PUBLIC

Limited Code Review

of the Trinity

Smart Contracts

7 June, 2024

Produced for

&Trini’rg

(S: CHAINSECURITY

by

Contents

Executive Summary

Review Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG

10
11
13
19
21

https://chainsecurity.com

1 Executive Summary

Dear Trinity team,

Thank you for trusting us to help Trinity with this security review. Our executive summary provides an
overview of subjects covered in our review of the latest reviewed contracts of Trinity according to Scope
to support you in forming an opinion on their security risks. The review was executed by two engineers
over a period of two weeks.

Limited reviews are best-effort checks, and do not provide assurances comparable to a non-limited code
assessment. Note that only the differences between Gravita and Trinity were in scope, assuming Gravita
is bug-free.

Trinity is a protocol designed to facilitate borrowing against yield-bearing collateral. Borrowers mint TRI, a
dollar-based token that can be used to take leveraged T-Bill positions and capture Trinity protocol fees
through staked TRI (sTRI).

The most critical subjects covered are correct accounting, correctness of the liquidation and redemption
mechanisms, and correctness of the fees and their distribution. Accounting correctness was improved, as
the issue Vessel Fees Are Not Added to Global Debt was fixed. Correctness of the redemption and
liquidation mechanism was low, see Redemptions Are Not Possible in Recovery Mode and Liquidations
Are Not Disabled. In response to this, there was a major specification change during the review period.
Correctness of the fees is improvable, see Borrowing fees are not applied before closing a vessel and
Borrowing fees need to be triggered every epoch.

The general subjects covered are testing and documentation. Testing could be improved, as many
functional issues were uncovered that could have been found through rigorous testing. Documentation
could be improved, as some changes made are not yet documented in detail.

As the goal of this limited review was to provide time-bound security insights on a complex codebase in a
limited time, and as a large number of issues were uncovered, we refrain from assigning a specific
overall level of security to the codebase.

It is important to note that security reviews are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
(C)-Severity Findings 2
BCode Conected 1
Y Specification Changed 1
(Medium)-Severity Findings 10
BCode Conected 4
Y Specification Changed 3
Wik Accepied 3
(Low)-Severity Findings 1
oo Gomectod 1
@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Review Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

This review was not conducted as an exhaustive search, but rather as a best-effort sanity check. It was
performed on the source code files inside the two Trinity repositories, based on the documentation files.
The table below indicates the code versions relevant to this report and when they were received.

Trinity is a fork of Gravita, and the review was performed only on the differences between Trinity and
Gravita, assuming the Gravita codebase to be secure. The commit of Gravita at which it was forked is
Of f 6c043af 62b181872f 3d5¢c78593e6965e17cab.

Trinity-sc (forked)

Date Commit Hash Note
Vv

08 April 71leebd3fe9aeaaaec6cadab678elbd9ca36e | Initial Version
1 2024 8d33

12 April Same code, specification changed
2| 2024

13 May 2024 | 322cha2fc63ae6c¢77877335fbbb272a91c7e9 | Version 3
3 2b5

30 May 2024 | 7022d480bd105a69a4e9f0bba95037¢cb273d | Version 4
4 46ab

07 June a2153e81be66f6feefebas5d8cc309a019e203 | Final Fixes
512024 41f

Trinity (staking)

Date Commit Hash Note
Vv
08 April 384¢90ae81f715bd47b051d32a577907504d | Initial Version
1 2024 7140
12 April Same code, specification changed
2| 2024
13 May 2024 | 6e3d6635cf6770b141f1cc594439c¢337c5fe9 | Version 3
3 432

For the solidity smart contracts, the compiler version 0. 8. 20 was chosen.
The contracts in scope are:

Core protocol (only differences from Gravita):

« contracts/ActivePool.sol
« contracts/AdminContract.sol
» contracts/BorrowerOperations.sol

« contracts/DebtToken.sol

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 5

https://github.com/Gravita-Protocol/Gravita-SmartContracts
https://chainsecurity.com

* contracts/StabilityPool.sol

« contracts/VesselManager.sol

« contracts/VesselManagerOperations.sol
* contracts/Pricing/ERC4626PriceFeed.sol

Staking ERC4626 vault:

» packages/contracts/src/SavingsTRI.sol

» packages/contracts/src/Distributor.sol

2.1.1 Excluded from scope

All contracts that are not mentioned in the scope are automatically considered to be out of scope. In
particular, the tfBill fund contracts are out of scope, and the implementation of the user verification
mechanism in the staking contract is out of scope.

Any issues that were already present in Gravita when the code was forked are out of scope, as only the
differences were considered.

Any economic attacks are out of scope.

2.2 System Overview

This system overview describes the revised specification ((Version 2)) of the contracts as defined in the

Review Overview. The contracts of and are equivalent, but there were major
specification changes.

At the end of this report section, we have added subsections for each of the changes according to the
versions, including the initial spec which was changed during the review process.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Trinity is a protocol designed to facilitate borrowing against yield-bearing collateral. Trinity is a fork of
Gravita, which is a fork of Liquity that allows the use of ERC20 collateral, not just ETH. It will initially be
deployed to the Base Blockchain.

2.2.1 Major modifications compared to Gravita

Trinity is designed to be used with low-volatility collateral, such as tokenized US T-Bills. Trinity operates
under the assumption that the value of the collateral will not drop significantly. If it does, the TRI token will
depeg and trade below 1 USD.

The major modifications compared to Gravita are the following:
1. The liquidation, stability pool, and redemption mechanisms have been modified to only be
accessible by whitelisted actors.

2. Redemptions are expected to be disabled by default and will be enabled by Governance in
case the TRI token trades below 1 USD even though the system is overcollateralized.

3. Redemption fees can be configured to have a constant value. This disables the fee increase
when there are many redemptions in a short period, which is present in Gravita.

4. The debt TokenGasConpensati on parameter will be set to 0, as it is assumed that
liquidations will only very rarely happen.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

5. The CCR parameter will be set to 0, meaning the system will never enter recovery mode. It will
always operate in normal mode.

6. The one-time minting fee has been changed to a recurring weekly fee, paid upfront for the
coming week.

7. Fees are no longer refunded if a user repays their position early.

8. All borrow fees generated by Trinity are sent to the Distributor contract, which distributes them
to the SavingsTRI vault.

9. The collateral value is determined using the convert ToAsset s function of the collateral
token, not by directly calling a price oracle such as Chainlink.

10. The governance token (GRVT in Gravita) has been removed and there are no governance
tokens issued to StabilityPool depositors.

It is also assumed that the borrow fee will be set to a value that is lower than the yield of the T-Bills
underlying the collateral. This means the collateralization ratio of all vessels should improve over time
(assuming collateral value does not fall).

2.2.2 SavingsTRI

SavingsTRI is an ERC4626 Vault. Users can deposit their TRI to receive sTRI. Over time, borrow fees
paid to the Trinity protocol will be paid out to sTRI holders, proportional to their share of the total sTRI

supply.

sTRI can only be minted, redeemed and transferred to or from addresses that pass the i sAl | owed()
check of the UserVerifier contract. This check is meant to verify that the address belongs to a non-US
user. The UserVerifier is treated as a black box for this review, as it is not currently publicly available.

SavingsTRI has an admin role that can set the epochLengt h, the MaxApy, and the r ecei ver address,
which will receive the distributions. It can also upgrade the implementation of the contract.

2.2.3 Distributor

The Distributor contract is responsible for distributing fees generated by the Trinity protocol to the
SavingsTRI vault. At the beginning of each epoch, the di st ri but i onPer Second is determined, which
is the rate at which the vault receives rewards during that epoch. The rate is chosen such that by the end
of the epoch, the balance of the Distributor would reach zero if it did not receive any additional tokens
later. There is also a MaxApyDi stri buti on parameter that limits the maximum APY that can be
distributed to the vault. If the APY would exceed this value, the excess will be distributed in a later epoch
instead.

The Distributor has an admin role that can set the epochLengt h, the MaxApy, and the recei ver
address, which will receive the distributions (intended to be the SavingsTRI vault). It can also upgrade
the implementation of the contract.

2.2.4 Trust Model

The owner of the Trinity core contracts (forked from Gravita) is fully trusted. It can upgrade the
implementations. In the worst case, this would allow stealing all collateral deposited in the system and
minting an unlimited number of TRI tokens.

The owner of the DebtToken contract is fully trusted. It can add addresses to a whitelist that are allowed
to mint TRI without any collateral. In the worst case, this could lead to minting an unlimited number of TRI
tokens.

The admin of the SavingsTRI contract is fully trusted. It can pause the contract, making it impossible for
users to withdraw. Additionally, it can upgrade the implementation. In the worst case, this would allow
stealing all TRI deposited in the Vault.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The admin of the Distributor contract is partially trusted. It can upgrade the implementation. In the worst
case, this would allow stealing all pending rewards (but not Vault deposits) and making withdrawals from
the sTRI contract impossible, due to reverts in cl ai m() . If this happens, withdrawals could be reenabled
by the sTRI admin, by upgrading the sTRI implementation.

The convert ToAsset s function of the collateral tokens, which is used as price oracle, is fully trusted. If
this function returns a price that is too high, it would be possible to mint undercollateralized TRI. In the
worst case, an unlimited nhumber of TRI tokens with very little collateral could be minted. Additionally, it is
assumed that the underlying of the collateral token is non-transferable and does not trade on secondary
markets.

The collateral tokens are assumed not to significantly fall in value. If they do, the TRI token will depeg
and trade below 1 USD.

Collateral tokens should not have any non-standard behavior, such as rebasing or fees-on-transfer.

The whitelisted addresses (liquidators and redeemers) are assumed to act in the best interest of the
protocol.

2.2.5 Initial specification

At the beginning of the review, the initial specification ((Version 1)) was different from in the
following ways:

1. Liguidations were meant to be disabled.
2. Redemptions were meant to be possible in both normal and recovery mode.

3. The CCR parameter was meant to be set to a value above 1, meaning the system was able to
enter recovery mode.

2.2.6 Changes in Version 3

In (Version 3), the gas compensation logic was completely removed from the code, as it was not intended
to ever be used.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security reviews cannot uncover all existing vulnerabilities; even a review in which no vulnerabilities are
found is not a guarantee of a secure system. However, code reviews enable the discovery of
vulnerabilities that were overlooked during development and areas where additional security measures
are necessary. In most cases, applications are either fully protected against a certain type of attack, or
they are completely unprotected against it. Some of the issues may affect the entire application, while
some lack protection only in certain areas. This is why we carry out a source code review aimed at
determining all locations that need to be fixed. Within the customer-determined time frame,
ChainSecurity has performed a review in order to discover as many vulnerabilities as possible.

The focus of our review was limited to the code parts defined in the engagement letter. We assessed
whether the project follows the provided specifications. These reviews are based on the provided threat
model and trust assumptions. We draw attention to the fact that due to inherent limitations in any
software development process and software product, an inherent risk exists that even major failures or
malfunctions can remain undetected. Further uncertainties exist in any software product or application
used during the development, which itself cannot be free from any error or failures. These preconditions
can have an impact on the system's code and/or functions and/or operation. We did not assess the
underlying third-party infrastructure which adds further inherent risks as we rely on the correct execution
of the included third-party technology stack itself. Report readers should also take into account that over
the life cycle of any software, changes to the product itself or to the environment in which it is operated
can have an impact leading to operational behaviors other than those initially determined in the business
specification.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this review, we adopt the following terminology. To classify the severity of our findings,
we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 3

» Borrowing Fees Are Not Applied Before Closing a Vessel
» Borrowing Fees Need to Be Triggered Every Epoch
» Distributor Rewards Are Not Distributed Evenly

(Low)-Severity Findings 0
ty g

5.1 Borrowing Fees Are Not Applied Before
Closing a Vessel

[Medium] [Version 1] Risk Accepted

To close a vessel, a user can call the Bor r ower Oper at i ons. cl oseVessel function. However, this
function does not call _col | ect Vessel Fee(). As a consequence, it is hot guaranteed that the weekly
fee will be applied before closing the vessel. This also implies that the debt to repay in order to close the
vessel will be lower than it should be.

CS-TRI-003

Note that this issue is aggravated since weekly fees are not applied if not manually triggered. It is
possible for a user to open a vessel and pay a one-time fee on the amount borrowed. Then, after an
arbitrary amount of time, the user will be able to close their vessel and repay the loan without having to
pay any interest proportional to the loan duration, unless someone else triggers _col | ect Vessel Fee
on the vessel in the meantime.

Risk accepted:
Trinity responded:

This functionality is by design. As all of the borrowing fees are charged up front for a week,
we do not want to charge any additional fees for closing the vessel. After the epoch ends and
before we trigger the fees manually, there mght occur a small time frame where it would be
possible for a user to avoid paying for the next week, but the loss is negligible.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5.2 Borrowing Fees Need to Be Triggered Every
Epoch
(Design LTI CETIRY] Risk Accepted

Trinity adds a weekly borrow fee to active vessels. To determine whether a vessel has already paid its
fee for the week, its |astFeeCollectionEpoch is stored in a mapping. When
_col | ect Vessel Fee() is called, the fee is charged if the vessel has not paid its fee for the current
epoch.

CS-TRI-002

However, if the fee was last collected more than one epoch ago, the fee is only charged once. In this
case, the vessel would pay fewer fees than it should.

_col | ect Vessel Fee() should charge the user for the number of epochs since the last fee collection.

Risk accepted:
Trinity responded:

As the fees need to be triggered per vessel, there is no easy way to account for all of them at once.
As the protocol mmintainers, we conmt to triggering the fees manually (preferably by using bots).

5.3 Distributor Rewards Are Not Distributed

Evenly
D) (Viedium) (Version 1) (RTEEED)

Assuming that the distributor contract receives a constant amount of TRI per time unit, the rewards in
Di stri but or are supposed to be distributed evenly to the staking vault during the course of epochs. At
the beginning of each epoch, the current balance of the contract and the epoch length are used to
compute how much should be distributed per second during that epoch.

CS-TRI-008

However, note that a new epoch (n+1) does not start at the end of the previous one (n): it starts when the
function cl ai mis called for the first time after endEpochTi nmest anp of epoch n.

This means that the amount to be distributed in epoch n+1 includes all the rewards skipped between
endEpochTi nest anp of epoch n and the beginning of epoch n+1, as this time does not belong to any
epoch. These rewards will accumulate in the contract and get distributed during epoch n+1, making is so
that that the amount that gets distributed during each epoch is not even. It varies based on when the
epoch is started. Some time periods will not belong to any epoch.

Risk accepted:

Client responded:

This functionality is intended. The distribution is to be updated as often as possible
(deposits, withdrawal s or nanually using bots). As a safety neasure, we inplenented
the APY cap feature not to distribute significant funds too quickly.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

* Redemptions Are Not Possible in Recovery Mode LSl RSN
* Vessel Fees Are Not Added to Global Debt

(Medium)-Severity Findings 7
« Borrowing Fees Are Paid in Recovery Mode
» Distributor Can Run Out of Tokens
+ Gas Compensation Cannot Be Disabled

» Liquidations Are Not Disabled

+ Redemption Fees Are Locked in Distributor
» SavingsTRI Does Not Correctly Implement ERC4626
+ Some Vessels Cannot Be Redeemed

(Low)-Severity Findings 1
g
» Some Parameters Cannot Be Set to the Intended Values

Informational Findings 1

» Qutdated Documentation @il TN ENFE)

6.1 Redemptions Are Not Possible in Recovery
Mode
[][Version 1] Specification Changed

According to of the specification, redemptions were meant to be possible both in recovery mode
and in normal mode.

CS-TRI-018

However, in recovery mode redemptions were disabled.

This would pose a problem for the peg stability of TRI, as the redemption mechanism supports price
recovery of TRI in the case where it is trading below 1 USD.

Specification changed:

In of the specification, the CCR parameter is meant to be set to zero. As a result, the system can
never enter recovery mode. This resolves the issue, as it only applies to recovery mode.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.2 Vessel Fees Are Not Added to Global Debt
(Correctness | HigH JNEETII Code Corrected)

In Bor r owQper ati ons. col | ect Vessel Fee(), the borrower fee is added to the user's debt, but not
to the global debt accounting of the active pool. When user debt gets repaid, the function
Act i vePool . decr easeDebt () removes the user debt from the active pool debt.

CS-TRI-001

Since the user debt includes fees, removing all user debt from the pool would underflow the debt of the
active pool and the transaction would revert. This would make it impossible to close some vessels and
funds would be stuck in the contract, unless the admin upgrades the implementation.

The borrow fee should be correctly added to the active pool debt to make the accounting consistent.

Code corrected:

In the code was updated such that when the external function col | ect Vessel Fee is called,
the borrowing fee is accounted globally:

function coll ect Vessel Fee(address _asset, address _borrower) external {
ui nt 256 col | ect edFee _col | ect Vessel Fee(_asset, _borrower);
| Acti vePool (activePool).increaseDebt (_asset, collectedFee);

}

However, the correct global accounting of the fee only happened when calling the external function
col | ect Vessel Fee. When the internal function _col | ect Vessel Fee was called, the borrowing fee
was not accounted globally. In addition, any <call to _collectVessel Fee would set
| ast FeeCol | ect i onEpoch to the current epoch, disabling the external col | ect Vessel Fee function
for that epoch. Therefore, if during a given epoch _coll ectVessel Fee is called, then
col | ect Vessel Fee would not yield any effect, and would not update the global debt.

In the code was updated such that the borrowing fee is correctly accounted globally when
calling the internal function _col | ect Vessel Fee.

6.3 Borrowing Fees Are Paid in Recovery Mode

Correctness (I TTICEREEY] Specification Changed

In of the specification, the system was allowed to enter recovery mode. In that case, the
borrowing fees were supposed to be disabled when opening a new vessel. However, it was still possible
for anyone to trigger col | ect Vessel Fee on the new vessel within the same epoch, de facto applying
the borrowing fee that was skipped when opening the vessel.

CS-TRI-016

Specification changed:

In of the specification, the CCRiis set to zero, which prevents the system from entering recovery
mode. As a conseqguence, the borrowing fees are always applied normally.

6.4 Distributor Can Run Out of Tokens
(I (Viedim) (Version 1) G

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

CS-TRI-004

The Distributor should set the di st ri buti onPer Second to a value such that it has enough balance to
distribute this amount for a full epoch.

The calculation is done as follows:

If amount ToDi stri bute is more than zero, the Distributor will transfer some TRI to the receiver.
However, these TRI are not subtracted from the Distributor's balance in the di st ri but i onPer Second
calculation. As a result, the Distributor will not have enough balance to distribute the full amount for the
next epoch, unless it receives more tokens in the meantime.

Consider the following example:
 epochLength: 100 seconds
* Distributor balance: 101 tokens
« distributionPerSecond: 1 token
* lastClaimTimeStamp: 300 seconds

» epochEndTimeStamp: 400 seconds

At 401 seconds, we call cl ai m() . The new values will be:
« Distributor balance: 1 token
« distributionPerSecond: 1.01 tokens

« lastClaimTimeStamp: 401 seconds

The distributionPerSecond is 1.01, but it should actually be 0.01 tokens per second. So if we cl ai n() at
402 seconds, the contract will try to transfer 1.01 tokens even though it only has a balance of 1 token.

If the Distributor runs out of tokens, the cl ai mfunction will revert. As cl ai () is called on every deposit
or withdrawal of the sTRI vault, this will make it impossible for users to withdraw from sTRI. This can be
resolved by sending TRI token to the Distributor.

Code corrected:

Trinity has corrected the code in the following way:

i f (block.tinestanp epochEndTi nest anp) {
epochEndTi nest anp bl ock. ti nest anp epochLengt h;
ui nt 256 bal anceLeft AfterDi stribution TRI . bal anceO (address(this)) anount ToDi stri but e;
di stri buti onPer Second bal anceLeft AfterDi stribution / epochLengt h;

}

TRI . transfer(receiver, anmountToDistribute);

The di st ri buti onPer Second is now computed using the current balance of the distributor minus the
amount to distribute from the previous epoch.

6.5 Gas Compensation Cannot Be Disabled

(D) (Wiedium) (Version 1) (SR

According to the specification, the gas compensation in Trinity is supposed to be disabled by setting the
Adm nContract . get Percent Di vi sor parameter to zero.

CS-TRI-005

However, in TrinityBase, the _get Col | GasConpensat i on function divides by the getPercentDivisor.
This means that if the per cent Di vi sor is set to zero, a division by zero will cause a revert.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Additionally, the AdminContract enforces that the per cent Di vi sor must be set to a value between 2
and 200, so it is not possible to set a value of zero.

Code corrected:
The gas compensation logic has been completely removed from the contracts.

However, there is still the debt TokenGasConpensati on parameter in the Col | at er al Par ans of
Adm nCont r act , which is now unused.

6.6 Liquidations Are Not Disabled
(Correctness JITZI)NIERTRY Specification Changed.

In of the specification, it was stated that liquidations should be disabled.
However, the code was not modified compared to Gravita, and liquidations were still possible.

CS-TRI-019

Specification changed:

In of the specification, it was decided that liquidations should be possible by whitelisted
addresses.

6.7 Redemption Fees Are Locked in Distributor

(Medium] [Version 1] Code Corrected

When a redemption occurs, any redemption fees (charged in collateral asset) are sent to
Addr essesConfi gurabl e. treasuryAddress. The borrowing fees are also sent to
t reasur yAddr ess, assumed to be the address of the Distributor contract. Therefore, redemption fees
are sent to the Distributor contract. However, this contract does not offer any way of retrieving assets
other than TRI, and as a consequence, the redemption fees will be locked in Distributor. The locked fees
could be retrieved by the owner of the Distributor, by upgrading the contract.

CS-TRI-006

Code corrected:

A new di stributorAddress has been added to the system. Now, the di stri but or Address
receives the borrowing fees, and the separate t r easur yAddr ess receives the redemption fees. The
t reasur yAddr ess will be configured to be able to handle all collateral assets.

6.8 SavingsTRI Does Not Correctly Implement
ERC4626
D (Viediurm) (Version 1) (XIS

SavingsTRI does not correctly implement ERC4626 due to the following discrepancies from the
specification:

CS-TRI-007

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The specification for maxDeposi t () contains the following:

MJUST factor in both global and user-specific limts, |like if deposits
are entirely disabled (even tenporarily) it MJST return O.

In SavingsTRI, the naxDeposi t function does not factor in that a user may be unable to deposit. This
could be the case if the user has not passed the veri fyUser () check, or if the contract is paused. In
these cases nmaxDeposit() should return 0, but it does not. The same issue is also present in
maxM nt (), maxW t hdr aw() and naxRedeen().

Code corrected:

Trinity has corrected the code by overriding the ERC4626 view functions mentioned above and
incorporating the following check:

i f (paused() i sUser Al | owed(receiver)) return 0;

6.9 Some Vessels Cannot Be Redeemed
(Design [(TXTTOCLETIBY Specification Changed)

In of the specification, the system was supposed to only have redemptions and no liquidations.
It was intended that a vessel could be redeemed if its individual collateral ratio (I CR) was too low.

CS-TRI-017

However, the code did not allow this. The r edeentol | at er al function will start redemptions with the
first vessel that has an | CRthat is greater than the MCR (minimum collateral ratio).

current Bor r ower | Sort edVessel s(sortedVessel s) . get Last (_asset) ;

whi l e (
current Borr oner addr ess(0)
| Vessel Manager (vessel Manager). get Current | CR(_asset, currentBorrower, totals.price)
I Adm nContract (adm nContract) . get Mcr(_asset)

) {

}

cur rent Borr oner | Sort edVessel s(sortedVessel s). getPrev(_asset, currentBorrower);

Vessels with | CR < MCR can only be liquidated, not redeemed. As intended for liquidations to
be disabled, these vessels could only be closed by their owners and could not be redeemed or liquidated.

Specification changed:

In of the specification, it was decided that liquidations should be possible. This resolves the
issue, as now vessels with | CR < MCR can be liquidated.

6.10 Some Parameters Cannot Be Set to the
Intended Values

(Corvectness JOEERTBY Code Corrected)

CS-TRI-010

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The specification states that "There are no redemption fees in Trinity". The redemption fees are
composed of 2 parts: the redemption fee floor and the base rate. The redemption fee floor can be
disabled. However, the set Redenpti onFeeFl oor function in the AdminContract requires that the
value is set to at least 0. 01% so it cannot be zero.

In (Version 2), the CCR parameter is intended to be set to zero. However, because of the following check:
saf eCheck("CCR', _collateral, newCCR, 1 ether, 10 ether)

In AdminContract, the value of the CCR is restricted between 1el8 and 10*1e18, which prevents it from
being set to zero.

Code corrected:

Trinity has corrected the code: now the function set Redenpt i onFeeFl oor can set the redemption fee
floor to zero and the function set CCR can set the CCR to zero.

6.11 Outdated Documentation

(Informational) (Version 1) E s llElas oL e

In StabilityPool, the code comments contain a section called "Trinity issuance to stability pool depositors”.
However, the token issuance to the stability pool that was present in Gravita has been removed in Trinity.

CS-TRI-012

In BorrowerOperations, there is a comment that says "the borrowing fee partial refund is not burned here,
as it has already been burned by the FeeCollector". However, the FeeCollector does not exist in Trinity.

The README of the trinity-sc_code repo mentions the FeeCollector contract, even though it was
removed in Trinity.

Specification changed:

The incorrect comments have been removed.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Collateral Decimals Value Could Return

Incorrect Value
(Informational] [Version 1] [j

CS-TRI-009

In Admi nCont ract . addNewCol | at er al , the _deci nal s value passed as input is required to be 18.
This value will then be stored in the collateral parameters and returned by the getter get Deci nal s.
However, collateral tokens with fewer than 18 decimals should also be supported.

This is currently only possible by incorrectly passing 18 as decimals when adding the collateral, which
means that the getter would return an incorrect value.

Acknowledged:
Trinity responded:

The deci mal enforcenment has been inplemented in the forked protocol by the Gravita team
Wiile it has to always be strictly set to 18, all of the necessary decimals conversions are
handl ed by the contracts and the protocol allows accepting tokens with any nunber of decimal places.

7.2 Users That Lose Verification Still Receive

Rewards
(Informational) (Version 1)()

CS-TRI-013

The Savi ngsTRI vault only allows verified users to transfer their sTRI tokens. Consequently, unverified
users cannot have sTRI minted or burned, and cannot be the source or the recipient of a transfer.

Note that when a user who was once verified is removed from the verified list, they keep their tokens. The
user will keep having a share of the vault and receive reward distributions from borrow fees, but not be
able to withdraw.

Acknowledged:
Trinity responded:

W find it as a very unlikely scenario for a user to be renmoved fromthe whitelist while they
are providing to the Savings TRl vault, but if it ever occurs, we would resolve the issue manually.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7.3 openVessel assetAmount Is Unintuitive
[Informational] [Version 1][]

CS-TRI-015

In BorrowerOperations, the openVessel function takes an argument asset Amount. The
asset Anount needs to be given as the amount of assets to deposit, scaled to 18 decimals. For
example, if the collateral had 6 decimals and the user wanted to deposit one token, the user would need

to input 1E18, not 1E6 as they would expect.
The documentation could be updated to clarify this behavior.

Acknowledged:
Trinity responded:
This issue is caused by the original Gavita design with 18 deci mals enforcenents.

We handle this for our users using the trinity U . W assune that a user interacting
with the contract directly is doing so at their own risk.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Compounding Borrowing Fees

The borrowing fees are added to the user's debt every week and therefore compound over time. For
example, if the weekly borrow rate is set to 0.077 (4 % / 52), and it is charged separately every week,
then the debt increases by 4.07% in a year:

4.07% = (1 +4%/52)°> - 1

Governance should take this compounding effect into account when setting the borrowing fees to ensure
that the debt does not increase by more than expected.

8.2 Volatile Collateral Could Lead to Depeg

Trinity is designed to only be used with low-volatility collateral. As the recovery mode is disabled, the
system does not incentivize using a collateralization ratio higher than the minimum. If any of the collateral
tokens go down in value by more than the MCR (Minimum Collateral Ratio), the system will be
undercollateralized and the TRI token should trade at a price lower than 1 USD.

E.g. if the MCR is 105% and the collateral value drops by 10%, the TRI token should trade around 0.95
USD.

TRI holders should be aware of this risk and ensure that they understand the scenarios in which the
value of the enabled collaterals could drop significantly.

@ Trinity - Trinity - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Review Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Major modifications compared to Gravita
	2.2.2 SavingsTRI
	2.2.3 Distributor
	2.2.4 Trust Model
	2.2.5 Initial specification
	2.2.6 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Borrowing Fees Are Not Applied Before Closing a Vessel
	5.2 Borrowing Fees Need to Be Triggered Every Epoch
	5.3 Distributor Rewards Are Not Distributed Evenly

	6 Resolved Findings
	6.1 Redemptions Are Not Possible in Recovery Mode
	6.2 Vessel Fees Are Not Added to Global Debt
	6.3 Borrowing Fees Are Paid in Recovery Mode
	6.4 Distributor Can Run Out of Tokens
	6.5 Gas Compensation Cannot Be Disabled
	6.6 Liquidations Are Not Disabled
	6.7 Redemption Fees Are Locked in Distributor
	6.8 SavingsTRI Does Not Correctly Implement ERC4626
	6.9 Some Vessels Cannot Be Redeemed
	6.10 Some Parameters Cannot Be Set to the Intended Values
	6.11 Outdated Documentation

	7 Informational
	7.1 Collateral Decimals Value Could Return Incorrect Value
	7.2 Users That Lose Verification Still Receive Rewards
	7.3 openVessel assetAmount Is Unintuitive

	8 Notes
	8.1 Compounding Borrowing Fees
	8.2 Volatile Collateral Could Lead to Depeg

