PUBLIC

Code Assessment

of the Permit2
Smart Contracts

November 18, 2022

Produced for

X UNISWAP

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG

10
11
12
14

https://chainsecurity.com

1 Executive Summary

Dear Uniswap,

Thank you for trusting us to help Uniswap with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Permit2 according to Scope
to support you in forming an opinion on their security risks.

Uniswap implements Permit 2 and Perm t 2Li b which are smart contracts that enable permit-style
approvals and transfers using signatures for ERC20 tokens that do not support such functionality.

The most critical subjects covered in our audit are functional correctness, signature handling and
front-running. Security regarding front-running is improvable due to a possible attack vector on permit
approvals, see Race Condition on Approvals. Security regarding functional correctness and signature
handling is high.

The general subjects covered are specification correctness and uncommon language features. Security
regarding all the aforementioned subjects is high.

In summary, we find that the level of security of the codebase is high. Discovered issues do not render
the contracts immediately unsafe, but enable potential human errors.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Risk Accepted

(Low)-Severity Findings

¥ Code Corrected

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the following source code files inside the src folder of Permit2
repository:

« AllowanceTransfer.sol

* EIP712.s0l

« interfaces/IAllowanceTransfer.sol
« interfaces/IDAIPermit.sol

* interfaces/IERC1271.sol

« interfaces/ISignatureTransfer.sol
* libraries/Allowance.sol

« libraries/Permit2Lib.sol

« libraries/PermitHash.sol

« libraries/SafeCast160.sol - was added in
* libraries/SignatureVerification.sol
* Permit2.sol

» PermitErrors.sol

« SignatureTransfer.sol

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
Vv
25 October 2022 €3e496f532792fb764eb61c6a95851fd873e5ae0 | Initial Version
1
11 November 8e981ae18fb29bbcfb539424c7f098e2559e83d6 | Version with fixes
2 | 2022
15 November 12757bf42a030df007f3bd1d38404d86¢c3d29b44 | Version with fixes
3 | 2022
18 November 9681052496b12ddc3cfb312bal0839a5¢c8090eb | Updated Permit2 address
4 | 2022 a

For the solidity smart contracts, the compiler version 0. 8. 17 was chosen.

2.1.1 Excluded from scope

Any imported libraries and contracts that are not mentioned in the Scope. Since we do not fully know how
Per mi t 2Li b will be used in other codebases, there is the possibility of misuse and, hence, its usage is
out of scope.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.2 Assumptions

For this assessment, it is assumed that reviewed contracts will be deployed and run on the Ethereum
mainnet.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of the system overview, we list changes to the system introduced in later versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Uniswap implemented Per it 2 - an approval management system for ERC20 tokens. The existing
EIP-2612 is an EIP-20 extension that allows EOA addresses to sign approval data off-chain to use the
signature later in a per mi t function call to set the allowance. The Per ni t 2 contract can be seen as an
intermediate contract that enables signature-based approval functionality on tokens that do not
implement El P- 2612 directly.

2.2.1 Permit2

The functionality of Per mi t 2 is derived from 2 contracts:
* Al l owanceTr ansf er

* Si gnat ur eTr ansf er

2.2.1.1 Al owanceTr ansfer

This contract tracks allowance using the
PackedAl | owance(ui nt 160 anount, uint64 expiration, uint32 nonce) struct for any
owner, spender and token. The contract defines the following state-modifying functions:

e appr ove - sets allowance amount and expiration for given token and spender with nsg. sender as
an owner.

epermt - using a signature, sets allowance amount and expiration for a given token and spender.
The provided owner should be the origin of the signature. The nonce of the allowance is increased
by 1.

eperm tBatch - batched version of permnit. Only the nonce of the first token allowance is
increased by 1.

etransferFrom - calls token.transferFrom after validation of approval expiration, and
decreases the allowance by the transferred amount.

* bat chTr ansf er Fr om- batched version of t r ansf er Fr om

| ockdown - for meg. sender as owner sets the allowance amount to 0, given an array of tokens
and spenders.

einval i dat eNonces - for nsg. sender as the owner increases the allowance nonce by the
specified amount, given a spender and token. The maximum increase is ui nt 16. nmax.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 6

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

2.2.1.2 SignatureTransfer

This contract allows nsg. sender to transfer a specified amount of a specified token from the owner if
the signature of the owner is provided. The transfer parameters must be hashed and signed according to
the EIP-712 standard. Before the transfer, the deadline of each signature is checked to ensure that they
are not expired yet. The Si gnat ur eTr ansf er contract tracks a ui nt 256 nonce value for any given
owner. Nonces are not incremental and can be used in random order. The contract defines the following
state-modifying functions:

e perm t Transf er Fr om- transfer a given amount of given tokens from the signer of the transfer
params.

e perm t Bat chTr ansf er Fr om- batched version of per m t Tr ansf er Fr om

eperm t Wt nessTransf er From- version of perm t Tr ansf er Fr omwith a byt es32 w t ness
parameter. This is an EIP-712 hash of a witness struct that users can define themselves. Users
need to provide wi t nessTypeNane and wi t nessType string parameters that are needed for a
proper definition of the EIP-712 encodeType function of this witness struct.

e perm t Bat chWt nessTr ansf er Fr om- batched version of per m t Wt nessTr ansf er Fr om

«inval i dat eUnor der edNonces - allows nsg. sender to invalidate own nonces.

The spender signed by the owner must be nsg. sender . The functions that use wi t ness receive string
parameter wi t nessTypeSt ri ng. The sender must provide the correct string for the hashing functions
to be compliant with the EI P- 712.

2.2.2 Permit2Lib

In addition to Per mi t 2, Uniswap implements the Per mi t 2Li b contract. This is a smart contract library
that other smart contracts can use to t r ansf er Fr omand per mi t ERC20 tokens with a callto Perni t 2
as a fallback option. Per mi t 2Li b contains two functions:

et ransf er Fr onR. The execution logic of this function follows this flow:
1. When this function is called, first a call to the ERC20. t r ansf er Fr omfunction is performed.
2. If the call from 1. fails or returns "false", a call to Perm t 2. t r ansf er Fr omis performed.

3. If the second call fails, t r ansf er Fr on®? reverts.

e perm t 2. The execution logic of this function follows this flow:
1. When this function is called, an attempt to read an ERC20. DOVAI N_ SEPARATCR is made.

2.If the returned DOMAI N_SEPARATOR matches the one for the mainnet DAI token, the
DAl . per i t function is called. Otherwise, the El P- 2612. per m t function is called.

3. If any of the calls performed in 1. or 2. fail, a call to Permi t 2. pernit is done. If it fails,
permt 2 reverts.

2.2.3 Changes in

The following changes that affect the previous statements in this section were introduced in (Version 2);

Al l owanceTransfer.pernitBatch is renamed to AllowanceTransfer.pernit. The
arguments of this function are different compared to the non-batch version of the same named
function.

* Al | owanceTr ansf er. bat chTransf er From is renamed to
Al | owanceTr ansf er.transfer From The arguments of this function are different compared to
the non-batch version of the same named function.

* Al | owanceTr ansfer.inval i dat eNonces - for nsg. sender as the owner specifies new nonce
instead of delta. The maximum increase is ui nt 16. nmax.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 7

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

* Al | owanceTr ansf er tracks allowance using the updated
PackedAl | owance(ui nt 160 anount, uint48 expiration, uint48 nonce) struct. The
bit sizes of the expi r at i on and nonce fields were changed.

* Si gnat ureTransfer. pernitBatchTransferFrom is renamed to
Si gnat ureTransfer. pernit Transfer From The arguments of this function are different
compared to the non-batch version of the same named function.

* Si gnat ureTransfer. pernitBat chWtnessTransferFrom is renamed to
Si gnat ureTransfer. pernit WtnessTransfer From The arguments of this function are
different compared to the non-batch version of the same named function.

« Si gnat ur eTr ansf er functions with witness only need a single wi t nessTypeSt ri ng parameter
from user, instead of wi t nessTypeNane and wi t nessType string parameters.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o CIEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-Severity Findings 0

CL:)-Severity Findings 0

(Medium)-Severity Findings 1
« Race Condition on Approvals

(Low)-Severity Findings 0

5.1 Race Condition on Approvals

(D) (Vistium) (Version 1) (TS

Since there is no direct way to increase and decrease allowance relative to its current value, the function
Al'l owanceTr ansf er. approve() has a race condition similar to one of ERC-20 approvals. Further
details regarding the race condition can be found here.

Risk accepted:

Uniswap responded:

We opted not to address this issue. |If users really care about this attack vector it

neans they are likely signing a spender they don't fully trust, and they can al ways approve(x),
approve(0), approve(y). We al so expose a | ockdown function that can batch renobve approvals for users,
bef ore setting new approvals.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 11

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 1
« Permit2Lib Argument Casting

(Medium)-Severity Findings 0

(Low)-Severity Findings 1

« CALL to DOMAIN_SEPARATOR()

6.1 Permit2Lib Argument Casting
(Security [High NESZIBY] Code Corrected

The functions perm t2 and transferFron2 of Permit 2Li b both take ui nt 256 anobunt as an
argument. The lib will first attempt to call the t oken directly and falls back to the call to Per mi t 2 if it fails.
However, the Permit2.permt and Permt2.transferFrom take uint 160 anmount as an
argument. The initial ui nt 256 anount will be cast to ui nt 160 for that call. Assuming some contract A
relies on t r ansf er Fr onR for token transfers, the following can happen:

1. The user calls a function on A that attempts to pull funds from the user using t r ansf er Fr on2. For
anount , the user specifies 2**170.

2. Adirect callto t oken. t r ansf er Fr omfails.
3. Permit2Lib falls back to Per i t 2. t r ansf er Fr omwith ui nt 160(2**170) == 0 as an amount.
4. The call is successful. No value is actually transferred.

5. Contract A now thinks that 2** 170 tokens were actually transferred.

Similar casting happens in the per m t 2 function.

Code corrected:

The Saf eCast library is now used for casting to a uintl60 before the Per nmi t 2 contract is called. The
casting of a value that is greater than t ype(ui nt 160) . nax would revert now.

6.2 CALL to DOVAI N SEPARATOR()
(Design JIEDIUEEZTI) Code Corrected)

EIP-712 defines the function DOVAI N_SEPARATCOR() as a vi ewfunction. Hence, it is expected to always
work properly with STATI CCALL. However, Perm t 2Li b. permi t 2() queries the domain separator
with CALL, allowing the state to change in sub-calls as well as reentrancy. The contracts that will use the
Per m t 2Li b could break unexpectedly.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:
The STATI CCALL is used to query the DOVAI N_SEPARATOR N of the code.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG

13

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Overflow Theoretically Possible for
Al | owanceTr ansf er. nonces

Nonces are incremented with unchecked arithmetic. This means that incrementing them may lead to
overflows, allowing for replay attacks. This is unlikely to happen solely through per ni t , which increases
the nonce by one since the nonce is of type uint32. However, with
Al'l owanceTr ansfer.inval i dat eNonces() overflows could happen after 65537 calls since it uses
type ui nt 16. Thus, signers can potentially endanger themselves by misusing the i nval i dat eNonces
function.

changes: nonce is of type ui nt 48 in updated code. Thus, while the overflow is theoretically still
possible, practically it is highly unlikely to happen.

7.2 Signature Malleability if Misused

In the of the code the SignatureVerification.verify function accepts EIP-2098
compact 64 byte signature in addition to the traditional 65 byte signature format. If the replay protection
mechanism is implemented using the signature itself, an attack can be performed. The contracts of
Permit2 use nonces for replay protection and thus are safe. But any reuse of the
Si gnat ureVeri fi cati on library must be done with this attack in mind. OpenZeppelin library had such
an incident before.

Also, the Si gnat ur eVeri fi cat i on does not perform checks described in Appendix F of the Ethereum
Yellow paper e.g. 0 < s < secp256kln + 2 + 1. Thus, for any given signature a signature with
s-values in the upper range can be calculated. If the replay protection mechanism is implemented using
the signature itself, an attack can be performed.

7.3 1 nval i dat eUnor der edNonces Possible
Arguments

Si gnat ur eTr ansf er. i nval i dat eUnor der edNonces can invalidate nonces with wor dPos values
up to ui nt 256. max. However _useUnor der edNonce can only invalidate up to ui nt 248. max. This
allows the invalidation of nonces that can never be used.

@ Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 14

https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Assumptions

	2.2 System Overview
	2.2.1 Permit2
	2.2.1.1 AllowanceTransfer
	2.2.1.2 SignatureTransfer

	2.2.2 Permit2Lib
	2.2.3 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Race Condition on Approvals

	6 Resolved Findings
	6.1 Permit2Lib Argument Casting
	6.2 CALL to DOMAIN_SEPARATOR()

	7 Notes
	7.1 Overflow Theoretically Possible for AllowanceTransfer.nonces
	7.2 Signature Malleability if Misused
	7.3 invalidateUnorderedNonces Possible Arguments

