that causes more than | i qui dat e_sl i ppage of slippage on Arbitrum
Uniswap when attempting to close it in a single swap, this swap will revert. As a consequence, it will be
impossible to liquidate the position unless the liquidity on Uniswap improves or the
I i qui dat e_sl i ppage is increased. Delaying a liquidation is a risk to the system and can cause bad
debt.

If functionality was added to partially liquidate a position, the large position could be liquidated in chunks,
where each chunk would have a smaller slippage on Uniswap than liquidating the full position at once.
This would reduce the chances of a liquidation being impossible due to the |i qui dat e_sl i ppage
being too small. Note that if the oracle price is higher than the Arbitrum Uniswap price, it still might not be
possible to execute even partial liquidations.

Code corrected:

In (Version 2), liquidators can partially liquidate the position amount, but not the margin amount. When the
margin amount is sold, the function Vaul t . change_posi ti on() expects a full liquidation and requires
repayment of the entire debt and position. If there is a position with a large margin and debt amount but a
small position amount (e.g. 1 wei), the full liquidation may cause more slippage than the fairness check
allows, and the liquidation reverts.

In (Version 3), it is allowed to trade from margin during a partial liquidation. This also allows partial
liquidations of positions that have a large amount of margin and debt left as long as some position is left.

6.4 Position Can Become Impossible to Close
Due to Zero Swaps

(CorrectnessJHIENNEZZTI] Code Corrected)

The _swap function in the Vault attempts to perform a swap on an external DEX for all values passed
(including zero). The only DEX that is currently supported is Uniswap V3. Uniswap V3 reverts when the
specified amount is zero: https://github.com/Uniswap/v3-core/blob/d8b1c635¢c275d2a9450bd6a78f3fa24
84fef73eb/contracts/UniswapV3Pool.sol#L603

The vault calls _swap() with amount = 0 when a user's position is closed and one of the following cases
applies:

CS-UNM-002

1. The user has reduced their position amount to 0 using a partial close

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 17

https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/UniswapV3Pool.sol#L603
https://github.com/Uniswap/v3-core/blob/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/UniswapV3Pool.sol#L603
https://chainsecurity.com

2. The user removed their full margin amount and marginToken is not the debtToken

3. Trader PnL is 0 and marginToken is not the debtToken

In all these cases, cl ose_posi tion() will revert, and it will be impossible to close the position.

An attacker can abuse this behavior, since it stops them from getting liquidated. For example, an attacker
who has a sufficiently high PnL could remove all margin from his position, to avoid liquidation. Note that
they can always deposit some margin tokens back, to close their position. This lets them take all the
potential upside of a trade, while avoiding the downside.

Note that the Vault Admin could make the position closeable again by replacing the SwapRouter with a
new one that returns immediately in case the swap amount is 0.

Other decentralized exchanges may revert for other values (e.g. Curve's CryptoSwap Newton Algorithm
only converges for values in a certain range).

Code Corrected:

The vault no longer directly calls the _swap() function on the SwapRouter. Instead, it calls the
P2PSwapper interface's fl ash_cal | back() function. The fl ash_cal | back() implementation in
MarginDex handles zero amounts without reverting.

6.5 Stop-Loss Missing Slippage Protection
(Design | High [VZEZZBY] Code Corrected)

The execut e_sl| _or der function takes a caller-provided _mi n_anount _out argument. However, the
function can be called by anyone. This means the _mi n_anount _out can be set arbitrarily low,
effectively rendering it useless.

CS-UNM-003

An attacker can profit from this by sandwiching the call. The following calls can be executed atomically in
a single transaction:

1. Move the Uniswap Arbitrum market by selling the position asset
2. Call execut e_sl _or der (), selling position tokens with slippage
3. Buy the position tokens on Uniswap at a discount and bring the market price back to the initial value

The attack has no capital requirements, as it can be executed using a flashloan. It is profitable if the
trading fees to move the market are lower than the profit from the sandwich.

The maximum amount of slippage that can be incurred is dependent on the type of Stop-Loss order (full
or partial close) and the leverage ratio of the position. For full closes, the maximum slippage allowed by
the system for liquidations is the limiting factor. For partial closes, this limit is not in place. However, the
position may not get into a liquidatable state after partially closing and withdrawing part of the margin.

Consider the following example of a partial close on a pair where the liquidation threshold is 8x leverage
and positionToken/debtToken oracle price is 1:

1. A user has a position of size 1000 with debt 1000 and margin 500 (2x leverage)
2. A Stop-Loss with size 500 reaches its trigger price
3. The user's Stop-Loss is executed by someone who sandwiches them to the maximum extent

4. The execution price of the Stop-Loss is 2/3 (33% slippage), leaving the user with position size 500,
debt (1000 - 500*2/3) = 666.66 and margin 500

5. 250 margin is withdrawn, leaving the user at 7.99x leverage, on the edge of liquidation

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The user incurred a slippage loss of 500/3 = 166.66 tokens. This amount will be a profit to the
sandwicher, which will then need to deduct the costs of executing the sandwich. Users that start with
lower leverage will incur more slippage than those that are already near the leverage limit. If a user has
positive PnL at the stop loss trigger price, they will also lose their PnL amount to slippage.

The _m n_anmount _out for Stop-Loss execution should be lower-bounded by a value provided by the
system or the user.

Code corrected:

The maximum price impact of trades is now always limited by the fairness check in
Vaul t . change_position().

6.6 Bad Debt Check Is Ineffective
7D (Viedium) (Version 2) (SXTXLIED)

In Vaul t . cl ose_posi tion() only whitelisted liquidators should be allowed to create bad debt as long
as bad_debt _|i qui dati ons_al | owed is set to Fal se. However, the check is ineffective as it is only
enforced when a position is fully closed.

CS-UNM-028

i f position.position_anmount 0:
if position.debt_shares 0:

assert self.is whitelisted_ |iquidator[_caller] or self.bad_debt |iquidations_allowed,
"only whitelisted liquidators allowed to create bad debt"

A liquidator that is not whitelisted can still partially close a position by selling all but 1 wei of the position
amount. This creates a position with unrealized bad debt:

positionValue + marginValue < = debt

Code corrected:

A check has been added that ensures that the positionValue + marginValue is greater than the debt after
a position is changed by a non-whitelisted liquidator. This means that there cannot be any unrealized bad
debt in this case, given that the oracle price used to calculate these values is correct.

6.7 Swap Margin Uses Incorrect Fairness Check

[Medium] [Version 2] Code Corrected

Function Vaul t . swap_mar gi n() defines a fairness check to ensure that the user sets an appropriate
minimum amount they should receive from the swap ("amountl"). However, the implemented check does
not enforce a lower bound on the amount received but instead ensures that the amount returned is lower
than the amount expected by the user.

CS-UNM-029

assert (self._quote(_tokenO, _tokenl, _anountO0) (PERCENTAGE_BASE + sel f.reasonabl e_price_i npact[_t oken0])
PERCENTACE_BASE) _anmount 1, "unfair margin swap"

The code later asserts that the realized amount is greater than the amountl, allowing the user to get a
better price than the oracle price:

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

assert actual _anmount1 amount1l, "[MS:cb] too little out”
However, there is no guarantee that the user will receive at least the oracle price minus some slippage,
as intended.
inAmount > = outAmount* (1 + slippage)

As Mar gi nDex limits access to this function to the user themselves and their delegatee, (who is fully
trusted) the impact is limited.

Code corrected:

The fairness check has been corrected to ensure that the user receives at least the oracle price minus
some slippage.

6.8 TP /SL Can Increase Debt Exposure
7D (Viedium) (Version 2) (SXTXLITD)
CS-UNM-030

In of the MarginDex contract, the execut e_t p_order and execute_sl| _order functions
allow the caller to set arbitrary values for _debt _change, _mar gi n_change, and _real i zed_pnl . A
malicious actor could choose _debt change < 0 and _realized_pnl > O to create additional debt
and offset the debt by moving more margin to the position. This is permissible as long as the final position
meets the leverage criteria and the trade is fair.

For instance, consider a trader with an initial position of:
* position_amount = 100
e margin_amount = 10
e debt_amount = 100
* leverage = 10

« trader margin balance = 5

A malicious executor could execute a take-profit (or stop-loss) order with the following parameters:
e reduce_by amount = position_change = -50
» debt_change =-50
e margin_change = +100
e realized_pnl = +5
The trade can be executed since the fairness condition is fulfilled:
positionChange + debtChange = marginChange
After the trade, the trader has a modified position that has the same leverage as before, but higher debt:
* position_amount = 50
e margin_amount = 115
e debt_amount = 150
* leverage = 10

« trader margin balance = 0

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

The attacker profits from executing the orders, as higher trading volume increases the extractable
slippage.

Further, users with standing TP/SL orders can be griefed by executing their orders with a negative
real i zed_pnl to consume all of their available margin. This stops them from opening a new position,
as they are unable to pay the trading fee.

Code corrected:
The following checks have been added to the execut e_t p_or der and execut e_sl _or der functions:

assert _debt change 0, "no new debt during tp/sl"
assert _realized_ pnl 0, "cannot add nmore margin during tp/sl”

For TP/SL orders that do not fully close a position, additional checks are made:

assert not is _full _close, "was supposed to be full close"

assert Vault(self.vault).positions(_trade_uid). margi n_anmount
position. margi n_anmount, "cannot increase margin on partial tp

This ensures that no unexpected changes to the position can be made.

6.9 Amount Returned From SwapRouter Is Not
Validated
I (Viedium) (Version 1) (CXIETIET)

According to the trust model of the system, the SwapRouter is not fully trusted. As such, the Vault verifies
that it has received the expected quantity of tokens from the swap by comparing the token balance
before and after the swap.

CS-UNM-004

t oken_out _bal ance_bef ore: uint256 ERC20(_t oken_out) . bal anceO (sel)

anmount _out _recei ved: uint256 SwapRout er (sel f. swap_rout er) . swap(
_token_in, _token_out, _anount_in, _nin_anmount_out

)

t oken_out _bal ance_after: uint 256 ERC20(_t oken_out) . bal anceOf (sel)
assert (
t oken_out _bal ance_after t oken_out _bal ance_before _m n_anount _out

)

However, the vault only verifies that the token balance has increased by at least m n_anount _out,
without confirming it has increased by anount _out _r ecei ved.

The received amount is used to calculate the Trader's profit. If the SwapRouter returns a value that is too
large, this extra amount will be credited to the trader, which can then be withdrawn. In the worst case, this
could drain all funds in the vault and make it insolvent.

Code corrected:

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

The Vault no longer directly calls the SwapRouter. Instead, it calls an untrusted P2PSwapper contract.
The value returned by the P2PSwapper is checked to be at least as large as expected. Afterward, a
saf e_transfer_fromcallis used to transfer this amount of tokens from the P2PSwapper to the Vault.
If the P2PSwapper does not have a sufficient balance, the transfer will revert. As a result, an incorrect
return value can no longer cause issues.

6.10 Inflation Attack on Newly Added Tokens
(Security JQITTTDICRETIRY Code Corrected)

Shared Vaults such as the Unstoppable Vault have a known issue called an "inflation attack”, where an
attacker increases the price per share of vault shares by a lot, such that a small rounding error in the
number of shares other users receive results in a large percentage of the deposit being lost to rounding.
This is generally only possible if the attacker is the first depositor to an empty vault.

CS-UNM-005

The Unstoppable Vault mitigates this attack in 2 key ways:

1. It does not count any tokens sent directly to the vault as belonging to LPs, so it is hard to "donate"
to the LP.

2. When minting initial shares, 10E18 shares are minted per wei of token deposited. This makes the
total number of shares large, even if only 1 wei is deposited. Additionally, withdrawal amounts can
only be specified in underlying tokens, not shares.

However, both of these mitigations can be circumvented:

1. Tokens cannot be donated to the LPs directly, but interest from borrowing can accrue and be paid
to LPs. In particular, interest from funds lent by one module, such as the base_|I p, can be paid to
the other module, such as the safety nodul e | p (or the other way around), even if the
saf ety _nodul e | p has no shares or few shares. This allows donating a lot of interest (by
depositing a lot of base_| p and borrowing it all) while keeping the number of saf ety_nodul e_| p
shares small.

2. Once the price per share has been increased by at least 1E18, it will be possible to withdraw a
partial amount of the initially minted shares and only leave 1 share left.

Combining these factors, the following attack can be executed on any token that is newly added to the
system and has no LPs in one of the modules (here illustrated with the saf et y_nodul e_| p) yet:

1. Deposit a large amount to the base_| p

2. Borrow 100% of available liquidity from yourself.

3. Deposit 1 wei of token to saf et y_nodul e_| p. Receive 1E18- 1 shares.
4

. Partially close an amount of the borrow position such that exactly 1E18- 2 tokens are paid as fees
to the saf et y_nodul e_| p. Now the price per share is 1 (initially it was 1/ (1E18- 1)). This allows
us to withdraw a precise number of shares.

5. Withdraw 1E18- 2 tokens from the saf ety _nodul e_I p. Now there is 1 wei token and 1 wei
shares left.

6. Wait for a significant amount of interest to accrue. Close the borrow position. If X interest accrued to
the saf et y_nodul e_I p, the price per share of saf et y_nodul e_| p will now be X+1.

7. Wait for another user to deposit to the saf et y_nodul e_I| p. When they do, the shares minted will
be rounded up, then reduced by 1. This means they will receive up to 1 share less than if there was
no rounding. Since 1 share is worth X+1 wei tokens, up to X+1 wei tokens will be accounted as
belonging to the existing LPs (the attacker) instead of the depositing user.

Note that all future users will suffer from up to X+1 rounding, not just the first one:

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

« In step 6., the attacker pays interest of L000E18 USDC to the saf ety _nodul e | p
« As there is only one share, the price per share is now 1000E18 + 1.

« A second user deposits 2000E18 USDC in step 7. The rounded-up number of shares they should
receive is 2. This number is reduced by 1 to account for rounding. The user only receives 1 share
and the price per share now increases to 1500E18. The attacker made a profit of 500E18 USDC,
which came from the second user.

« A third user deposits 1500E18 USDC. Their rounded-up shares are 1, which is reduced by 1, so
they receive 0 shares. The price per share increases to 2250E18. The attacker and the second user
both make 750E18 USDC profit, which came from the third user.

The maximum amount that can be donated in step 6. is limited by the following factors: The amount the
attacker deposits, the maximum interest rate, the percentage of interest that goes to the
saf ety_nodul e_| p, and the time deposited. The time deposited is likely the largest limiting factor, as
the attacker only has time until the first user deposits, after which the attacker will no longer own all the
shares in the pool.

In summary, the mitigations in place for inflation attacks are insufficient, and, given enough capital and
time, an attacker can create a pool where all future users lose 100% of their deposit.

Code corrected:

The inflation attack was mitigated by adding a virtual offset to the _amount _to_| p_shares and
_|I p_shares_t o_anpunt functions.

For details on this approach, see: ERC4626 - defending with a virtual offset.

6.11 MarginDex Admin Is More Trusted Than
Required
(Medium] [Version 1]

The MarginDex admin is a partially trusted role. It should be able to set the MarginDex instance's
i s_accepting_new orders flag, which pauses new orders but still allows existing positions to be
closed.

CS-UNM-006

However, the admin can also set the vaul t variable, which points to the Vault on which orders are
executed. If the admin sets this variable to a different address, it will be impossible to interact with the
Vault, unless another MarginDex contract is added by the Vault admin. This would cause a Denial of
Service, making it impossible to adjust positions or liquidate them.

The vaul t variable doesn't need to be updatable, so trusting the MarginDex admin not to maliciously
unset the Vault is an unnecessary risk.

Code corrected:

The MarginDex admin can no longer set the vaul t variable. The vaul t variable is now set in the
constructor and cannot be changed.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 23

https://web.archive.org/web/20240524153407/https://docs.openzeppelin.com/contracts/4.x/erc4626#defending_with_a_virtual_offset
https://chainsecurity.com

6.12 Stop-Loss Can Unintentionally Increase
Leverage

(Design | LT DR Specifcation Changed

In MarginDex, users can specify a Stop-Loss order that reduces their position at a certain price. If it is a
partial close, some of the user's margin will also be withdrawn when the order is triggered.

CS-UNM-007

This is done as follows:

anount _out received self. partial _close(trade, sl _order.reduce_by anmpunt, _nin_anmount out)
rati o: uint256 sl _order.reduce_by_anmount PRECI SI ON position. position_anount
remove_mar gi n_anmount: ui nt 256 posi ti on. margi n_anount ratio PRECI SI ON

Vaul t (sel f.vault).renove _margi n(trade.vault_position_uid, renove_nargin_anount)

The amount removed from margin is the percentage of margin that corresponds to the percentage of the
position that was partially closed. E.qg. if the position was reduced by 10%, the margin is also reduced by
10%. This is intended to keep the leverage of the position unchanged.

However, the rati o calculated here assumes that the partial close reduces the debt by the same
percentage that the position is reduced. This is only the case if the trade executes exactly at the oracle
price which is used to calculate the leverage.

This may not happen for multiple reasons:
1. The oracle price may not reflect the current price
2. There may be trading fees

3. There may be slippage

If the execution price is below the oracle price, the debt of the position will be reduced by less than
rati o. Withdrawing r at i o of the margin will thus unintentionally increase the leverage of the position.
In the extreme case where the position already has high leverage, this may cause the leverage to
increase above the maximum acceptable leverage. The transaction will revert and it will be impossible to
execute the partial-close Stop-Loss, even though it would have been possible if less margin was
withdrawn.

The same issue also affects Take-Profit orders.

Specification changed:

The specification has been updated to allow changes in leverage up to the bounds set by the
| ever age_buf f er parameter. This ensures that the leverage does not increase too much:

if Vault(self.vault).positions(_trade_uid).position_anount 0:

| everage_after: uint256 self. _effective_|l everage(_trade_uid, 2)

assert (leverage_after | everage_before m n(|l ever age_bef ore,
self.leverage_buffer)) and (leverage_after | ever age_before sel f.l everage_buffer),
invalid sl execution"

6.13 Reentrancy Into fl ash_cal | back

(D (Low) (Version 2) (XTI

CS-UNM-032

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

The function f | ash_cal | back in the Mar gi nDex contract is assumed to be called only by the Vault
contract. However, there is no restriction on calling it from another contract, and no protection against
reentrancy. A malicious decentralized exchange or tokens with callbacks could reenter the
fl ash_cal | back function. As the margin dex holds funds for the duration of the trade, a part of the
funds could be stolen in this situation.

The maximum value that can be extracted is capped, as the amount of tokens returned must still fulfill the
fairness criteria enforced by the Vaul t contract.

Code corrected:

A reentrancy lock was added to the f| ash_cal | back function. It is a separate lock from the one used
in other functions of MarginDex.

6.14 Bad Debt Check Is Inaccurate
D (Low) (Version 1) (CXIYSHETD)

In cl ose_posi tion(), there is a check that should ensure a user cannot close a position that would
result in bad debt:

CS-UNM-008

mar gi n_val ue: ui nt 256 sel f._quote_token_to_token([...])
assert m n_anount _out mar gi n_val ue sel f._debt (_position_uid), "m n_anmount_out cannot result in bad debt"

This check is inaccurate, as the mar gi n_val ue is calculated using the oracle price. The actual price that
swapping the margin token to debt token would execute at may be lower due to slippage. For the position
token, this is taken into account by using the mi n_anmount _out .

As a result, it may be possible for the user to close a position that results in bad debt.

Code corrected:

The cl ose_posi ti on function was removed and replaced with the more generic change_posi ti on
function, which checks a position's health based on the remaining tokens after the swap has taken place.
While the oracle price is still used for the remaining tokens, the realized price of the swap is token into
account for the swapped tokens.

6.15 Blacklisted Tokens Can Be Swapped Into
(Design [(FTVETTB] Code Corrected

The Vaul t prevents the user from funding their account with assets that are not on the whitelist.
However, they can call the swap_mar gi n function to swap into tokens that were removed from the
whitelist, given that they still have a route configured in the SwapRouter. They can then use the
blacklisted token to top-up an existing margin position via add_nar gi n.

CS-UNM-009

Code corrected:

The swap_mar gi n function now enforces a whitelist on the token being swapped into.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.16 Close_position Slippage May Be Too Strict
(Design [(EDEEITB)] Code Corrected)

In Vault, cl ose_posi tion() enforces that the m n_anount _out given by the user is at least as large
as the syst em ni n_out .

CS-UNM-010

assert m n_anount out systemmn_out, "too little m n_amount_out"

This condition is stricter than necessary. As there is a check later that the mi n_anount _out chosen
cannot cause bad debt, a user should be allowed to specify a m n_anount _out that is smaller than the
one set by the system. A large value set by the system can cause the close to revert. This would be most
likely to be a problem when the oracle price is higher than the Arbitrum Uniswap price.

Code corrected:

The cl ose_posi ti on function was removed and replaced with the more generic change_posi ti on
function. Trades are now protected from too much slippage by a single "fairness check" in
change_position.

6.17 Multiple IDs for Each Position
7D (Low) (Version 1) (XL

The MarginDex stores two IDs for each position, a posi ti on_ui d andavaul t _posi ti on_ui d. Inthe
contracts in scope, both IDs are always the same.

CS-UNM-037

Code corrected:

The secondary ID was removed, and a single posi ti on_ui d is now used everywhere.

6.18 Vault Assumes Chainlink Oracles Have 8
Decimals

[Low] [Version 1] Specification Changed

In Vault._to_usd_oracle_price, it is assumed that Chainlink USD price feeds have 8 decimals. This
condition is not validated when a new asset and its price feed are whitelisted, so it is possible to add a
price feed with a differing number of decimals.

Note that some price feeds like AMPL / UsD have 18 decimals
https://etherscan.io/address/0xe20CA8D7546932360e37E9D72clad7334af57706#readContract

CS-UNM-013

Specification Changed:

Unstoppable clarified that they plan on only utilizing price feeds from the "verified" tier with 8 decimals of
precision.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 26

https://etherscan.io/address/0xe20CA8D7546932360e37E9D72c1a47334af57706#readContract
https://chainsecurity.com

6.19 Event Logs Value With Unclear Interpretation
[Informational] [Version 1]

The MarginDex emits the LimitOrderPosted event for each limit order placed. The event has the field
anount _i n, which is defined as the sum of mar gi n_anount and debt _anount .

CS-UNM-017

The value has an unclear interpretation when the margin token is not equal to the debt token, as
balances of two different tokens are summed together.

Code corrected:

The event was removed.

6.20 Floating Pragma
[Informational] [Version 1]

Unstoppable uses a floating pragma vyper 70.3.10. Contracts should be deployed with the same compiler
version and flags that have been used during testing and audit. Locking the pragma helps to ensure this.

CS-UNM-018

Code corrected:

Unstoppable has fixed the pragma to vyper version 0.3.10.

6.21 SwapRouter Admin Cannot Be Changed
[Informational] [Version 1]

The SwapRouter admin role is set once and cannot be transferred to another address. The other
contracts contain functionality to change the admin.

CS-UNM-021

Code corrected:

The suggest _adni n and accept _admi n functions have been added to the SwapRout er contract.

6.22 Vault Uses Incorrect ERC20 Function
Interface

[Informational] [Version 1]

The Vault defines the incorrect interface for the ERC20 token. The approve function should return true on
success.

CS-UNM-025

Note that changing this may break compatability with tokens that incorrectly implement the ERC20
standard, such as USDT on Ethereum mainnet.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:
The appr ove function has been removed from the interface defined in Vault.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG

28

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Arbitrum Sequencer Could Affect

Block.Timestamp
(Informational) (Version 1)()

CS-UNM-014

The protocol makes use of bl ock. ti mest anp. On Arbitrum, a malicious sequencer is able to change
the block timestamps information to 24 hours earlier then the actual time or 1 hour in the future. See also:

https://docs.arbitrum.io/for-devs/concepts/differences-between-arbitrum-ethereum/block-numbers-and-ti
me#block-timestamps-arbitrum-vs-ethereum

If the timestamp value is set to a previous time, the Vault can accept stale Chainlink prices, and
MarginDex can execute limit orders that have already expired.

Acknowledged:

Unstoppable is aware of this behavior but accepts the risk due to lack of alternative solutions.

7.2 Arbitrum-Specific Code
(Informational] [Version 1](]

CS-UNM-015

Unstoppable is targeting an initial launch to Arbitrum, with plans to extend to additional networks.
However, certain parts of the code work exclusively on Arbitrum:

1. The withdrawTo function, exclusive to Arbitrum's extended WETH, isn't compatible with other
WETH implementations (e.g., Optimism, Mainnet).

2. The addresses for WETH, ARBITRUM_SEQUENCER_UPTIME_FEED, and UNISWAP_ROUTER
are hard-coded to Arbitrum's deployment.

Acknowledged:
Unstoppable responded:

Part of the depl oynent checkli st.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 29

https://docs.arbitrum.io/for-devs/concepts/differences-between-arbitrum-ethereum/block-numbers-and-time#block-timestamps-arbitrum-vs-ethereum
https://docs.arbitrum.io/for-devs/concepts/differences-between-arbitrum-ethereum/block-numbers-and-time#block-timestamps-arbitrum-vs-ethereum
https://chainsecurity.com

7.3 Avoiding Liquidation Penalty in

Self-Liquidation
[Informational] [Version 2] []

CS-UNM-033

In (Version 2), a user's position can be liquidated by anyone if it becomes undercollateralized. The user is
then required to pay a liquidation penalty based on the remaining position margin after liquidation.
However, if no margin tokens are left, the liquidation penalty becomes zero:

i f position.margin_token position. debt token:
penal ty sel f. _quote(position.debt token, position.mrgin_token, penalty)
penal ty m n(penalty, position.margi n_anmount)

If a trade returns more debt tokens than required to cover the debt, the excess tokens are credited to the
user before any penalty is applied. This means that in a self-liquidation scenario, the user can avoid the
liquidation penalty by moving the proceeds from the liquidation into the debt token. Note that the trade
must still fulfill the fairness criteria and the check caps the debt change to the minimum position debt
amount:

anount i n[0] m n(position_debt anmount, convert(_debt change, uint256))

Acknowledged:

Unstoppable responded:

Very unlikely that a user is willing and capable to outperform MEV |i quidators,
but he doesn't sinply close his position before it becones |iquidatable and a
penalty is even in question. Doesn’'t justify the added conplexity to cover this case in code.

7.4 Blacklisted Tokens Can Be Credited

(Informational) (Version 2]

CS-UNM-034

Users are prevented from funding their accounts with assets that are not whitelisted in f und_account
and f und_account _et h. But, similar to Blacklisted Tokens Can Be Swapped Into, a user can fund their
account through other means: If a user has a debt position in a token that was removed from the
whitelist, they can close their position by choosing a route that generates more debt tokens than required
to cover their debt. The excess tokens are then credited to the user's margin and can be used to top up
existing positions by calling the change_posi t i on function with realized_pnl set to a negative value.

7.5 Cannot Mint or Redeem Shares When Price Is
0

(Informational) (Version 1)()

CS-UNM-016

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

The price of an LP share can fall to zero when bad debt is generated. When liquidity is provided or
removed, the contract divides by the share price and the transaction reverts.

Acknowledged:
Unstoppable answered:

Bad debt would have to be repaid first.

7.6 Liquidity Provider Can Withdraw Small

Amount of Lent Out Assets
[Informationalj [Version 1][]

CS-UNM-019
According to code comments, Liquidity Providers should not withdraw liquidity that is currently lent out.
The code enforces this by comparing the proposed amount with total liquidity - debt.

However, the contract does not update the debt before making this comparison, so LPs can withdraw a
small amount of outstanding interest.

Acknowledged:

Unstoppable responded:
Interest accrued is not the sane as lent out liquidity.

An LP can withdraw before " “update debt " is called, but in exchange
“donates” his interest to the remaining LPs in this case.

7.7 No Address 0 Checks

(Informational] [Version 1] []

CS-UNM-020
The following setter functions do not do a sanity check that the address passed is not zero:
1.Vault.set _is whitelisted dex:_ dex
2.Vaul t.set_configuration:swap_router

3. Mar gi nDex. set _vault: _vault

Code partially corrected:

The function Vault.set_configuration no longer sets the swap router. The function
Mar gi nDex. set _vaul t has been removed from the codebase. The function
Vault.set _is_whitelisted_dex still does not check for address 0.

Unstoppable responded:

Due to code size limtations we had to renpve | ow val ue checks.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

7.8 No Grace Period for Sequencer Uptime Feed
[Informational] [Version 1][]

CS-UNM-036

The Vault retrieves the status code of the Arbitrum Sequencer from a Chainlink oracle. When the
sequencer is down, the Vault does not accept the prices provided by Chainlink and reverts.

The Chainlink documentation recommends to wait an additional grace period after the sequencer is back
up to give users time to improve their leverage.

https://docs.chain.link/data-feeds/I2-sequencer-feeds#example-code

Waiting for the grace period increases the risk of price jumps, but could reduce the risk of mass
liquidations.

Acknowledged:

Unstoppable responded:

The recommendati on nakes sense for overcoll ateralized use-cases, in the undercollateralized
environnent we are working in, we want to react as quickly as possible instead of waiting
for users who may or nay not react manually.

7.9 SwapRouter's Exact Output Swap Does Not

Handle Non-Standard Tokens
(Informational] [Version 2] []

CS-UNM-035

In SwapRout er. swap_exact _out (), the contract grants approval to the Uniswap Router to spend the
maximum amount of tokens. However, the router only withdraws the necessary tokens for the swap,
leaving some approval remaining.

This can be problematic with certain non-standard ERC20 tokens (e.g., USDT on Ethereum) that require
the approval to be reset to 0 before a new approval can be set. As a result, the router could become
locked after the first swap not consuming the full approval. While resetting the approval to 0 post-swap
could resolve this, it would render the router contract incompatible with other ERC20 tokens like BNB (on
Ethereum) that explicitly prohibit setting the approval to O.

To accommodate these non-standard tokens, a safe_approve wrapper function could be used (see:
Transfer in SwapRouter does not handle non-standard tokens).

For more context, refer to the following link:
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#approval-race-protections

Note that we are currently not aware of any such tokens on Arbitrum, although they may exist.

Acknowledged:
Unstoppable responded:

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 32

https://docs.chain.link/data-feeds/l2-sequencer-feeds#example-code
https://github.com/d-xo/weird-erc20?tab=readme-ov-file#approval-race-protections
https://chainsecurity.com

Mar gi nDEX functionality will be limted for the foreseeable future to a handful
of the main tokens, no plans to add or support exotic/non-standard tokens.

7.10 Transfer in SwapRouter Does Not Handle

Non-Standard Tokens
[Informationalj [Version 1] []

CS-UNM-022
The SwapRouter uses the transfer function to transfer tokens.

It is considered best practice to use safe_transfer_from for transfers, to check the return value and
handle non-standard ERC20 tokens, such as those that do not return a boolean value on success (such
as USDT and BNB on Ethereum mainnet).

https://github.com/d-xo/weird-erc20?tab=readme-ov-file#missing-return-values

Acknowledged:

Unstoppable is aware of this behavior and notes that they have no plans to use non-standard tokens.

7.11 Utilization Rate Is Overestimated
(Informational) (Version 1)()

CS-UNM-024

The system accrues debt every second due to interest. However, the interest is paid to Liquidity Provider
only when traders close their position or get liquidated. As a result, the contract underestimates the
actual available Liquidity and overestimates the utilization ratio (debt / liquidity).

This leads to a higher interest rate than expected.

Acknowledged:
Client is aware of this behavior, but has decided to keep the code unchanged.

7.12 Withdrawing Liquidity Can Intentionally

Increase Utilization
[Informational] [Version 1] []

CS-UNM-026

Liquidity providers can withdraw their liquidity from the protocol to increase the utilization rate. A larger
utilization ratio increases the interest rate charged to borrowers. Rates will stay high until borrowers close
positions or additional LPs deposit, both of which will likely take some time. It is crucial to ensure that the
maximum interest returned by the interest rate model is not too large.

In the worst case, the interest accrued in a short period (e.g. one block) could be sufficient to liquidate all
borrowers.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 33

https://github.com/d-xo/weird-erc20?tab=readme-ov-file#missing-return-values
https://chainsecurity.com

Acknowledged:
Unstoppable is aware of this behavior.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG

34

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Behavior in Case of Sequencer Downtime

Blocks on Arbitrum are ordered by the sequencer. In case this sequencer goes down, blocks will only be
created again once it comes back online, or by using the force-inclusion mechanism, which can include
transactions on L2 through L1, after waiting for the minimum delay of 24 hours.

While the sequencer is down, the Oracle used by the Vault reverts. As a result, it will be impossible to
open, close, or modify any position (as these actions call the oracle for a leverage check). In particular, it
will also be impossible to liquidate positions. Delaying liquidations may lead to bad debt for the system.

In the special case where the sequencer goes down and never comes back online, users will be able to
withdraw from their margin balances as well as the LP using the force-inclusion mechanism. However, it
will be impossible to close positions. This means any margin used in a position, as well as any LP funds
that are used in active positions will be irrecoverable until the sequencer comes back online. For LPs, this
means that there will be a race to withdraw first. Any LPs that withdraw while there are still unutilized
funds available will receive their money back, while those that withdraw later when the remaining funds
are fully utilized will be unable to withdraw.

Overall, the system is likely to experience bad debt in case the sequencer goes down, especially if it goes
down for extended periods.

8.2 Delegates Can Profit From Bad Trades

According to the trust model, the delegate of a user in MarginDex should be able to trade on their behalf,
but they should not be able to withdraw from their balance.

However, a delegate can indirectly steal from the user's balance by making trades with bad slippage
parameters and then sandwiching the user, see also Sandwiching order execution.

As a result, the trader should only delegate to addresses they fully trust.

8.3 Interest Is Only Paid When the Positions Are
Closed

Traders accumulate interest continuously, but Liquidity Providers only get paid when positions are
closed. If a Liquidity Provider adds funds right before a position closure, they earn interest for the
position's entire duration. But if they withdraw right before a closure, they get no interest, even if they
were deposited for most of the position's duration.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

8.4 Limit Orders Can Become Executable Below
Market Price

(D) (Version 1)

Limit orders contain a m n_anount _out set by the user. This ensures that the order executes at a price
that is no worse than the one set by the user. Usually, this is set to a price that is better than the current
price.

A limit order that has hit its minimum execution price is only executable if the user has a sufficient margin
balance in the Vault. This may not be the case, for example, if the user had another limit order trigger that
uses the same margin token. As a result, the limit order will stay open with a price that is now below
market price. If the user receives sufficient margin balance again later, (e.g. by closing a position), then
the order will be executable again, unless it has passed its expi ry. The user can get sandwiched and
receive only their m n_anount _out , even though the current market price may be significantly higher.

Users can protect themselves from this in multiple ways:
1. Ensure there is always enough margin to execute all open limit orders.
2. Set the expi ry of limit orders to a short time

3. Cancel limit orders that have hit their execution price, but cannot be executed due to insufficient
margin.

Updated behavior:

In (Version 2), a "fairness check" was added to all trades, meaning that in the worst case a stale limit order
can now execute at the configured maximum slippage compared to the oracle price.

8.5 Non-Standard ERC-20 Tokens

We assume that the contract only handles standard ERC-20 Tokens.

We have identified the following issues with non-standard ERC-20 Tokens:
1. The internal accounting of the Vault does not handle rebasing or fee-on-transfer Tokens
2. The price of tokens without deci nal s function cannot be calculated

3. Pausable tokens can stop the Vault from closing positions

8.6 Oracle Manipulation on FIFO L2s
(D) (Version 1)

Unstoppable relies on price oracles for the "fairness check" on swaps, which is critical to the system's
security.

Price oracles must be robust and manipulation-resistant. It must be expensive to manipulate the markets
which are used as price sources.

Usually, the factor that makes price manipulation expensive is arbitrage. If a manipulator pushes the
price of an asset too high or too low, arbitrageurs will see this and make a profit by moving the price back
to the "true price". Any profit made by arbitrageurs will be a loss to the manipulator.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

This "arbitrage assumption” breaks down in two cases:

1. All markets for the token are manipulated simultaneously, so it is difficult to determine the "true
price". There is no other market to arbitrage against.

2. Arbitrageurs are not able to see the manipulated price quickly enough, so they cannot take
advantage of it.

Attacks that target condition 2. are known as "Multi-block MEV" attacks. The idea is that a manipulator
could control the order of transactions in a block, which allows the following:

* In block n, the manipulator sends a transaction (through a private mempool like Flashbots) that
manipulates the price of an asset.

* In block n+1, the manipulator ensures that the first transaction in the block is one where they
revert the price back to the original value.

As a result, arbitrageurs will have no chance of reacting to the manipulation, as it will already be over by
the time they can get a transaction included in the block. However, if there is an Oracle that reads the
price at the beginning of block n+1, it will see the manipulated price.

This attack is well-known on Ethereum, but is generally deemed expensive to execute, as it requires
being ,or having an agreement with, the ETH staker that is chosen to propose block n+1. If the attack
should be repeated multiple times, it requires being chosen as block proposer multiple times within a
short time frame, which requires a significant amount of ETH staked.

However, on L2s, block production works differently. Instead of a different proposer being chosen in each
block, there is typically a single sequencer that decides on a block ordering policy. One commonly used
policy used by chains such as Arbitrum, Optimism and Base is "FIFO" (First In, First Out), where
transactions are included in the order they were received.

In FIFO ordering, the order of transactions is determined by time, not by the price a user is willing to pay.
This can be taken advantage of to fulfill condition 2. above, without needing to be a block producer.

The FIFO attack looks as follows:

1. The manipulator experiments to figure out their latency to the sequencer (and ideally minimizes
it).

2. The manipulator sends a manipulation transaction at a time such that it will arrive at the
sequencer towards the end of the period in which it is building block n.

3. The manipulator sends a second transaction so that it reaches the sequencer at the beginning
of the period in which it is building block n+1.

Arbitrageurs are only able to see the manipulated price once block n is published by the sequencer. By
that time, the manipulator has already sent the second transaction that reverts the price back to the
original value. As time is the only relevant factor, it is impossible for a transaction that is created later to
be included in the block first (unless the arbitrageur has significantly lower latency to the sequencer).

The only cost to the attacker is the trading fees paid. As the attack cannot use a flashloan, they must also
have sufficient capital available to manipulate the price by the percentage they aim for. The attack can be
repeated as many times as the attacker wants, although repeated attacks could be speculatively frontrun
by arbitrageurs if they detect a pattern. Repeated attacks can be used to circumvent outlier-detection
mechanisms and TWAPSs.

A policy that modifies transaction ordering to be based on a payment in addition to timing would make the
attack significantly more expensive. For example, "Arbitrum time-boost" has been proposed, but not yet
implemented. See Time Boost Medium post.

Note that Multi-block MEV attacks have historically been considered mostly in the context of TWAP
manipulation. However, if there is an off-chain oracle, such as ChainLink, that uses an on-chain market
as a primary price source, the attack also applies there. In fact, the effect will be much larger, as off-chain

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com/oracle-manipulation-after-merge/
https://web.archive.org/web/20240120133947/https://medium.com/offchainlabs/time-boost-a-new-transaction-ordering-policy-for-arbitrum-5b3066382d62
https://chainsecurity.com

oracles typically do not use a time-weighted average. Instead, they read the spot price at a single point in
time. As a result, executing the attack once could lead to a heavily manipulated price. Some off-chain
oracles may implement outlier-detection to mitigate this, but this is often not clearly documented, if it
exists at all. If outlier-detection exists, the attack could be executed multiple times.

In summary, Multi-block MEV attacks are likely much more realistic to execute on FIFO L2s (such as
Arbitrum) than on Ethereum, as they are possible without needing to be a block producer. They can
affect on-chain TWAPs as well as any off-chain oracles that use L2 on-chain markets as a primary price
source. This must be considered when deciding which assets have an oracle that is robust enough to
use.

It should be carefully considered before any asset is added to the system for which the price oracle is
based primarily on L2 markets.

8.7 Repay Bad Debt Applies to All LPs
(D) (Version 1

The Vault has a r epay_bad_debt function, that can be used to repay bad debt that was incurred. One
use-case of this could be an insurance fund.

Note that when bad debt is repaid, it will be repaid to all LPs of that token that have shares affected by
bad debt (usually just the safety module). In particular, it will also apply to LPs that deposited after the
bad debt is incurred. Instead of being compensated for their earlier loss, the payment will be a profit to
these new LPs.

As a result, the r epay_bad_debt should be used in a way that is not predictable, as otherwise, it will be
profitable to deposit to the LP before the repayment happens.

This is not a problem in case the bad debt is so large that the protocol goes into "defensive mode", which
disallows deposits to the LP. The admin could also intentionally activate defensive mode.

8.8 Sandwiching Order Execution

(D (Version 1)

Swaps on Unstoppable Margin Dex, such as opening, closing, or liquidating positions, are always routed
through Uniswap. The swaps always have a nmi n_anount _out configured to define a maximum allowed
amount of slippage.

In some cases, the swap transaction can be executed by anyone. This is the case for limit, take-profit and
stop-loss orders, as well as liquidations. In these cases, it is trivial for the executor to "sandwich" the
swap with 2 additional swaps on Uniswap that happen in the same transaction, manipulating the
execution price. This will cause the swap to execute such that exactly the mi n_anmount _out is returned,
but no more. The difference to the unmanipulated price will be a profit to the executor. This can be
executed using a flash loan, so it has no capital requirements.

For transactions that are only executable by certain addresses (such as a user closing their own position)
it is much harder to sandwich, as Arbitrum One does not use a public mempool and has FIFO ordering.
However, if it would be possible to tell using some offchain metric that a user is about to execute a trade,
they could still be frontrun. On a chain that has a different transaction ordering methodology, it may be
possible to reliably frontrun and sandwich these types of transactions too.

It should also be noted that the FIFO ordering means that an arbitrage bot that is optimized for latency
should be expected to execute orders before Unstoppable's own off-chain "Liquidation engine" does, as it
is likely less optimized.

In summary, for transactions executable by anyone, it should be expected that they clear at the
m n_anount _out price with no surplus.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

Updated behavior:

In orders are no longer always routed through Uniswap. Instead, they are routed through a
caller-provided P2PSwapper contract, which can have arbitrary functionality. This means that now a
liquidator can ensure that the swap is executed at the worst price that still passes the fairness check,
even without manipulating the Uniswap market price. This means the costs of "sandwiching" are now
lower. However, also introduces partial liquidations, which allows setting a tighter slippage
bound for liquidations.

The conclusion that transactions executable by anyone should be expected to clear at the worst
acceptable price with no surplus still holds.

A MarginDex implementation that includes an auction mechanism could be added in the future to
improve this.

8.9 Slippage Limit Considerations
(D) (Version 1)

The | i qui dat e_sl i ppage is a critical parameter that can be set per token pair by the Vault admin. It is
used to set the m n_anount _out of swaps such as liquidations to an amount corresponding to the most
recent oracle price minus | i qui dat e_sl i ppage.

We illustrate this using the following example:
* The current Oracle price of ETH/USDC is 1000
*Thel i qui dat e_sl i ppage is set to 5%
* A position of 1 ETH needs to be liquidated
* This will result in a swap with m n_anount _out of 950 USDC

The |l i qui dat e_sl i ppage must not be set too large nor too small.

If it is too large, the ni n_anount _out may be less than the amount needed to close the position without
creating bad debt. Even if it does not create bad debt, it can lead to bad trade execution for the trader.
Note that liquidations should always be expected to clear at mi n_anount _out with no surplus. See also
Sandwiching order execution.

If the 1i qui date_sl i ppage is set too small, the swap will revert. This will make it impossible to
liquidate the position until the oracle price updates or liquidity on Uniswap improves. Delayed liquidations
could lead to bad debt for the system. Slippage being too small should mostly be a problem if a position
is very large compared to the liquidity on Arbitrum Uniswap, see also Large Liguidations Can Fail.

To avoid bad debt, i qui date_slippage should be set to at most
overcol lateralization - oracle_nmax_nove, where overcollateralization can be
calculated as 1/ (max_| ever age+1), since liquidations will be triggered once a position hits a leverage
ratio of max_| everage+1. The or acl e_max_nove is the maximum percentage that the oracle price is
expected to move within a single oracle update. For example, if the max_| ever age on ETH/USDC was
9x (10% overcollateralization) and the oracle price is expected to move at most 5% in one update, then a
slippage limit up to 5% would ensure there cannot be any debt caused by a liquidation, as long as the
or acl e_max_nove assumption holds.

Note that the above calculation only ensures that the | i qui dat e_sl i ppage is not too large, it may still
result in a limit that is too small, which could lead to delays in liquidations. Also note that
oracl e_max_rnove may be difficult to predict in the case of a black swan event such as a flash crash,
chain congestion, or the Arbitrum sequencer going down.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

Updated behavior:

In (Version 2), partial liquidations were introduced. This allows setting tighter slippage limits than behavior,
as now a liquidation can be split into multiple smaller trades with lower price impact.

8.10 Unintuitive Max_Leverage Definition

(D) (Version 1)

The max_| ever age per token pair can be set by the Vault admin. Note that the max_| ever age is
defined as follows:

» Once the leverage of a position reaches max_| ever age + 1, itis liquidatable.

For example, if max_| ever age is 10, a position with 10. 99 leverage will not be liquidatable. It will be
liquidatable once it reaches leverage 11.

The admin setting the leverage parameter, as well as anyone analyzing the risk of the system, must take
this unintuitive definition into account.

8.11 User Pays Liquidation Penalty on Positive
Slippage

During a liquidation, a penalty is charged as a percentage of the debt tokens paid back. However, the
number of debt tokens paid back is not capped by the user's debt and can be slightly larger (when
actual debt _in > position_debt anount).

The user will end up paying the liquidation penalty on any unexpected excess that they receive.

@ Unstoppable - Unstoppable Margin Dex - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Vault
	2.2.2 SwapRouter
	2.2.3 MarginDex
	2.2.4 Trust Model
	2.2.5 Changes in Version 2
	2.2.6 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Flash_callback Can Return Incorrect Values
	5.2 Debt Is Rounded in Favor of User
	5.3 Reading Unused Values From Storage in MarginDex

	6 Resolved Findings
	6.1 Bad Debt Can Be Faked for Profit
	6.2 Users With Approvals Can Be Drained
	6.3 Large Liquidations Can Fail
	6.4 Position Can Become Impossible to Close Due to Zero Swaps
	6.5 Stop-Loss Missing Slippage Protection
	6.6 Bad Debt Check Is Ineffective
	6.7 Swap Margin Uses Incorrect Fairness Check
	6.8 TP / SL Can Increase Debt Exposure
	6.9 Amount Returned From SwapRouter Is Not Validated
	6.10 Inflation Attack on Newly Added Tokens
	6.11 MarginDex Admin Is More Trusted Than Required
	6.12 Stop-Loss Can Unintentionally Increase Leverage
	6.13 Reentrancy Into flash_callback
	6.14 Bad Debt Check Is Inaccurate
	6.15 Blacklisted Tokens Can Be Swapped Into
	6.16 Close_position Slippage May Be Too Strict
	6.17 Multiple IDs for Each Position
	6.18 Vault Assumes Chainlink Oracles Have 8 Decimals
	6.19 Event Logs Value With Unclear Interpretation
	6.20 Floating Pragma
	6.21 SwapRouter Admin Cannot Be Changed
	6.22 Vault Uses Incorrect ERC20 Function Interface

	7 Informational
	7.1 Arbitrum Sequencer Could Affect Block.Timestamp
	7.2 Arbitrum-Specific Code
	7.3 Avoiding Liquidation Penalty in Self-Liquidation
	7.4 Blacklisted Tokens Can Be Credited
	7.5 Cannot Mint or Redeem Shares When Price Is 0
	7.6 Liquidity Provider Can Withdraw Small Amount of Lent Out Assets
	7.7 No Address 0 Checks
	7.8 No Grace Period for Sequencer Uptime Feed
	7.9 SwapRouter's Exact Output Swap Does Not Handle Non-Standard Tokens
	7.10 Transfer in SwapRouter Does Not Handle Non-Standard Tokens
	7.11 Utilization Rate Is Overestimated
	7.12 Withdrawing Liquidity Can Intentionally Increase Utilization

	8 Notes
	8.1 Behavior in Case of Sequencer Downtime
	8.2 Delegates Can Profit From Bad Trades
	8.3 Interest Is Only Paid When the Positions Are Closed
	8.4 Limit Orders Can Become Executable Below Market Price
	8.5 Non-Standard ERC-20 Tokens
	8.6 Oracle Manipulation on FIFO L2s
	8.7 Repay Bad Debt Applies to All LPs
	8.8 Sandwiching Order Execution
	8.9 Slippage Limit Considerations
	8.10 Unintuitive Max_Leverage Definition
	8.11 User Pays Liquidation Penalty on Positive Slippage

