

PUBLIC

Code Assessment

of the Franchiser Expiry

Smart Contracts

February 11, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 10

4 Terminology 11

5 Open Findings 12

6 Informational 13

7 Notes 14

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Uniswap Foundation,

Thank you for trusting us to help Uniswap Foundation with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Franchiser
Expiry according to Scope to support you in forming an opinion on their security risks.

Uniswap Foundation's Franchiser system enables multi-level delegation of UNI tokens' voting power.
This latest version introduces support for expirations with permissionless recall of funds to the original
owner after expiry.

The most critical subjects covered in our audit are asset solvency and front-running resistance. Security
regarding all the aforementioned subjects is high.

The general subjects covered are gas efficiency, code complexity, and documentation. The robustness
regarding all the aforementioned subjects is satisfactory but can be improved, see Redundant checks in
...Many() functions and Inaccurate NatSpec. Furthermore, this report contains notes highlighting
considerations to prevent unexpected behavior during operation.

In summary, we find that the codebase provides a high level of security. No issues were identified that
would pose a significant risk to the system.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the src folder of the Franchiser Expiry
repository:

Franchiser.sol
FranchiserExpiryFactory.sol (previously FranchiserFactory.sol in Version 1)
FranchiserLens.sol
base:
 FranchiserImmutableState.sol
interfaces:
 Franchiser:
 IFranchiser.sol
 IFranchiserErrors.sol
 IFranchiserEvents.sol
 FranchiserFactory:
 IFranchiserExpiryFactory.sol (previously IFranchiserFactory.sol in Version 1)
 IFranchiserExpiryFactoryErrors.sol (previously IFranchiserFactoryErrors.sol in Version 1)
 IFranchiserImmutableState.sol
 IFranchiserLens.sol
 IVotingToken.sol

This report covers Version 2, where the newly added expire functionality was the primary scope of
review. The assessment also ensured that the integration of this functionality does not introduce issues in
the existing system.

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 07 September 2024 a9cd24d12ec2c390807a148d9b07ee6e2728aa05 Initial Version

2 03 February 2025 0c4c61844511d03d3fd0e97afdf798b04da4cb76 Franchiser Expiry

For the solidity smart contracts, the compiler version 0.8.15 was chosen.

2.1.1 Excluded from scope
Imported dependencies are not in the scope of this assessment.

2.2 System Overview
This system overview describes Franchiser Expiry corresponding to Version 2 of the contracts as defined
in the Assessment Overview. Version 1 of Franchiser is the base implementation, without the new expiry
functionality added in Version 2.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 5

https://github.com/ScopeLift/franchiser-expiry/tree/a9cd24d12ec2c390807a148d9b07ee6e2728aa05
https://github.com/ScopeLift/franchiser-expiry/tree/0c4c61844511d03d3fd0e97afdf798b04da4cb76
https://chainsecurity.com

2.2.1 High-level Overview
Uniswap Foundation offers a Franchiser system that enables a token holder to delegate voting power to
a delegatee, who can further delegate to subDelegatees. The initial token holder can retrieve tokens at
any time. Additionally, once the expiration time of a delegation is reached, anyone can permissionlessly
trigger the recall of delegated tokens to the original owner (the delegator).

The contract is intended to be used with the UNI token on Ethereum mainnet.

Franchiser contract visualization

A single Franchiser contract can be visualized as shown in the figure above.

The Delegator is the token owner who supplies UNI tokens to the Franchiser contract.

The Delegatee is the address that receives the voting power from the tokens held by the Franchiser
contract. The Delegatee can choose to further sub-delegate this voting power to multiple
subDelegatees. For each sub-delegation, the delegatee's Franchiser contract deploys a new
Franchiser contract (Sub-Franchiser) and transfers the corresponding UNI tokens.

The per-address aggregation of delegated voting tokens happens directly in the UNI token contract.
Voting mechanics are also handled by the UNI token contract, independently of the Franchiser system.

At any time, the Delegator can retrieve tokens from the Franchiser contract and all its sub-delegations. In
this context, the Franchiser contract acts as the Delegator for its Sub-Franchiser contracts. After
expiry, anyone can trigger the retrieval of tokens for the Delegator of the root-level Franchiser. Expiration
times are tracked by the factory for the root-level Franchiser, Sub-Franchiser contracts do not have their
own expiration times.

By layering multiple Franchiser contracts, a tree-like delegation structure can be created.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Delegations

2.2.2 Nested Delegation Structure
To ensure that the token recall operation does not exceed the gas limit, each Franchiser contract
has a limited number of subDelegatees, defined by maximumSubDelegatees.

The root Franchiser contract has a maximum of 8 subDelegatees. Each subsequent level of
subDelegatees can have at most half the maximum number of subDelegatees of the previous level. This
is controlled by the INITIAL_MAXIMUM_SUBDELEGATEES and DECAY_FACTOR constants, which by
default are set to 8 and 2, respectively. With these default parameters, the maximum depth of delegation
is 5 levels (including the root level).

For a single initial delegation, the number of Franchiser contracts for each level in the delegation tree
can be:

• 1 Franchiser contract for the initial token owner

• 8 Franchiser contracts for the first level of delegation

• 8 * 4 = 32 Franchiser contracts for the second level of delegation

• 8 * 4 * 2 = 64 Franchiser contracts for the third level of delegation

• 8 * 4 * 2 * 1 = 64 Franchiser contracts for the fourth level of delegation

This results in a maximum of 169 Franchiser contracts for one initial delegation.

2.2.3 Smart Contracts Overview
The system consists of the following contracts:

1. FranchiserExpiryFactory

2. Franchiser

3. FranchiserLens

2.2.3.1 FranchiserExpiryFactory
The factory contract facilitates the creation and management of Franchiser contracts.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

A constant variable, franchiserImplementation stores the address of the Franchiser contract
reference implementation.

Whenever a user calls FranchiserExpiryFactory.fund(), the FranchiserExpiryFactory
deploys a minimal proxy (ERC-1167; OZ: cloneDeterministic) of the Franchiser contract
implementation, unless a contract has already been deployed for that specific user (delegator) and
delegatee pair. The fund() function then transfers UNI tokens to the newly created Franchiser
contract and updates the expiry timestamp.

The INITIAL_MAXIMUM_SUBDELEGATEES constant is used to set the maximum number of
subDelegatees for the root-level Franchiser.

The root-level delegator can call the recall() function of the FranchiserExpiryFactory contract
at any time to retrieve the tokens held by the first-level Franchiser contract and all of its
sub-delegations. Further recallExpired() allows anyone to permissionlessly initiate a recall if the
expiration for this delegation has been reached. Note that when recall() and recallExpired() is
called with a Franchiser contract that does not exist the function returns without effect and does not
revert.

For the fund(), recall() and recallExpired() functions multi-action versions are available,
allowing multiple actions to be performed in a single transaction: fundMany(), recallMany() and
recallExpired(). Note that fundMany() takes a single expiration timestamp as a parameter. To
fund receivers with different expirations, separate calls are required.

Since the FranchiserExpiryFactory needs to transfer UNI tokens from the user to the newly
created Franchiser contract, the user must approve the transfer of UNI tokens to the
FranchiserExpiryFactory contract.

The user can call the Uni.approve() function to approve the transfer of UNI tokens to the
FranchiserExpiryFactory contract. Alternatively, to bundle approval and funding in a single
transaction, the user can produce a signature for the Uni.permit() function and utilize the following
functions of the FranchiserExpiryFactory contract:

• permit()

• permitAndFund()

• permitAndFundMany()

2.2.3.2 Franchiser
The main functionality of the Franchiser contract is provided by the following functions:

• subDelegate() and subDelegateMany() - Delegates voting power to one or more
subDelegatees. When these functions are called, an ERC-1167 minimal proxy of the Franchiser
contract is deployed (if it does not already exist) and the specified amount of UNI tokens is
transferred to it. Each subDelegatees's Franchiser contract is owned by the parent Franchiser
contract and is initialized with maximumSubDelegatees set to the parent's
maximumSubDelegatees divided by the DECAY_FACTOR. The addresses of the Franchiser's
active subDelegatees are stored in the _subDelegatees set.

• unSubDelegate() and unSubDelegateMany() - Removes one or more subDelegatees from the
_subDelegatees set and recalls the UNI tokens back to the parent Franchiser contract.

• recall() - Recalls the UNI tokens from the Franchiser contracts of the _subDelegatees set
and transfers all of the tokens back to the delegator.

2.2.3.3 FranchiserLens
The FranchiserLens contract is a read-only utility contract that provides a way to retrieve data from
the Franchiser contract. It is intended to be used by frontend applications and websites.

It has the following functions:

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• getRootDelegation() - Retrieves information about the root delegation.

• getVerticalDelegations(Franchiser) - Traverses the delegation graph up to the root
delegation and returns a list of all delegations along the path.

• getHorizontalDelegations(Franchiser) - Returns a list of all sub-delegations of the given
Franchiser contract.

• getVotes() - Returns the amount of votes for a given Franchiser, along with delegation
information.

• getAllDelegations() - Returns the entire delegation tree as a list of lists.

FranchiserLens does not provide expiration information which must be read from the
FranchiserExpiryFactory directly.

2.2.4 Roles and Trust Model
The system does not have explicit role-based access control. No addresses can change the system
parameters in a way that would affect the behavior of all Franchiser contracts.

Each Franchiser contract has an owner. Only the owner can call the recall() function to retrieve
the tokens from the contract and its sub-delegations at any time. Permissionless recall of the funds is
possible using recallExpiry() once the expiration timestamp has been reached.

For the root level Franchiser, the owner is the FranchiserExpiryFactory contract. For
subDelegatee Franchiser contracts, the owner is the parent Franchiser contract.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings
In this section, we describe our findings. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

6.1 Dangling Franchisers With Tokens
Informational Version 1

CS-UNIFND-FRNC-001

Assume the following delegation chain:

Alice -> Bob -> Charlie.

Alice decides to send 100 tokens to Charlie, effectively giving more voting power to Charlie, while still
keeping control over the tokens. Bob can front-run this transaction and unSubDelegate() Charlie.
When Alice's transaction is processed, Charlie's Franchiser will get 100 tokens, but Alice will not be able
to recall them anymore unless Bob calls subDelegate() on Charlie again.

Sending tokens to a Franchiser's address directly should be avoided.

6.2 Inaccurate NatSpec
Informational Version 1

CS-UNIFND-FRNC-002

Some of the NatSpec comments in the code can be improved:

1. The @notice of the function IFranchiserFactory.permitAndFundMany describes that the
function calls permitAndFund many times. However, the implementation makes no calls to
permitAndFund. Instead, it calls permit once on the sum of amounts and then calls fund many
times.

2. The @dev of the function IFranchiser.subDelegate is inaccurate. If the Franchiser associated
with the subDelegatee is already active the amount of votingTokens will also be delegated to
subDelegatee.

6.3 Redundant Checks in ...Many() Functions
Informational Version 1

CS-UNIFND-FRNC-003

Franchiser.subDelegateMany() calls subDelegate() multiple times. The subDelegate()
function has the onlyDelegatee modifier which checks if the caller is the delegatee. Calling the
onlyDelegatee modifier multiple times in a loop is a redundant check.

In Version 2, FranchiserExpiryFactory.fundMany() uses a fixed expiration time for all
delegations. The batch is processed iteratively using fund(), which verifies the expiration timestamp.
Since the timestamp is the same for the entire batch, these repeated checks are redundant.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Expiration Time Is Overwritten on Fund
Note Version 2

In the functions fund and fundMany, a delegation expiration time is stored for each franchiser in the
mapping expirations. Once the expiration time is reached, delegated tokens can be recalled.

Users must be aware that any prior delegation expiration time is overwritten with any new call to fund or
fundMany, an expiry timestamp should not be considered immutable.

7.2 Later Solidity Compiler Version Can Be Used
to Avoid Unchecked Blocks
Note Version 1

In version 0.8.22, the Solidity compiler does not use safe math checks for loop increments by default. If
the project were to be updated to use this version, the unchecked block would no longer be necessary.
Currently, 0.8.15 is used.

More info: https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/

7.3 Notes for Delegating Smart Contracts
Note Version 2

Version 2In of the project delegation with expiry has been added. After the expiration timestamp of a
delegation is reached anyone can recall tokens from the top level Franchiser contract by calling function
recallExpired or recallManyExpired in the FranchiserExpiryFactory contract. These
functions will delete delegations and transfer all delegated tokens back to the delegator. The owner must
be able to handle the incoming funds, which is a reasonable assumption since the funds originally came
from them.

If the delegator is a smart contract, it must be able to accept token transfers initiated by other parties and
handle them gracefully. For example, it must not rely on internal accounting that separately tracks the
balance. Further, if it contains logic to retrieve the funds itself, it must be able to handle the scenario
when funds arrive separately from recallExpired().

7.4 Theoretical Hash Collision Attack
Note Version 1

Sub-delegatees have the ability to deploy new Franchiser contracts via sub-delegation. The address of
the new Franchiser can be arbitrarily chosen by the sub-delegatee.

Assume the following scenario:

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 14

https://soliditylang.org/blog/2023/10/25/solidity-0.8.22-release-announcement/
https://chainsecurity.com

Alice is the Delegator, that delegates tokens to Bob. Bob deploys a Factory contract, that can create an
arbitrary number of contracts that are able to sweep UNI tokens. Let's call these "Sweeper" contracts.
Bob can as well pre-compute the set of sub-Franchiser addresses that will be used to deploy Franchiser
contracts (within Alice's delegation tree). Let's call this the "Franchiser" set of contracts.

If both sets of addresses are large enough, there is a chance that some of the sub-Franchiser address
will collide with the Sweeper addresses.

In this case, Bob can:

1. Deploy a Sweeper contract

2. subDelegate() to the Sweeper contract, so Alice's delegated tokens are transferred to the
Sweeper contract. Due to address collision, the Franchiser contract creation will be skipped.

3. Sweep the tokens from the Sweeper contract.

This is a highly theoretical attack, as it requires a lot of resources to pre-compute the addresses. A 50%
chance of address collision is reached after 2^81 addresses (2^80 in each set). With the current cost of
hardware, such an attack is in the order of 400 billion USD.

However, in ~50 years, this attack might become feasible.

Uniswap Foundation - Franchiser Expiry - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 High-level Overview
	2.2.2 Nested Delegation Structure
	2.2.3 Smart Contracts Overview
	2.2.3.1 FranchiserExpiryFactory
	2.2.3.2 Franchiser
	2.2.3.3 FranchiserLens

	2.2.4 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Informational
	6.1 Dangling Franchisers With Tokens
	6.2 Inaccurate NatSpec
	6.3 Redundant Checks in ...Many() Functions

	7 Notes
	7.1 Expiration Time Is Overwritten on Fund
	7.2 Later Solidity Compiler Version Can Be Used to Avoid Unchecked Blocks
	7.3 Notes for Delegating Smart Contracts
	7.4 Theoretical Hash Collision Attack

