PUBLIC

Code Assessment

of the Franchiser

Smart Contracts

September 13, 2024

Produced for

33 UNISWAP
0y FOUNDATION

by

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Informational

N o o b~ WDN P

Notes

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG

10
11
12
13
14

https://chainsecurity.com

1 Executive Summary

Dear Uniswap Foundation,

Thank you for trusting us to help Uniswap Foundation with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Franchiser
according to Scope to support you in forming an opinion on their security risks.

Uniswap Foundation implements a Franchiser system, that allows multi-level delegation of UNI tokens'
voting power.

The most critical subjects covered in our audit are asset solvency and front-running resistance. Security
regarding all the aforementioned subjects is high.

The general subjects covered are gas efficiency, code complexity, and documentation. Security
regarding all the aforementioned subjects is satisfactory, but can be improved, see
Franchiser.subDelegateMany() Modifier Called in a Loop and Inaccurate NatSpec.

In summary, we find that the codebase provides a high level of security. No issues were identified that
would pose a significant risk to the system.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the sr ¢ folder of Franchiser repository:

Fr anchi ser. sol

Franchi ser Fact ory. sol

Franchi ser Lens. sol
base:

Franchi ser | mut abl eSt at e. sol
i nterfaces:

Fr anchi ser:

| Franchi ser. sol

| Franchi serErrors. sol

| Franchi ser Event s. sol
Franchi ser Fact ory:

| Franchi ser Fact ory. sol

| Franchi ser Fact oryErrors. sol
| Franchi ser | mrut abl eSt at e. sol
| Franchi ser Lens. sol

| Vot i ngToken. sol

The table below indicates the code versions relevant to this report and when they were received.

\Y,

Date

Commit Hash

Note

1

07 Spetember 2024

a9cd24d12ec2c390807a148d9b07eebe2728aa05

Initial Version

For the solidity smart contracts, the compiler version 0. 8. 15 was chosen.

2.1.1 Excluded from scope

Imported dependencies are not in the scope of this assessment.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 High-level Overview

Uniswap Foundation offers a Franchiser system that allows a token holder to give the voting power of
their tokens to a delegatee. The delegatee can further delegate the voting power to a sub-delegatee. The
sub-delegatee can then further delegate the voting power. Note that the initial token holder can retrieve
their tokens at any time.

The contract is intended to be used with the UNI token on Ethereum mainnet.

UNI tokens

Y

Sub-Franchiser

maximumSubDelegatees

Sub-Franchiser

Sub-Franchiser

Franchiser contract visualization

A single Franchiser contract can be visualized as shown in the figure above.
The Del egat or is the token owner who supplies UNI tokens to the Fr anchi ser contract.

The Del egat ee is the address that receives the voting power from the tokens held by the Fr anchi ser
contract. The Del egatee can choose to further sub-delegate this voting power to multiple
Sub- Del egat ees. For each sub-delegation, the delegatee's Fr anchi ser contract deploys a new
Franchi ser contract (Sub-Franchiser) and transfers the corresponding UNI tokens.

The per-address aggregation of delegated voting tokens happens directly in the UNI token contract.
Voting mechanics are also handled by the UNI token contract, independently of the Franchiser system.

At any time, the Del egat or can retrieve their tokens from the Franchi ser contract and all its
sub-delegations. In this context, the Franchi ser contract acts as the Del egator for its
Sub- Franchi ser contracts.

By layering multiple Fr anchi ser contracts, a tree-like delegation structure can be created.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Root delegation

Level 1 delegation

Level 2 delegation

Level N delegation

Level M
Franchiser

Level N
Franchiser

Delegations

2.2.2 Nested Delegation Structure

To ensure that the token r ecal | operation performed by the token owner does not exceed the gas limit,
each Franchiser contract has a Ilimited number of sub-delegatees, defined by
maxi nunSubDel egat ees.

The root Franchi ser contract has a maximum of 8 sub-delegatees. Each subsequent level of
sub-delegatees can have at most half the maximum number of sub-delegatees of the previous level. This
is controlled by the I NI TI AL_MAXI MUM_SUBDELEGATEES and DECAY_FACTOR constants, which by
default are set to 8 and 2, respectively. With these default parameters, the maximum depth of delegation
is 5 levels (including the root level).

For a single initial delegation, the number of Fr anchi ser contracts for each level in the delegation tree
can be:

* 1 Franchi ser contract for the initial token owner

* 8 Franchi ser contracts for the first level of delegation

*8*4 =32 Franchi ser contracts for the second level of delegation
*8*4*2 =064 Franchi ser contracts for the third level of delegation
*8*4*2*1 =64 Franchi ser contracts for the fourth level of delegation

This results in a maximum of 169 Fr anchi ser contracts for one initial delegation.

2.2.3 Smart Contracts Overview
The system consists of the following contracts:

1. Franchi ser Fact ory

2. Franchi ser

3. Franchi ser Lens

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.3.1 Franchi serFactory

The Franchi ser Fact ory contract has a constant variable, franchi ser | npl enent ati on, which
stores the address of the Franchi ser contract reference implementation. Whenever a user calls
Franchi ser Fact ory. fund(), the Franchi ser Fact ory deploys a minimal proxy (ERC-1167; OZ:
cl oneDet erm ni sti c) of the Franchi ser contract implementation, unless a contract has already
been deployed for that specific user (delegator) and delegatee pair. The f und() function then transfers
UNI tokens to the newly created Franchi ser contract. The | NI TI AL_MAXI MUM_SUBDEL EGATEES
constant is used to set the maximum number of sub-delegatees for the root-level Fr anchi ser .

The root-level delegator can call the recal | () function of the Franchi ser Fact ory contract to
retrieve the tokens held by the first-level Fr anchi ser contract and all of its sub-delegations.

Both the f und() and recal | () functions have multi-action versions, that allow multiple actions to be
performed in a single transaction: f undMany() and r ecal | Many() .

Since the Franchi ser Fact ory needs to transfer UNI tokens from the user to the newly created
Franchi ser contract, the user must approve the transfer of UNI tokens to the Fr anchi ser Fact ory
contract.

The user can call the Uni.approve() function to approve the transfer of UNI tokens to the
Franchi ser Fact or y contract. Alternatively, to bundle approval and funding in a single transaction, the
user can produce a signature for the Uni . perm t () function and utilize the following functions of the
Franchi ser Fact ory contract:

epermt()
e perm t AndFund()
e perm t AndFundMany ()

2.2.3.2 Franchi ser

The main functionality of the Fr anchi ser contract is provided by the following functions:

esubDel egate() and subDel egateMany() - Delegates voting power to one or more
sub-delegatees. When these functions are called, an ERC-1167 minimal proxy of the Fr anchi ser
contract is deployed (if it does not already exist) and the specified amount of UNI tokens is
transferred to it. Each sub-delegatee's Fr anchi ser contract is owned by the parent Fr anchi ser
contract and is initialized with nmaxi nunSubDel egatees set to the parent's
maxi nunSubDel egat ees divided by the DECAY _FACTOR. The addresses of the Franchiser's
active sub-delegatees are stored in the _subDel egat ees set.

e unSubDel egat e() and unSubDel egat eMany() - Removes one or more sub-delegatees from
the _subDel egat ees set and recalls the UNI tokens back to the parent Fr anchi ser contract.

erecal | () - Recalls the UNI tokens from the Fr anchi ser contracts of the _subDel egat ees set
and transfers all of the tokens back to the del egat or .

2.2.3.3 Franchi ser Lens

The Franchi ser Lens contract is a read-only utility contract that provides a way to retrieve data from
the Fr anchi ser contract. It is intended to be used by frontend applications and websites.

It has the following functions:
* get Root Del egati on() - Retrieves information about the root delegation.

eget Vertical Del egati ons(Franchi ser) - Traverses the delegation graph up to the root
delegation and returns a list of all delegations along the path.

e get Hori zont al Del egati ons(Franchi ser) - Returns a list of all sub-delegations of the given
Franchi ser contract.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

e get Vot es() - Returns the amount of votes for a given Franchi ser, along with delegation
information.

e get Al l Del egati ons() - Returns the entire delegation tree as a list of lists.

2.2.4 Roles and Trust Model

The system does not have explicit role-based access control. No addresses can change the system
parameters in a way that would affect the behavior of all Fr anchi ser contracts.

Each Franchi ser contract has an owner . Only the owner can call the recal | () function to retrieve
the tokens from the contract and its sub-delegations. For the root level Fr anchi ser, the owner is the
Franchi ser Fact ory contract. For sub-delegatee Franchi ser contracts, the owner is the parent
Franchi ser contract.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Findings

In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings ¢
(1 1)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings g
@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Dangling Franchisers With Tokens

(Informational] [Version 1]

CS-UNIFND-FRNC-001
Assume the following delegation chain:
Alice -> Bob -> Charlie.

Alice decides to send 100 tokens to Charlie, effectively giving more voting power to Charlie, while still
keeping control over the tokens. Bob can front-run this transaction and unSubDel egat e() Charlie.
When Alice's transaction is processed, Charlie's Franchiser will get 100 tokens, but Alice will not be able
to recall them anymore unless Bob calls subDel egat e() on Charlie again.

Sending tokens to a Franchiser's address is unorthodox and should be avoided.

6.2 Inaccurate NatSpec
(Informational] [Version 1]

CS-UNIFND-FRNC-002
Some of the NatSpec comments in the code can be improved:

1. The @oti ce of the function | Franchi ser Fact ory. per mi t AndFundMany describes that the
function calls per m t AndFund many times. However, the implementation makes no calls to
per m t AndFund. Instead, it calls per mi t once on the sum of amounts and then calls f und many
times.

2. The @lev of the function | Fr anchi ser . subDel egat e is inaccurate. If the Franchiser associated
with the subDel egat ee is already active the anmount of vot i ngTokens will also be delegated to
subDel egat ee.

6.3 Franchi ser. subDel egat eMany() Modifier

Called in a Loop
(Informational) (Version 1)

CS-UNIFND-FRNC-003

The subDel egat eMany() function calls the subDel egate() function multiple times. The
subDel egat e() function has the onl yDel egat ee modifier which checks if the caller is the delegatee.
Calling the onl yDel egat ee modifier multiple times in a loop is a redundant check.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Later Solidity Compiler Version Can Be Used
to Avoid Unchecked Blocks

In version 0.8.22, the Solidity compiler does not use safe math checks for loop increments by default. If
the project were to be updated to use this version, the unchecked block would no longer be necessary.
Currently 0.8.15 is used.

More info: https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/

7.2 Theoretical Hash Collision Attack

Sub-delegatees have the ability to deploy new Franchiser contracts via sub-delegation. The address of
the new Franchiser can be arbitrarily chosen by the sub-delegatee.

Assume the following scenario:

Alice is the Delegator, that delegates tokens to Bob. Bob deploys a Factory contract, that can create an
arbitrary number of contracts that are able to sweep UNI tokens. Let's call these "Sweeper" contracts.
Bob can as well pre-compute the set of sub-Franchiser addresses that will be used to deploy Franchiser
contracts (within Alice's delegation tree). Let's call this the "Franchiser" set of contracts.

If both sets of addresses are large enough, there is a chance that some of the sub-Franchiser address
will collide with the Sweeper addresses.

In this case, Bob can:
1. Deploy a Sweeper contract

2.subDel egat e() to the Sweeper contract, so Alice's delegated tokens are transferred to the
Sweeper contract. Due to address collision, the Franchiser contract creation will be skipped.

3. Sweep the tokens from the Sweeper contract.

This is a highly theoretical attack, as it requires a lot of resources to pre-compute the addresses. A 50%
chance of address collision is reached after 281 addresses (2780 in each set). With the current cost of
hardware, such an attack is in the order of 400 billion USD.

However, in ~50 years, this attack might become feasible.

@ Uniswap Foundation - Franchiser - ChainSecurity - © Decentralized Security AG 14

https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 High-level Overview
	2.2.2 Nested Delegation Structure
	2.2.3 Smart Contracts Overview
	2.2.3.1 FranchiserFactory
	2.2.3.2 Franchiser
	2.2.3.3 FranchiserLens

	2.2.4 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Informational
	6.1 Dangling Franchisers With Tokens
	6.2 Inaccurate NatSpec
	6.3 Franchiser.subDelegateMany() Modifier Called in a Loop

	7 Notes
	7.1 Later Solidity Compiler Version Can Be Used to Avoid Unchecked Blocks
	7.2 Theoretical Hash Collision Attack

