

PUBLIC

Code Assessment

of the Permit2

Smart Contracts

November 18, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Notes 14

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Uniswap,

Thank you for trusting us to help Uniswap with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Permit2 according to Scope
to support you in forming an opinion on their security risks.

Uniswap implements Permit2 and Permit2Lib which are smart contracts that enable permit-style
approvals and transfers using signatures for ERC20 tokens that do not support such functionality.

The most critical subjects covered in our audit are functional correctness, signature handling and
front-running. Security regarding front-running is improvable due to a possible attack vector on permit
approvals, see Race Condition on Approvals. Security regarding functional correctness and signature
handling is high.

The general subjects covered are specification correctness and uncommon language features. Security
regarding all the aforementioned subjects is high.

In summary, we find that the level of security of the codebase is high. Discovered issues do not render
the contracts immediately unsafe, but enable potential human errors.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 1

• Risk Accepted 1

Low -Severity Findings 1

• Code Corrected 1

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files inside the src folder of Permit2
repository:

• AllowanceTransfer.sol

• EIP712.sol

• interfaces/IAllowanceTransfer.sol

• interfaces/IDAIPermit.sol

• interfaces/IERC1271.sol

• interfaces/ISignatureTransfer.sol

• libraries/Allowance.sol

• libraries/Permit2Lib.sol

• libraries/PermitHash.sol

• Version 2libraries/SafeCast160.sol - was added in

• libraries/SignatureVerification.sol

• Permit2.sol

• PermitErrors.sol

• SignatureTransfer.sol

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1
25 October 2022 e3e496f532792fb764eb61c6a95851fd873e5ae0 Initial Version

2
11 November
2022

8e981ae18fb29bbcfb539424c7f098e2559e83d6 Version with fixes

3
15 November
2022

12757bf42a030df007f3bd1d38404d86c3d29b44 Version with fixes

4
18 November
2022

9681052496b12ddc3cfb312ba10839a5c8090eb
a

Updated Permit2 address

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

2.1.1 Excluded from scope
Any imported libraries and contracts that are not mentioned in the Scope. Since we do not fully know how
Permit2Lib will be used in other codebases, there is the possibility of misuse and, hence, its usage is
out of scope.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.2 Assumptions
For this assessment, it is assumed that reviewed contracts will be deployed and run on the Ethereum
mainnet.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of the system overview, we list changes to the system introduced in later versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Uniswap implemented Permit2 - an approval management system for ERC20 tokens. The existing
EIP-2612 is an EIP-20 extension that allows EOA addresses to sign approval data off-chain to use the
signature later in a permit function call to set the allowance. The Permit2 contract can be seen as an
intermediate contract that enables signature-based approval functionality on tokens that do not
implement EIP-2612 directly.

2.2.1 Permit2
The functionality of Permit2 is derived from 2 contracts:

• AllowanceTransfer

• SignatureTransfer

2.2.1.1 AllowanceTransfer
This contract tracks allowance using the
PackedAllowance(uint160 amount, uint64 expiration, uint32 nonce) struct for any
owner, spender and token. The contract defines the following state-modifying functions:

• approve - sets allowance amount and expiration for given token and spender with msg.sender as
an owner.

• permit - using a signature, sets allowance amount and expiration for a given token and spender.
The provided owner should be the origin of the signature. The nonce of the allowance is increased
by 1.

• permitBatch - batched version of permit. Only the nonce of the first token allowance is
increased by 1.

• transferFrom - calls token.transferFrom after validation of approval expiration, and
decreases the allowance by the transferred amount.

• batchTransferFrom - batched version of transferFrom.

• lockdown - for msg.sender as owner sets the allowance amount to 0, given an array of tokens
and spenders.

• invalidateNonces - for msg.sender as the owner increases the allowance nonce by the
specified amount, given a spender and token. The maximum increase is uint16.max.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 6

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

2.2.1.2 SignatureTransfer
This contract allows msg.sender to transfer a specified amount of a specified token from the owner if
the signature of the owner is provided. The transfer parameters must be hashed and signed according to
the EIP-712 standard. Before the transfer, the deadline of each signature is checked to ensure that they
are not expired yet. The SignatureTransfer contract tracks a uint256 nonce value for any given
owner. Nonces are not incremental and can be used in random order. The contract defines the following
state-modifying functions:

• permitTransferFrom - transfer a given amount of given tokens from the signer of the transfer
params.

• permitBatchTransferFrom - batched version of permitTransferFrom.

• permitWitnessTransferFrom - version of permitTransferFrom with a bytes32 witness
parameter. This is an EIP-712 hash of a witness struct that users can define themselves. Users
need to provide witnessTypeName and witnessType string parameters that are needed for a
proper definition of the EIP-712 encodeType function of this witness struct.

• permitBatchWitnessTransferFrom - batched version of permitWitnessTransferFrom.

• invalidateUnorderedNonces - allows msg.sender to invalidate own nonces.

The spender signed by the owner must be msg.sender. The functions that use witness receive string
parameter witnessTypeString. The sender must provide the correct string for the hashing functions
to be compliant with the EIP-712.

2.2.2 Permit2Lib
In addition to Permit2, Uniswap implements the Permit2Lib contract. This is a smart contract library
that other smart contracts can use to transferFrom and permit ERC20 tokens with a call to Permit2
as a fallback option. Permit2Lib contains two functions:

• transferFrom2. The execution logic of this function follows this flow:

1. When this function is called, first a call to the ERC20.transferFrom function is performed.

2. If the call from 1. fails or returns "false", a call to Permit2.transferFrom is performed.

3. If the second call fails, transferFrom2 reverts.

• permit2. The execution logic of this function follows this flow:

1. When this function is called, an attempt to read an ERC20.DOMAIN_SEPARATOR is made.

2. If the returned DOMAIN_SEPARATOR matches the one for the mainnet DAI token, the
DAI.permit function is called. Otherwise, the EIP-2612.permit function is called.

3. If any of the calls performed in 1. or 2. fail, a call to Permit2.permit is done. If it fails,
permit2 reverts.

Version 22.2.3 Changes in
Version 2The following changes that affect the previous statements in this section were introduced in :

• AllowanceTransfer.permitBatch is renamed to AllowanceTransfer.permit. The
arguments of this function are different compared to the non-batch version of the same named
function.

• AllowanceTransfer.batchTransferFrom is renamed to
AllowanceTransfer.transferFrom. The arguments of this function are different compared to
the non-batch version of the same named function.

• AllowanceTransfer.invalidateNonces - for msg.sender as the owner specifies new nonce
instead of delta. The maximum increase is uint16.max.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 7

https://eips.ethereum.org/EIPS/eip-712
https://chainsecurity.com

• AllowanceTransfer tracks allowance using the updated
PackedAllowance(uint160 amount, uint48 expiration, uint48 nonce) struct. The
bit sizes of the expiration and nonce fields were changed.

• SignatureTransfer.permitBatchTransferFrom is renamed to
SignatureTransfer.permitTransferFrom. The arguments of this function are different
compared to the non-batch version of the same named function.

• SignatureTransfer.permitBatchWitnessTransferFrom is renamed to
SignatureTransfer.permitWitnessTransferFrom. The arguments of this function are
different compared to the non-batch version of the same named function.

• SignatureTransfer functions with witness only need a single witnessTypeString parameter
from user, instead of witnessTypeName and witnessType string parameters.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedRace Condition on Approvals

Low -Severity Findings 0

5.1 Race Condition on Approvals
Design Medium Version 1 Risk Accepted

Since there is no direct way to increase and decrease allowance relative to its current value, the function
AllowanceTransfer.approve() has a race condition similar to one of ERC-20 approvals. Further
details regarding the race condition can be found here.

Risk accepted:

Uniswap responded:

We opted not to address this issue. If users really care about this attack vector it
means they are likely signing a spender they don’t fully trust, and they can always approve(x),
approve(0), approve(y). We also expose a lockdown function that can batch remove approvals for users,
before setting new approvals.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 11

https://docs.google.com/document/d/1YLPtQxZu1UAvO9cZ1O2RPXBbT0mooh4DYKjA_jp-RLM
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedPermit2Lib Argument Casting

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedCALL to DOMAIN_SEPARATOR()

6.1 Permit2Lib Argument Casting
Security High Version 1 Code Corrected

The functions permit2 and transferFrom2 of Permit2Lib both take uint256 amount as an
argument. The lib will first attempt to call the token directly and falls back to the call to Permit2 if it fails.
However, the Permit2.permit and Permit2.transferFrom take uint160 amount as an
argument. The initial uint256 amount will be cast to uint160 for that call. Assuming some contract A
relies on transferFrom2 for token transfers, the following can happen:

1. The user calls a function on A that attempts to pull funds from the user using transferFrom2. For
amount, the user specifies 2**170.

2. A direct call to token.transferFrom fails.

3. Permit2Lib falls back to Permit2.transferFrom with uint160(2**170) == 0 as an amount.

4. The call is successful. No value is actually transferred.

5. Contract A now thinks that 2**170 tokens were actually transferred.

Similar casting happens in the permit2 function.

Code corrected:

The SafeCast library is now used for casting to a uint160 before the Permit2 contract is called. The
casting of a value that is greater than type(uint160).max would revert now.

6.2 CALL to DOMAIN_SEPARATOR()
Design Low Version 1 Code Corrected

EIP-712 defines the function DOMAIN_SEPARATOR() as a view function. Hence, it is expected to always
work properly with STATICCALL. However, Permit2Lib.permit2() queries the domain separator
with CALL, allowing the state to change in sub-calls as well as reentrancy. The contracts that will use the
Permit2Lib could break unexpectedly.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

Version 2The STATICCALL is used to query the DOMAIN_SEPARATOR in of the code.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Overflow Theoretically Possible for
AllowanceTransfer.nonces
Note Version 1

Nonces are incremented with unchecked arithmetic. This means that incrementing them may lead to
overflows, allowing for replay attacks. This is unlikely to happen solely through permit, which increases
the nonce by one since the nonce is of type uint32. However, with
AllowanceTransfer.invalidateNonces() overflows could happen after 65537 calls since it uses
type uint16. Thus, signers can potentially endanger themselves by misusing the invalidateNonces
function.

Version 2 changes: nonce is of type uint48 in updated code. Thus, while the overflow is theoretically still
possible, practically it is highly unlikely to happen.

7.2 Signature Malleability if Misused
Note Version 2

Version 2In the of the code the SignatureVerification.verify function accepts EIP-2098
compact 64 byte signature in addition to the traditional 65 byte signature format. If the replay protection
mechanism is implemented using the signature itself, an attack can be performed. The contracts of
Permit2 use nonces for replay protection and thus are safe. But any reuse of the
SignatureVerification library must be done with this attack in mind. OpenZeppelin library had such
an incident before.

Also, the SignatureVerification does not perform checks described in Appendix F of the Ethereum
Yellow paper e.g. 0 < s < secp256k1n ÷ 2 + 1. Thus, for any given signature a signature with
s-values in the upper range can be calculated. If the replay protection mechanism is implemented using
the signature itself, an attack can be performed.

7.3 invalidateUnorderedNonces Possible
Arguments
Note Version 1

SignatureTransfer.invalidateUnorderedNonces can invalidate nonces with wordPos values
up to uint256.max. However _useUnorderedNonce can only invalidate up to uint248.max. This
allows the invalidation of nonces that can never be used.

Uniswap - Permit2 - ChainSecurity - © Decentralized Security AG 14

https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope
	2.1.2 Assumptions

	2.2 System Overview
	2.2.1 Permit2
	2.2.1.1 AllowanceTransfer
	2.2.1.2 SignatureTransfer

	2.2.2 Permit2Lib
	2.2.3 Changes in

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Race Condition on Approvals

	6 Resolved Findings
	6.1 Permit2Lib Argument Casting
	6.2 CALL to DOMAIN_SEPARATOR()

	7 Notes
	7.1 Overflow Theoretically Possible for AllowanceTransfer.nonces
	7.2 Signature Malleability if Misused
	7.3 invalidateUnorderedNonces Possible Arguments

