

PUBLIC

Code Assessment

of the Uncap Finance

Smart Contracts

September 26, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 15

7 Informational 23

8 Notes 24

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Uncap Finance team,

Thank you for trusting us to help Uncap Finance with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Uncap Finance according
to Scope to support you in forming an opinion on their security risks.

Uncap Finance implements a BTC backed stablecoin on Starknet. It forks the Liquity v2 stablecoin
mechanism, re-implementing it in the Cairo language.

The most critical subjects covered in our audit are adherence to the original codebase, access control,
and correctness of the new features. In the latest reviewed version, all issues have been resolved and
security regarding all the aforementioned subjects is high.

The general subjects covered are upgradeability and secure integration with oracles. After the redesign
of WBTCPriceFeed, security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 5

Low -Severity Findings 5

• Code Corrected 3

• Risk Accepted 2

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Uncap Finance repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 25 Aug 2025 edb1ccb7a4bb8b09b4edfe7e704017a3df138f32 Initial Version

2 07 Sep 2025 caefb99a727561ee15596c794d00edc12ade53af WBTC Price Feed

3 16 Sep 2025 1710892bf98ec4f71f2c17669fa21e94a3506886 First Round of Fixes

4 18 Sep 2025 71afb890dde8dfee9713bbaa40989c49e3b696b9 Oracle & Cap Fixes

5 25 Sep 2025 3d66745fd58dd1f43218a62ce59393c85d98512a Parameter Updates

For the Cairo contracts, the compiler version 2.12.0 was chosen. At the time of this review (September
2025), Starknet v0.14.0 was live on mainnet. This review cannot account for future changes and possible
bugs in Starknet and its libraries.

The review assumes Liquity V2, considered at commit
2bdffa63097cbd7c8cc5457db3021e3260a1e59c, is secure and focus on the implementation
difference of the following files:

src/
 lib.cairo
 USDU.cairo
 CollateralRegistry.cairo
 ActivePool.cairo
 CollSurplusPool.cairo
 AddressesRegistry.cairo
 DefaultPool.cairo
 SortedTroves.cairo
 BorrowerOperations.cairo
 GasPool.cairo
 StabilityPool.cairo
 TroveNFT.cairo
 trove/
 BatchManager.cairo
 LiquidationManager.cairo
 TroveManager.cairo
 RedemptionManager.cairo
 TroveManagerEventsEmitter.cairo
 utils/
 constants.cairo
 default_address.cairo
 fast_power.cairo
 i257.cairo
 math.cairo

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

 price_feeds/
 WBTCPriceFeed.cairo
 wrappers/
 CollateralWrapper.cairo
 components/
 AddRemoveManagers.cairo
 UncapBase.cairo
 UpgradeableBase.cairo

2.1.1 Excluded from scope
Any file not listed above is excluded from the scope. In particular, libraries, dependencies are out of
scope and assumed to work as documented.

Uncap Finance implements equivalent accountings as Liquity V2 with added features. The review
assumes Liquity V2 is secure and is focused on the semantic and functional equivalence, and verifying
the new features. For more information of Liquity V2, please consult Liquity V2 Review.

The configuration and parameterization of the system is out of scope.

2.2 System Overview
Uncap Finance is a fork of Liquity V2 on Starknet. Since it runs on Starknet, the Liquity V2 contracts have
been rewritten in Cairo, the Rust based language supported by Starknet.

New features have been implemented such as a per-branch debt cap, to limit the risk exposure to certain
collaterals, addition of new branches, upgradeability of all contracts, modifiable MCR, sponsoring of the
liquidation refunds, collateral wrapper. The following global parameters have been modified: MIN_DEBT,
STRK_GAS_COMPENSATION, COLL_GAS_COMPENSATION_CAP.

Uncap Finance offers USDU, a stablecoin pegged to the dollar backed by BTC. The stablecoin logic
follows that of Liquity V2, closely reimplemented in Cairo.

Uncap Finance implements a few novel features:

• New collaterals can be onboarded by a trusted admin.

• Per-collateral debt caps can be configured to limit the risk exposure.

• Contracts have been made upgradeable.

• The Minimum Collateralization Ratio can be lowered by the admin once it has been set.

• Gas Compensations are paid in STRK, the native token on Starknet, and they can be sponsored by
Uncap Finance when opening a trove.

• A token wrapper has been implemented to extend the number of decimals of collaterals to 18 in
case they have fewer.

• The MIN_DEBT, STRK_GAS_COMPENSATION, and COLL_GAS_COMPENSATION_CAP constants
have been modified.

• The TroveManager contract has been refactored into 5 contracts: TroveManager, BatchManager,
LiquidationManager, RedemptionManager, TroveManagerEventEmitter.

• Price feed for WBTC.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 6

https://www.chainsecurity.com/security-audit/liquity-bold-smart-contracts
https://chainsecurity.com

2.2.1 Refactoring
To overcome the contract size limit on Starknet, the TroveManager has been split into several contracts:

• TroveManager contains most of the state and functions to open, modify, and close troves, to join
and leave batches, and to liquidate troves.

• However the internal accounting logic related to batches, and the state of batches has been moved
into the BatchManager contract, and the logic for liquidations has been moved into the
LiquidationManager.

• The branch entry point for redemption has been moved from the TroveManager to the
RedemptionManager.

• RedemptionManager, BatchManager, and LiquidationManager all need to access and modify the
state held in the TroveManager and BatchManager. For this purpose, permissioned external
functions to modify the state of the TroveManager and the BatchManager have been created. These
functions can only be called by the contracts that have been factored out of the original
TroveManager to maintain the original logic.

• Events from these 4 contracts are emitted by the TroveManagerEventEmitter contract, so that they
can be indexed at a single address.

2.2.2 Parameter Changes
Due to the lower gas costs on Starknet, MIN_DEBT has been lowered to 200. This allows opening smaller
troves. The MIN_DEBT parameter is necessary to prevent adversarial actors from griefing the system by
opening small positions. Redemptions operate on each position individually in a loop, and small positions
require the same amount of gas to redeem as big positions. This may make redemptions unprofitable if
MIN_DEBT is too low. The new MIN_DEBT is lower than on Liquity because lower gas costs mean
smaller positions can be redeemed profitably.

Gas compensation is not in ETH but in STRK, and the STRK_GAS_COMPENSATION amount has been
defined as 10 STRK. COLL_GAS_COMPENSATION_CAP has been set accordingly to the collateral type,
which is bitcoin, to 0.1 BTC.

The redemption fee floor has been set to 0.4% given that the price feeds' deviation from the market price
is lower than on Ethereum mainnet.

2.2.3 Addition of New Branches
Unlike Liquity, where the collaterals are immutably set at system deployment time in the
CollateralRegistry contract, in Uncap Finance the CollateralRegistry holds a dynamic list of collaterals,
which can be extended by the owner of the contract.

The CollateralRegistry owner can add a new collateral by independently deploying the contracts for the
new branch (a branch is the set of contracts that handle USDU issuance for a given collateral), and the
new branch is added to the system by registering the AddressesRegistry for the new branch in the
CollateralRegistry through the add_collateral function. The USDU token must also be configured to
allow burning and minting of tokens from the addresses of the new branch: It exposes the
add_branches_addresses function that allows the CollateralRegistry owner to register these
addresses as privileged in the token contract.

Collaterals with fewer than 18 decimals must be wrapped in the CollateralWrapper contract, which issues
equivalent tokens but with precision extended to 18 decimals.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.2.4 Upgradeability
All contracts have been made upgradeable through UpgradeableBaseComponent, a component which
exposes the public function upgrade() (except for the CollateralRegistry contract itself and the
CollateralWrapper contract which implements upgradeability differently). The owner of the
CollateralRegistry can call the upgrade() function of each contract. The upgrade function uses the
native upgradeability mechanism of Starknet (system call replace_class_syscall) to replace the
code the contract is using.

The CollateralWrapper contract implements upgradeability differently, by using UpgradeableComponent
of OpenZeppelin. The mechanism implemented is similar, however the owner is defined per contract, and
is not just the owner of the CollateralRegistry contract. As such, the CollateralWrapper contracts could
have different owners than the system wide admin.

2.2.5 Debt Cap
Branch specific Debt Caps can be configured by the admin, to reduce the system's exposure to single
collaterals. Reaching the Cap prevents opening new troves (positions), or withdrawing more USDU from
existing troves. However, the cap be exceeded by interest accrual on existing debt, and by accrual of
upfront fees generated when adjusting the interest rate of an existing trove.

2.2.6 Configurable Collateralization Ratio
The Minimum Collateralization Ratio of each branch can be modified by the admin, with the
decrease_mcr function defined in the AddressesRegistry. The new value needs to be smaller than the
current one, such that the health of existing troves can only be improved through this function, preventing
the admin from triggering liquidations.

2.2.7 Price Feeds
Uncap Finance implements a price feed for WBTC using the Pragma oracle as a primary source and
Chainlink as a backup source.

When fetching prices for redemptions, the maximum of the WBTC and BTC prices is used, up to a
deviation of 1% after which the WBTC price is used.

For each price, WBTC or BTC, Pragma is first queried. If it fails, because not enough sources are
aggregated (MIN_NUM_SOURCES is 5), the price is zero, or the price is older than
STALENESS_THRESHOLD (set to 24 hours), the Chainlink backup is used. If Chainlink fails because
the price is zero or the price is stale (same STALENESS_THRESHOLD), then Pragma is used anyways
if its response was valid but had fewer sources than MIN_NUM_SOURCES. If Pragma had failed for
another reason, then an oracle failure is reported, the oracle is shut down and the shutdown is
propagated to the system.

2.2.7.1 Pragma
Pragma is a Starknet specific oracle provider. It provides prices for multiple pairs, including WBTC/USD
and BTC/USD. Each price pair has multiple sources, where the prices are queried (e.g. Defillama,
Binance, Coinbase). Each source has one or more publishers, which are Starknet addresses allowed to
push price updates on chain.

When Uncap Finance queries the price with median as the aggregation mode, the following computation
will be performed:

• Entries reported by publishers are filtered by a freshness check. Namely, entries over 1 hour older
than the most recent entry are discarded and not used in the following aggregation. Notably, sources
without any fresh entry will be excluded from the aggregation.

• Within each source, the prices provided by different publishers are aggregated and the source price
is computed as their median.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• The final price is computed as the median over all sources.

• The price resulting from the median aggregation has a timestamp associated with it, which is the
most recent value that took part in the median. The number of sources aggregated is also one of the
returned values.

Sources could each have different publishers, however in practice Pragma as an organization is also the
publisher of most sources. Since they publish more than half of the sources, they are therefore able to
arbitrarily move the median. Using the Pragma oracles therefore implies trusting Pragma to publish
correct values.

The Pragma contract is upgradable and found at address:

• 0x02a85bd616f912537c50a49a4076db02c00b29b2cdc8a197ce92ed1837fa875b .

2.2.7.2 Chainlink
Chainlink feeds on Starknet operates similarly to how it operates on EVM chains. A publisher transmits
new price reports on chain, which consist in a sorted list of values. The list has been validated and signed
by a quorum of chainlink nodes. The signatures are verified on-chain, and the median value is computed
by taking the middle element of the list of prices, which is sorted. WBTC and BTC price feeds are
configured to have a deviation threshold of 0.1%, which is the price change after which Chainlink posts
an update.

Chainlink contracts are upgradable. The owner of the Chainlink contract can also make the data feeds
permissioned, such that only white-listed addresses can query latest_round_data() and similar
functions.

2.3 Trust Model
The following roles exist in the system, with the relative trust model:

• The Owner of the CollateralRegistry contract: fully trusted. It can upgrade other contracts (except
for the CollateralWrappers), and add new branches. In the worst case, it can upgrade contracts to
malicious implementations to seize the collateral or mint USDU for free.

• The Owners of the CollateralWrapper contracts: fully trusted. In the worst case, they can upgrade
the CollateralWrappers to seize the underlying collateral.

• Version 3Deployer of the contracts: fully trusted. Added in , it is a one-time role set in the
constructor upon deployment, who is expected to initialize the contracts with correct parameters.

Further, the following assumptions are made on external entities:

• The Pragma Publisher Registry admin: fully trusted. It can configure the publishers that are allowed
for sources hence in the worst case manipulate the price.

• The Pragma Oracle admin: fully trusted. In the worst case, it can configure Publisher Registry
hence perform a similar price manipulation. Further, it can upgrade the contract to directly
manipulate the price.

• The Pragma Publishers: semi-trusted. In the worst case, they can manipulate the prices that they
are allowed to publish, hence tweak the median price computation in some extent. Note regarding
the specific oracles Uncap Finance uses, Pragma is the publisher of over 50% of the sources: 6/10
for WBTC/USD and 10/12 for BTC/USD, hence Pragma is fully trusted to be honest.

• The Starknet sequencer is trusted to not censor transactions, as there is no force inclusion
mechanism for transactions on Starknet.

• The Chainlink AggregatorProxy owner: fully trusted. In the worst case, it can switch the aggregator
contract or upgrade the Chainlink oracle to manipulate the price. It can also enable the access
control and block Uncap Finance from reading the price.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 9

https://voyager.online/contract/0x02a85bd616f912537c50a49a4076db02c00b29b2cdc8a197ce92ed1837fa875b
https://www.pragma.build/asset/WBTC-USD?network=mainnet
https://www.pragma.build/asset/BTC-USD?network=mainnet
https://chainsecurity.com

• The Chainlink price reporters are partially trusted, as long as fewer than one third are malicious or
faulty, the reported prices cannot be manipulated.

Collateral tokens used in the system are expected to have 18 decimals or being wrapped with the
CollateralWrapper. They should not implement fee on transfer, transfer hooks, or rebasing mechanism.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Risk AcceptedCompromised Collateral Allows Unlimited Value Extraction Despite Debt Cap

• Risk AcceptedSponsor Can Be Drained

5.1 Compromised Collateral Allows Unlimited
Value Extraction Despite Debt Cap
Design Low Version 1 Risk Accepted

CS-UNCAP-001

Since the upfront fee is excluded from the debt cap check, it is possible to elude the debt cap by
repeatedly paying upfront fees, for example by adjusting the interest rate. If the collateral can be freely
minted by an attacker, the attacker can open a trove with a very high amount of collateral, and trigger the
upfront fee in a loop hence blowing up the total debt on this branch. Profit can be extracted by being a
receiver of the upfront fees in the Stability Pool, which are payed in USDU. The attacker can therefore
extract an unbounded amount of USDU and this can eventually lead to USDU depegging for all
branches.

Risk accepted:

Uncap Finance has accepted the risk and stated:

This will be mitigated by cautiously selecting our collaterals.

5.2 Sponsor Can Be Drained
Design Low Version 1 Risk Accepted

CS-UNCAP-002

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The sponsor provides STRK_GAS_COMPENSATION to every new trove as a Gas Compensation for a
potential future liquidator. Depending on the cost of self-liquidations, it might be profitable for an attacker
to open many troves, and liquidate them to earn the STRK_GAS_COMPENSATION. Assuming MIN_DEBT
is 200, STRK_GAS_COMPENSATION is 10, then opening a trove needs at least 200 USDU of debt, of
which 5% is paid, during a liquidation, in collateral as a liquidation discount to the stability pool.

The profitability conditions for an attacker are, disregarding gas costs:

10 STRK + 0.75 * attacker_share_of_stability_pool * MIN_DEBT * liquidation_discount
 >= MIN_DEBT * upfront_fee_rate + MIN_DEBT * liquidation_discount

Because part of the liquidation is recovered by the attacker if they have share in the stability pool. For the
aforementioned parameter values, disregarding the upfront fee (small), we have:

10 * STRK price + 0.75 * attacker_share_of_stability_pool * 200 * 0.05 >= 200 * 0.05

So the attacker can extract value if they own more than (10 - STRK_PRICE * 10)/(0.75 * 10) as
a ratio of the stability pool. Currently STRK_PRICE is 0.13, so the profitability cannot be reached, since it
would require owning a ratio of the stability pool greater than 1. However the strategy might already
become profitable if STRK is priced at $0.25, in case the attacker controls 100% of the stability pool. In
case STRK price reaches $1, the strategy becomes profitable without any stake in the stability pool.

Risk accepted:

Uncap Finance has accepted the risk and stated:

We will monitor sponsor's balance as well STRK price.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedUnprotected Initializer

Medium -Severity Findings 5

• Code CorrectedAccidental Shutdown May Be Triggered After Long Sequencer Outage

• Code CorrectedOracle Failure Cannot Trigger Shutdown

• Code CorrectedCap Check May Block Legitimate Operations

• Code CorrectedIncorrect Position Lookup in Sorted Trove

• Code CorrectedMissing kick_from_batch Functionality

Low -Severity Findings 3

• Code CorrectedShutdown Price May Be Over-Estimated

• Code CorrectedDust May Be Locked in Collateral Wrapper

• Code CorrectedInconsistent Cap Check

Informational Findings 5

• Code CorrectedGas Optimization

• Code CorrectedMissing Getters for deposit_snapshots

• Code CorrectedRedundant Code

• Code CorrectedStale Cairo Compiler Configuration

• Code CorrectedTypos and Misnamed Functions & Variables

6.1 Unprotected Initializer
Security High Version 1 Code Corrected

CS-UNCAP-017

Most contracts of Uncap Finance are upgradeable and an initializer pattern is used to setup the critical
configurations such as contract wiring and parameters after deployment. However, the initializers are not
protected. Hence, a malicious user can backrun the contract deployment and initialize the contracts with
wrong or malicious configurations. Consequently:

• One can DoS the initialization of the contracts.

• One can become the owner of the deployed contracts by passing a manipulated
addresses_registry address.

• One can upgrade the contracts with a backdoor, which can be leveraged to exploit the protocol if it is
not later recognized by the legitimate deployer.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Code corrected:

Version 3In , a trusted deployer address is set at construction time in the contracts. Only this
deployer address is allowed to initialize the contracts, therefore preventing backrunning of
deployments.

6.2 Accidental Shutdown May Be Triggered After
Long Sequencer Outage
Security Medium Version 2 Code Corrected

CS-UNCAP-018

WBTCPriceFeed uses Pragma oracle to get the median price. In pragma, multiple sources can be
configured for one asset, each source may have multiple publishers to publish multiple entries. These
publishers will send individual transactions to publish the price entries asynchronously. Upon a read
request (get_data_median()), onchain aggregation will be performed over all available entries:

1. Fresh entries will be filtered out based on the latest entry and the BACKWARD_TIMESTAMP_BUFFER
(currently set to 1 hour). Namely, any price that is 1 hour older than the most recent one (or now)
will be excluded from the aggregation.

2. The price of each source is computed as the median of all its fresh entries.

3. The price of this asset is computed as the median of all sources, and the
num_sources_aggregated is the number of sources that contain fresh entries.

In Uncap Finance, a shutdown will be triggered in case an oracle failure is detected. In WBTCPriceFeed,
the oracle failure may occur in case there is insufficient sources aggregated in the Pragma price
response:

let not_enough_sources = response.num_sources_aggregated < MIN_NUM_SOURCES;

let oracle_failure_detected = price_is_zero
 || incorrect_decimals
 || is_stale_price
 || not_enough_sources;

In case of a sequencer outage longer than 1 hour, when the sequencer comes back and the first price
entry is updated, all the other entries, which are now more than 1 hour older than the most recent one,
will be excluded from the price aggregation, hence response.num_sources_aggregated will be 1.
As a result, given a MIN_NUM_SOURCES greater than 1, an oracle failure could be triggered to
accidentally shutdown Uncap Finance after the sequencer outage.

Code corrected:

Version 4In the WBTCPriceFeed is redesigned and a Chainlink oracle is added as a fallback in case of
Pragma oracle failure. In case an insufficient number of sources were aggregated in the Pragma oracle
after a network outage, the Chainlink price will be used with a 24 hour staleness threshold. Furthermore,
even if a Chainlink failure is detected, the Pragma oracle price will still be regarded valid if Pragma failure
is only due to insufficient sources.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

6.3 Oracle Failure Cannot Trigger Shutdown
Design Medium Version 2 Code Corrected

CS-UNCAP-012

Protocol shutdown can be triggered by calling shutdown() or shutdown_from_oracle_failure().
The latter is restricted to be called by the price_feed. Further, as the specs suggested, shutdown()
expects the price_feed to call shutdown_from_oracle_failure() during fetch_price().
However, the price_feed never calls shutdown_from_oracle_failure(). As a result, shutdown
can never be triggered from oracle failure. In addition, this means the price_feed itself will shutdown
and serve the last valid price, but the branch will not shutdown and will keep operating with a stuck price.

Code corrected:

Version 4In WBTCPriceFeed has been corrected to trigger a shutdown on BorrowerOperations during
the call of fetch_price() or fetch_redemption_price() if failure is detected.

6.4 Cap Check May Block Legitimate Operations
Design Medium Version 1 Code Corrected

CS-UNCAP-010

The Debt Cap is designed to limit the maximum debt that can be generated on individual branches to
restrict the risk that a single asset poses on USDU peg. It is always enforced in _adjust_trove() with
the following check.

fn require_cap_not_exceeded(self: @ContractState, usdu_amount: u256) {
 if let Some(cap) = self.uncap_base.get_addresses_registry().get_cap() {
 let total_debt = self.uncap_base.get_entire_branch_debt();
 assert(cap >= total_debt + usdu_amount, 'BO: Cap exceeded');
 }
}

Consequently, if the total branch debt has reached the cap, the following operations are blocked, even if
they do not increase the debt: add_coll(), adjust_trove(), repay_usdu(),
adjust_zombie_trove(), withdraw_coll(), withdraw_usdu().

Code corrected:

Version 4In the cap check in _adjust_trove() has been corrected, and is only enforced if there is a
debt increase regardless of the fees and interest.

6.5 Incorrect Position Lookup in Sorted Trove
Correctness Medium Version 1 Code Corrected

CS-UNCAP-006

Function _find_insert_position() is expected to find the correct position to insert the trove with
the input annual interest rate. In case the hints were outdated but the correct position is still between two
hints, it will call descend_and_ascend_list() to find the correct location. However, function
descend_and_ascend_list() returns a mix of descent_pos and ascent_pos, hence may insert

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

the trove to a wrong position. Consequently, the troves may not be correctly sorted according to their
annual interest rate, and the redemption order may be manipulated.

while (true) {
 if (self
 .descend_one(trove_manager_address, annual_interest_rate, ref descent_pos)) {
 return (descent_pos.prev_id, ascent_pos.next_id);
 }
 if (self.ascend_one(trove_manager_address, annual_interest_rate, ref ascent_pos)) {
 return (descent_pos.prev_id, ascent_pos.next_id);
 }
}

Code corrected:

Version 3The issue is corrected in of the code by returning the correct variables in the right order.

6.6 Missing kick_from_batch Functionality
Design Medium Version 1 Code Corrected

CS-UNCAP-011

External function kick_from_batch() is missing in the Uncap implementation of BorrowerOperations.
kick_from_batch() is required to handle a couple of edge-cases involving inflated debt share values
in batches:

• To avoid rounding attacks against batch shares, new debt shares are not minted in batches when
the share value becomes more than 1e9 debt. This prevent attackers from minting bold for free by
exploiting the shares rounding (see issue CS-BOLD-001 of ChainSecurity Bold Review).

• But this also introduces a potential pitfall, where an unredeemable zombie trove cannot be made
redeemable after receiving a redistribution: before making it redeemable, minting of new debt shares
would occur, which reverts because of the 1e9 (MAX_BATCH_SHARES_RATIO) limit. So the
zombie trove must be first kicked from the batch, then made redeemable, then redeemed.

Code corrected:

Version 3In of the code kick_from_batch() has been correctly implemented.

6.7 Shutdown Price May Be Over-Estimated
Design Low Version 2 Code Corrected

CS-UNCAP-009

WBTCPriceFeed stores a last_good_price every time fetch_price_primary is called, which
takes into effect if oracle failure is detected and the branch is shut down. Depending on the last user
operation, last_good_price may store the redemption price or the market WBTC/USD price. If the last
redemption price is recorded right before a failure detected, it might be over-estimated (up to 1%
compared to the last market WBTC/USD price) and would be used as the price for shutdown operations.
Consequently, liquidations and urgent redemptions might become less incentivized and delayed due to
the collateral price being in favor of the trove owner.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 18

https://cdn.prod.website-files.com/65d35b01a4034b72499019e8/682616683c6f2efc5179879b_ChainSecurity_Liquity_Bold_audit.pdf
https://chainsecurity.com

Code corrected:

Version 4In the WBTCPriceFeed has been redesigned where the last_good_price will only track the
wbtc_price. Hence the shutdown price will not be over-estimated even it is recorded during a
redemption.

6.8 Dust May Be Locked in Collateral Wrapper
Design Low Version 1 Code Corrected

CS-UNCAP-008

Collateral wrapper can wrap a collateral below 18 decimals. Users can wrap the underlying tokens with
wrap(), which charges the underlying amount and mints an amount upscaled to 18 decimals. Users can
unwrap the token with unwrap(), which burns the input amount and credits the unscaled amount back
to the user:

let unscaled_amount = amount / self.scaling_factor.read();

Consequently, any amount below scaling_factor cannot be unwrapped, but will still be burned
leading to lost funds in the contract.

Code corrected:

The issue has been addressed by only burning the amount of wrapped collateral that is actually
redeemed. Therefore, the dust balance is not lost but kept in the user's balance.

6.9 Inconsistent Cap Check
Design Low Version 1 Code Corrected

CS-UNCAP-007

The Debt Cap is designed to limit the maximum debt that can be generated on individual branches to
restrict the risk that a single asset poses on USDU peg. However, currently the cap check is inconsistent
in the codebase. The cap check sometimes accounts for fees & interest and sometimes not. cap check
does not account for pending fees & interest in open_trove() and
open_trove_and_join_interest_batch_manager(), but it accounts for pending fees and interest
in _adjust_trove()

Code corrected:

Version 3

Functions open_trove(), open_trove_and_join_interest_batch_manager(), and
_adjust_trove() in all check that the cap is not exceeded without accounting for upfront fee
and interest.

6.10 Gas Optimization
Informational Version 1 Code Corrected

CS-UNCAP-014

Inefficient Storage Updates: An inefficient pattern is used when updating structs in storage, where the
whole structure is first read, then modified in memory, and then written back to storage entirety. For

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

example at line 250-254 of BatchManager, the whole batch is read, only 2 of the fields are updated in
memory, and then the whole batch is written back to storage, leading to many unnecessary storage
writes. The struct fields could be written individually, saving all the reads and most of the writes.

let mut batch = self.batches.entry(batch_address).read();
batch.debt = batch_debt + debt_increase;
batch.total_debt_shares = current_batch_debt_shares + batch_debt_shares_delta;
self.batches.entry(batch_address).write(batch);

Code corrected:

The inefficient pattern has been replaced with the more efficient setting of individual fields. However, the
StoragePath is computed for every field, while it would be more efficient to reuse the already computed
StoragePath.

6.11 Missing Getters for deposit_snapshots
Informational Version 1 Code Corrected

CS-UNCAP-013

The state variable deposit_snapshots stores important checkpoints of the user deposits for the yield
computation. However, there is no getter function to query the snapshot.

Code corrected:

Version 3StabilityPool in exposes get_deposit_snapshots().

6.12 Redundant Code
Informational Version 1 Code Corrected

CS-UNCAP-015

Unnecessary Type Casting: In Cairo, try_into().unwrap() pattern is often used to perform type
casts, however, it is unnecessary in many locations since it is casting into the same type, for example in
set_batch_manager_annual_interest_rate() of BorrowerOperations, variable
last_interest_rate_adj_time is already of type u256:

self
 .require_batch_interest_rate_change_period_passed(
 msg_sender, batch.last_interest_rate_adj_time.try_into().unwrap(),
);

Similar unnecessary type casting also appears at line 313 of BatchManager and lines 475, 522, 834, 887,
892 of TroveManager.

Unused Code: There is some unused or duplicate code in the codebase, for instance:

• In contract USDU, require_caller_is_stability_pool() is unused

• In StabilityPool, events TroveManagerAddressChanged and USDUTokenAddressChanged are
unused.

• In TroveManager, owner_to_positions mapping is unused.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

• Function get_interest_period() is duplicated in BatchManager and TroveManager.

• Function calc_interest() is duplicated in BorrowerOperations, BatchManager, and UncapBase.

• Variables liquidation_penalty_sp and liquidation_penalty_redistribution are
replicated in both AddressRegistry and TroveManager. This could become an issue if during an
upgrade the values are changed in only one of the contracts

• Variable BCR_ALL is defined however it is never used in the contracts.

Code corrected:

Version 3In of the code the following points have been addressed:

• The unnecessary type castings have been removed.

• require_caller_is_stability_pool() has been removed from USDU.

• owner_to_positions has been removed.

• BatchManager does not implement get_interest_period() anymore, but retrieves it from
TroveManager.

• calc_interest() has been factored out of BorrowerOperations, BatchManager, UncapBase, into
the shared.cairo library.

• In TroveManager, liquidation_penalty_sp and liquidation_penalty_redistribution
are now retrieved from AddressRegistry.

Version 4In the BCR_ALL variable has been removed.

6.13 Stale Cairo Compiler Configuration
Informational Version 1 Code Corrected

CS-UNCAP-016

Scarb.toml references Cairo version 2.11.4, however Uncap Finance does not compile with this
compiler version.

Code corrected:

Version 3In the Cairo compiler version is updated to 2.12.0.

6.14 Typos and Misnamed Functions & Variables
Informational Version 1 Code Corrected

CS-UNCAP-005

Typos:

In BorrowerOperations:

// Batch managers set the interest rate for every Trove in the batch. The interest rate it the same for all
Troves in the batch.

In LiquidationManager, a variable is called coll_to_send_so_SP instead of coll_to_send_to_SP.
And there is a typo of Differencen.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

In CollateralRegistry, a comment mentions Soft Collateral Ratio instead of
Shutdown Collateral Ratio

Misnamed Functions & Variables:

• In RedemptionManager, event arg strk_fee of RedemptionFeePaidToTrove is misnamed, as it
represents the collateral fee.

• In TroveManager get_total_coll_and_debt() is misnamed, as it returns the gain snapshots
per unit of stake and not totals.

• In TroveManager update_trove_id_coll() updates the collateral of a trove, not trove id.

• In TroveManager get_trove() and get_reward_snapshots() have a parameter called index,
but it is a trove id and not an index (troves have index in the global trove array but this is not it).

• Version 3In BorrowerOperations function open_position_and_join_position() introduced in
seems to be misnamed.

Incorrect comments:

BorrowerOperations contains a comment saying:

// Check if sponsor has enough approval on gas pool AND if it has enough STRK to pay

It is incorrect, as the approval in on BorrowerOperations, not GasPool.

i257.cairo contains the following comments:

// i257 represents a 129-bit integer.

It is incorrect, as i257 represents a 257 bits integer.

Corrected:

• The comment regarding the interest rate in BorrowerOperations has been fixed.

• The typos in LiquidationManager have been addressed.

• Misnamed function get_total_coll_and_debt() has been removed.

• update_trove_id_coll() has been renamed to update_trove_coll().

• In get_trove() and get_reward_snapshots(), parameter index has been rename to
trove_id.

• "Soft Collateral Ratio" in CollateralRegistry has been fixed to "Shutdown".

• The BorrowerOperations comment has been corrected to approval on BorrowerOperations.

• i257 comment about 129-bit integers has been changed to 257-bit integers.

• Misnamed open_position_and_join_position() has been changed to
open_position_and_join_interest_batch_manager().

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Shutdown Might Not Be Triggered if BTC/USD
Oracle Is Down
Informational Version 2

CS-UNCAP-003

WBTCPriceFeed is a composite price feed where both WBTC/USD and BTC/USD price are queried and
checked for liveness to determine the redemption price. For other operations, only the WBTC/USD price is
queried.

Consequently, for non-redemption operations, if the BTC/USD oracle is down, the oracle failure will not
be detected and a shutdown will not be triggered.

Version 4In , WBTCPriceFeed is redesigned where Chainlink oracle works as a fallback if Pragma failure
is detected. Note that shutdown will not be triggered in case only Chainlink failure is detected.

7.2 Max Number of Collaterals Is Too High
Informational Version 1

CS-UNCAP-004

The maximum number of collaterals is set to 255 in the CollateralRegistry:

assert(num_collaterals < Bounded::<u8>::MAX, 'CR: Max collaterals reached');

However, a single branch redemption costs around 17M L2 gas, and a transaction on Starknet is capped
to 1B L2 gas (as of September 2025). Since every redemption goes through every branches, the system
cannot have more than ~1B/17M ~= 50 collaterals.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Collateralization Rates Consideration
Note Version 1

In theory, CCR (Critical Collateralization Ratio) and MCR (Minimum Collateralization Ratio) should be set
higher than the SCR (Shutdown Collateralization Ratio), otherwise, upon the deployment of a new
branch, one can intentionally trigger a branch shutdown with the following steps:

1. Create the only trove in this branch, which is slightly above MCR.

2. In a following block, due to interest accrual on this trove, the TCR falls below SCR and a shutdown
can be triggered.

8.2 Known Issues of Liquity V2
Note Version 1

Since Uncap Finance is a rewrite of Liquity V2 in Cairo, it shares similar known caveats and issues as
listed in Bold README and Bold audit report. Following are some selected highlights:

Unredeemable Troves Can Pay Minimum Interest Rate

Zombie troves may be created with debt redistribution during a liquidation. This debt will not be
redeemable and those troves can still pay only the minimum interest rate, as long their debt stays below
MIN_DEBT since they are unredeemable. Note intentionally creating troves like this is difficult, as it
requires liquidations to take place when the stability pool is completely empty, which should only happen
in extreme circumstances.

Small Redemptions Do Not Increase Base Rate

The function CollateralRegistry.get_updated_base_rate_from_redemption rounds down
the new base rate from the share of USDU tokens that are redeemed.

let new_base_rate = decayed_base_rate + redeemed_usdu_fraction / REDEMPTION_BETA;

As the redeemed_usdu_fraction is rounded down, splitting a redemption into multiple smaller ones can
reduce the fee paid. The most extreme case are redemptions with
redeemAmount < total_usdu_supply / 1e18, which will have their fraction rounded to zero,
meaning they will not increase the base rate at all. However, multiple redemptions will incur higher gas
costs.

Add Manager Can Increase Stake

The add_manager can add collateral to a trove (or anyone can do it if set to 0). However, increasing the
collateral of a trove also increases its stake. In extreme scenarios where redistributions give more debt to
active positions than collateral, an attacker could send collateral to another trove owner to increase their
share in the bad redistributions. Users need to set a trusted add_manager if they want to prevent this
scenario.

Sending NFTs Does Not Reset Delegation

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 24

https://github.com/liquity/bold?tab=readme-ov-file#known-issues-and-mitigations
https://www.chainsecurity.com/security-audit/liquity-bold-smart-contracts
https://chainsecurity.com

Troves are transferable NFTs which could be sold on a marketplace. Users purchasing a trove should be
aware that the delegation of the trove is not reset when the trove is transferred. This means the seller
could set themselves as the remove manager and receiver before the transfer is executed (potentially
setting it at the last second, frontrunning the purchase), then remove collateral from the trove after the
transfer is completed. As a result, purchasers of troves should be cautious and ensure that the purchase
transaction includes a reset of the delegation.

Uncap Finance - Uncap Finance - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Refactoring
	2.2.2 Parameter Changes
	2.2.3 Addition of New Branches
	2.2.4 Upgradeability
	2.2.5 Debt Cap
	2.2.6 Configurable Collateralization Ratio
	2.2.7 Price Feeds
	2.2.7.1 Pragma
	2.2.7.2 Chainlink

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Compromised Collateral Allows Unlimited Value Extraction Despite Debt Cap
	5.2 Sponsor Can Be Drained

	6 Resolved Findings
	6.1 Unprotected Initializer
	6.2 Accidental Shutdown May Be Triggered After Long Sequencer Outage
	6.3 Oracle Failure Cannot Trigger Shutdown
	6.4 Cap Check May Block Legitimate Operations
	6.5 Incorrect Position Lookup in Sorted Trove
	6.6 Missing kick_from_batch Functionality
	6.7 Shutdown Price May Be Over-Estimated
	6.8 Dust May Be Locked in Collateral Wrapper
	6.9 Inconsistent Cap Check
	6.10 Gas Optimization
	6.11 Missing Getters for deposit_snapshots
	6.12 Redundant Code
	6.13 Stale Cairo Compiler Configuration
	6.14 Typos and Misnamed Functions & Variables

	7 Informational
	7.1 Shutdown Might Not Be Triggered if BTC/USD Oracle Is Down
	7.2 Max Number of Collaterals Is Too High

	8 Notes
	8.1 Collateralization Rates Consideration
	8.2 Known Issues of Liquity V2

