

PUBLIC

Limited Code Review

of the Trinity

Smart Contracts

7 June, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Review Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 13

7 Informational 19

8 Notes 21

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Trinity team,

Thank you for trusting us to help Trinity with this security review. Our executive summary provides an
overview of subjects covered in our review of the latest reviewed contracts of Trinity according to Scope
to support you in forming an opinion on their security risks. The review was executed by two engineers
over a period of two weeks.

Limited reviews are best-effort checks, and do not provide assurances comparable to a non-limited code
assessment. Note that only the differences between Gravita and Trinity were in scope, assuming Gravita
is bug-free.

Trinity is a protocol designed to facilitate borrowing against yield-bearing collateral. Borrowers mint TRI, a
dollar-based token that can be used to take leveraged T-Bill positions and capture Trinity protocol fees
through staked TRI (sTRI).

The most critical subjects covered are correct accounting, correctness of the liquidation and redemption
mechanisms, and correctness of the fees and their distribution. Accounting correctness was improved, as
the issue Vessel Fees Are Not Added to Global Debt was fixed. Correctness of the redemption and
liquidation mechanism was low, see Redemptions Are Not Possible in Recovery Mode and Liquidations
Are Not Disabled. In response to this, there was a major specification change during the review period.
Correctness of the fees is improvable, see Borrowing fees are not applied before closing a vessel and
Borrowing fees need to be triggered every epoch.

The general subjects covered are testing and documentation. Testing could be improved, as many
functional issues were uncovered that could have been found through rigorous testing. Documentation
could be improved, as some changes made are not yet documented in detail.

As the goal of this limited review was to provide time-bound security insights on a complex codebase in a
limited time, and as a large number of issues were uncovered, we refrain from assigning a specific
overall level of security to the codebase.

It is important to note that security reviews are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

Medium -Severity Findings 10

• Code Corrected 4

• Specification Changed 3

• Risk Accepted 3

Low -Severity Findings 1

• Code Corrected 1

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Review Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
This review was not conducted as an exhaustive search, but rather as a best-effort sanity check. It was
performed on the source code files inside the two Trinity repositories, based on the documentation files.
The table below indicates the code versions relevant to this report and when they were received.

Trinity is a fork of Gravita, and the review was performed only on the differences between Trinity and
Gravita, assuming the Gravita codebase to be secure. The commit of Gravita at which it was forked is
0ff6c043af62b181872f3d5c78593e6965e17ca6.

Trinity-sc (forked)

V
Date Commit Hash Note

1
08 April
2024

71eebd3fe9aeaaaec6ca4a6678e1bd9ca36c
8d33

Initial Version

2
12 April
2024

Same code, specification changed

3
13 May 2024 322cba2fc63ae6c77877335fbbb272a91c7e9

2b5
Version 3

4
30 May 2024 7022d480bd105a69a4e9f0bba95037cb273d

46ab
Version 4

5
07 June
2024

a2153e81be66f6feefeba5d8cc309a019e203
41f

Final Fixes

Trinity (staking)

V
Date Commit Hash Note

1
08 April
2024

384c90ae81f715bd47b051d32a577907504d
7f40

Initial Version

2
12 April
2024

Same code, specification changed

3
13 May 2024 6e3d6635cf6770b141f1cc594439c337c5fe9

432
Version 3

For the solidity smart contracts, the compiler version 0.8.20 was chosen.

The contracts in scope are:

Core protocol (only differences from Gravita):

• contracts/ActivePool.sol

• contracts/AdminContract.sol

• contracts/BorrowerOperations.sol

• contracts/DebtToken.sol

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 5

https://github.com/Gravita-Protocol/Gravita-SmartContracts
https://chainsecurity.com

• contracts/StabilityPool.sol

• contracts/VesselManager.sol

• contracts/VesselManagerOperations.sol

• contracts/Pricing/ERC4626PriceFeed.sol

Staking ERC4626 vault:

• packages/contracts/src/SavingsTRI.sol

• packages/contracts/src/Distributor.sol

2.1.1 Excluded from scope
All contracts that are not mentioned in the scope are automatically considered to be out of scope. In
particular, the tfBill fund contracts are out of scope, and the implementation of the user verification
mechanism in the staking contract is out of scope.

Any issues that were already present in Gravita when the code was forked are out of scope, as only the
differences were considered.

Any economic attacks are out of scope.

2.2 System Overview
Version 2

Version 1 Version 2

This system overview describes the revised specification () of the contracts as defined in the
Review Overview. The contracts of and are equivalent, but there were major
specification changes.

At the end of this report section, we have added subsections for each of the changes according to the
versions, including the initial spec which was changed during the review process.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Trinity is a protocol designed to facilitate borrowing against yield-bearing collateral. Trinity is a fork of
Gravita, which is a fork of Liquity that allows the use of ERC20 collateral, not just ETH. It will initially be
deployed to the Base Blockchain.

2.2.1 Major modifications compared to Gravita
Trinity is designed to be used with low-volatility collateral, such as tokenized US T-Bills. Trinity operates
under the assumption that the value of the collateral will not drop significantly. If it does, the TRI token will
depeg and trade below 1 USD.

The major modifications compared to Gravita are the following:

1. The liquidation, stability pool, and redemption mechanisms have been modified to only be
accessible by whitelisted actors.

2. Redemptions are expected to be disabled by default and will be enabled by Governance in
case the TRI token trades below 1 USD even though the system is overcollateralized.

3. Redemption fees can be configured to have a constant value. This disables the fee increase
when there are many redemptions in a short period, which is present in Gravita.

4. The debtTokenGasCompensation parameter will be set to 0, as it is assumed that
liquidations will only very rarely happen.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

5. The CCR parameter will be set to 0, meaning the system will never enter recovery mode. It will
always operate in normal mode.

6. The one-time minting fee has been changed to a recurring weekly fee, paid upfront for the
coming week.

7. Fees are no longer refunded if a user repays their position early.

8. All borrow fees generated by Trinity are sent to the Distributor contract, which distributes them
to the SavingsTRI vault.

9. The collateral value is determined using the convertToAssets function of the collateral
token, not by directly calling a price oracle such as Chainlink.

10. The governance token (GRVT in Gravita) has been removed and there are no governance
tokens issued to StabilityPool depositors.

It is also assumed that the borrow fee will be set to a value that is lower than the yield of the T-Bills
underlying the collateral. This means the collateralization ratio of all vessels should improve over time
(assuming collateral value does not fall).

2.2.2 SavingsTRI
SavingsTRI is an ERC4626 Vault. Users can deposit their TRI to receive sTRI. Over time, borrow fees
paid to the Trinity protocol will be paid out to sTRI holders, proportional to their share of the total sTRI
supply.

sTRI can only be minted, redeemed and transferred to or from addresses that pass the isAllowed()
check of the UserVerifier contract. This check is meant to verify that the address belongs to a non-US
user. The UserVerifier is treated as a black box for this review, as it is not currently publicly available.

SavingsTRI has an admin role that can set the epochLength, the MaxApy, and the receiver address,
which will receive the distributions. It can also upgrade the implementation of the contract.

2.2.3 Distributor
The Distributor contract is responsible for distributing fees generated by the Trinity protocol to the
SavingsTRI vault. At the beginning of each epoch, the distributionPerSecond is determined, which
is the rate at which the vault receives rewards during that epoch. The rate is chosen such that by the end
of the epoch, the balance of the Distributor would reach zero if it did not receive any additional tokens
later. There is also a MaxApyDistribution parameter that limits the maximum APY that can be
distributed to the vault. If the APY would exceed this value, the excess will be distributed in a later epoch
instead.

The Distributor has an admin role that can set the epochLength, the MaxApy, and the receiver
address, which will receive the distributions (intended to be the SavingsTRI vault). It can also upgrade
the implementation of the contract.

2.2.4 Trust Model
The owner of the Trinity core contracts (forked from Gravita) is fully trusted. It can upgrade the
implementations. In the worst case, this would allow stealing all collateral deposited in the system and
minting an unlimited number of TRI tokens.

The owner of the DebtToken contract is fully trusted. It can add addresses to a whitelist that are allowed
to mint TRI without any collateral. In the worst case, this could lead to minting an unlimited number of TRI
tokens.

The admin of the SavingsTRI contract is fully trusted. It can pause the contract, making it impossible for
users to withdraw. Additionally, it can upgrade the implementation. In the worst case, this would allow
stealing all TRI deposited in the Vault.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

The admin of the Distributor contract is partially trusted. It can upgrade the implementation. In the worst
case, this would allow stealing all pending rewards (but not Vault deposits) and making withdrawals from
the sTRI contract impossible, due to reverts in claim(). If this happens, withdrawals could be reenabled
by the sTRI admin, by upgrading the sTRI implementation.

The convertToAssets function of the collateral tokens, which is used as price oracle, is fully trusted. If
this function returns a price that is too high, it would be possible to mint undercollateralized TRI. In the
worst case, an unlimited number of TRI tokens with very little collateral could be minted. Additionally, it is
assumed that the underlying of the collateral token is non-transferable and does not trade on secondary
markets.

The collateral tokens are assumed not to significantly fall in value. If they do, the TRI token will depeg
and trade below 1 USD.

Collateral tokens should not have any non-standard behavior, such as rebasing or fees-on-transfer.

The whitelisted addresses (liquidators and redeemers) are assumed to act in the best interest of the
protocol.

2.2.5 Initial specification
Version 1 Version 2At the beginning of the review, the initial specification () was different from in the

following ways:

1. Liquidations were meant to be disabled.

2. Redemptions were meant to be possible in both normal and recovery mode.

3. The CCR parameter was meant to be set to a value above 1, meaning the system was able to
enter recovery mode.

2.2.6 Changes in Version 3
Version 3In , the gas compensation logic was completely removed from the code, as it was not intended

to ever be used.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security reviews cannot uncover all existing vulnerabilities; even a review in which no vulnerabilities are
found is not a guarantee of a secure system. However, code reviews enable the discovery of
vulnerabilities that were overlooked during development and areas where additional security measures
are necessary. In most cases, applications are either fully protected against a certain type of attack, or
they are completely unprotected against it. Some of the issues may affect the entire application, while
some lack protection only in certain areas. This is why we carry out a source code review aimed at
determining all locations that need to be fixed. Within the customer-determined time frame,
ChainSecurity has performed a review in order to discover as many vulnerabilities as possible.

The focus of our review was limited to the code parts defined in the engagement letter. We assessed
whether the project follows the provided specifications. These reviews are based on the provided threat
model and trust assumptions. We draw attention to the fact that due to inherent limitations in any
software development process and software product, an inherent risk exists that even major failures or
malfunctions can remain undetected. Further uncertainties exist in any software product or application
used during the development, which itself cannot be free from any error or failures. These preconditions
can have an impact on the system's code and/or functions and/or operation. We did not assess the
underlying third-party infrastructure which adds further inherent risks as we rely on the correct execution
of the included third-party technology stack itself. Report readers should also take into account that over
the life cycle of any software, changes to the product itself or to the environment in which it is operated
can have an impact leading to operational behaviors other than those initially determined in the business
specification.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this review, we adopt the following terminology. To classify the severity of our findings,
we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Risk AcceptedBorrowing Fees Are Not Applied Before Closing a Vessel

• Risk AcceptedBorrowing Fees Need to Be Triggered Every Epoch

• Risk AcceptedDistributor Rewards Are Not Distributed Evenly

Low -Severity Findings 0

5.1 Borrowing Fees Are Not Applied Before
Closing a Vessel
Correctness Medium Version 1 Risk Accepted

CS-TRI-003

To close a vessel, a user can call the BorrowerOperations.closeVessel function. However, this
function does not call _collectVesselFee(). As a consequence, it is not guaranteed that the weekly
fee will be applied before closing the vessel. This also implies that the debt to repay in order to close the
vessel will be lower than it should be.

Note that this issue is aggravated since weekly fees are not applied if not manually triggered. It is
possible for a user to open a vessel and pay a one-time fee on the amount borrowed. Then, after an
arbitrary amount of time, the user will be able to close their vessel and repay the loan without having to
pay any interest proportional to the loan duration, unless someone else triggers _collectVesselFee
on the vessel in the meantime.

Risk accepted:

Trinity responded:

This functionality is by design. As all of the borrowing fees are charged up front for a week,
we do not want to charge any additional fees for closing the vessel. After the epoch ends and
before we trigger the fees manually, there might occur a small time frame where it would be
possible for a user to avoid paying for the next week, but the loss is negligible.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5.2 Borrowing Fees Need to Be Triggered Every
Epoch
Design Medium Version 1 Risk Accepted

CS-TRI-002

Trinity adds a weekly borrow fee to active vessels. To determine whether a vessel has already paid its
fee for the week, its lastFeeCollectionEpoch is stored in a mapping. When
_collectVesselFee() is called, the fee is charged if the vessel has not paid its fee for the current
epoch.

However, if the fee was last collected more than one epoch ago, the fee is only charged once. In this
case, the vessel would pay fewer fees than it should.

_collectVesselFee() should charge the user for the number of epochs since the last fee collection.

Risk accepted:

Trinity responded:

As the fees need to be triggered per vessel, there is no easy way to account for all of them at once.
As the protocol maintainers, we commit to triggering the fees manually (preferably by using bots).

5.3 Distributor Rewards Are Not Distributed
Evenly
Design Medium Version 1 Risk Accepted

CS-TRI-008

Assuming that the distributor contract receives a constant amount of TRI per time unit, the rewards in
Distributor are supposed to be distributed evenly to the staking vault during the course of epochs. At
the beginning of each epoch, the current balance of the contract and the epoch length are used to
compute how much should be distributed per second during that epoch.

However, note that a new epoch (n+1) does not start at the end of the previous one (n): it starts when the
function claim is called for the first time after endEpochTimestamp of epoch n.

This means that the amount to be distributed in epoch n+1 includes all the rewards skipped between
endEpochTimestamp of epoch n and the beginning of epoch n+1, as this time does not belong to any
epoch. These rewards will accumulate in the contract and get distributed during epoch n+1, making is so
that that the amount that gets distributed during each epoch is not even. It varies based on when the
epoch is started. Some time periods will not belong to any epoch.

Risk accepted:

Client responded:

This functionality is intended. The distribution is to be updated as often as possible
(deposits, withdrawals or manually using bots). As a safety measure, we implemented
the APY cap feature not to distribute significant funds too quickly.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Specification ChangedRedemptions Are Not Possible in Recovery Mode

• Code CorrectedVessel Fees Are Not Added to Global Debt

Medium -Severity Findings 7

• Specification ChangedBorrowing Fees Are Paid in Recovery Mode

• Code CorrectedDistributor Can Run Out of Tokens

• Code CorrectedGas Compensation Cannot Be Disabled

• Specification ChangedLiquidations Are Not Disabled

• Code CorrectedRedemption Fees Are Locked in Distributor

• Code CorrectedSavingsTRI Does Not Correctly Implement ERC4626

• Specification ChangedSome Vessels Cannot Be Redeemed

Low -Severity Findings 1

• Code CorrectedSome Parameters Cannot Be Set to the Intended Values

Informational Findings 1

• Specification ChangedOutdated Documentation

6.1 Redemptions Are Not Possible in Recovery
Mode
Correctness High Version 1 Specification Changed

CS-TRI-018

Version 1According to of the specification, redemptions were meant to be possible both in recovery mode
and in normal mode.

However, in recovery mode redemptions were disabled.

This would pose a problem for the peg stability of TRI, as the redemption mechanism supports price
recovery of TRI in the case where it is trading below 1 USD.

Specification changed:

Version 2In of the specification, the CCR parameter is meant to be set to zero. As a result, the system can
never enter recovery mode. This resolves the issue, as it only applies to recovery mode.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.2 Vessel Fees Are Not Added to Global Debt
Correctness High Version 1 Code Corrected

CS-TRI-001

In BorrowOperations.collectVesselFee(), the borrower fee is added to the user's debt, but not
to the global debt accounting of the active pool. When user debt gets repaid, the function
ActivePool.decreaseDebt() removes the user debt from the active pool debt.

Since the user debt includes fees, removing all user debt from the pool would underflow the debt of the
active pool and the transaction would revert. This would make it impossible to close some vessels and
funds would be stuck in the contract, unless the admin upgrades the implementation.

The borrow fee should be correctly added to the active pool debt to make the accounting consistent.

Code corrected:

Version 3In the code was updated such that when the external function collectVesselFee is called,
the borrowing fee is accounted globally:

function collectVesselFee(address _asset, address _borrower) external {
 uint256 collectedFee = _collectVesselFee(_asset, _borrower);
 IActivePool(activePool).increaseDebt(_asset, collectedFee);
 }

However, the correct global accounting of the fee only happened when calling the external function
collectVesselFee. When the internal function _collectVesselFee was called, the borrowing fee
was not accounted globally. In addition, any call to _collectVesselFee would set
lastFeeCollectionEpoch to the current epoch, disabling the external collectVesselFee function
for that epoch. Therefore, if during a given epoch _collectVesselFee is called, then
collectVesselFee would not yield any effect, and would not update the global debt.

Version 4In the code was updated such that the borrowing fee is correctly accounted globally when
calling the internal function _collectVesselFee.

6.3 Borrowing Fees Are Paid in Recovery Mode
Correctness Medium Version 1 Specification Changed

CS-TRI-016

Version 1In of the specification, the system was allowed to enter recovery mode. In that case, the
borrowing fees were supposed to be disabled when opening a new vessel. However, it was still possible
for anyone to trigger collectVesselFee on the new vessel within the same epoch, de facto applying
the borrowing fee that was skipped when opening the vessel.

Specification changed:

Version 2In of the specification, the CCR is set to zero, which prevents the system from entering recovery
mode. As a consequence, the borrowing fees are always applied normally.

6.4 Distributor Can Run Out of Tokens
Correctness Medium Version 1 Code Corrected

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

CS-TRI-004

The Distributor should set the distributionPerSecond to a value such that it has enough balance to
distribute this amount for a full epoch.

The calculation is done as follows:

If amountToDistribute is more than zero, the Distributor will transfer some TRI to the receiver.
However, these TRI are not subtracted from the Distributor's balance in the distributionPerSecond
calculation. As a result, the Distributor will not have enough balance to distribute the full amount for the
next epoch, unless it receives more tokens in the meantime.

Consider the following example:

• epochLength: 100 seconds

• Distributor balance: 101 tokens

• distributionPerSecond: 1 token

• lastClaimTimeStamp: 300 seconds

• epochEndTimeStamp: 400 seconds

At 401 seconds, we call claim(). The new values will be:

• Distributor balance: 1 token

• distributionPerSecond: 1.01 tokens

• lastClaimTimeStamp: 401 seconds

The distributionPerSecond is 1.01, but it should actually be 0.01 tokens per second. So if we claim() at
402 seconds, the contract will try to transfer 1.01 tokens even though it only has a balance of 1 token.

If the Distributor runs out of tokens, the claim function will revert. As claim() is called on every deposit
or withdrawal of the sTRI vault, this will make it impossible for users to withdraw from sTRI. This can be
resolved by sending TRI token to the Distributor.

Code corrected:

Trinity has corrected the code in the following way:

if (block.timestamp > epochEndTimestamp) {
 epochEndTimestamp = block.timestamp + epochLength;
 uint256 balanceLeftAfterDistribution = TRI.balanceOf(address(this)) - amountToDistribute;
 distributionPerSecond = balanceLeftAfterDistribution / epochLength;
}
TRI.transfer(receiver, amountToDistribute);

The distributionPerSecond is now computed using the current balance of the distributor minus the
amount to distribute from the previous epoch.

6.5 Gas Compensation Cannot Be Disabled
Design Medium Version 1 Code Corrected

CS-TRI-005

According to the specification, the gas compensation in Trinity is supposed to be disabled by setting the
AdminContract.getPercentDivisor parameter to zero.

However, in TrinityBase, the _getCollGasCompensation function divides by the getPercentDivisor.
This means that if the percentDivisor is set to zero, a division by zero will cause a revert.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

Additionally, the AdminContract enforces that the percentDivisor must be set to a value between 2
and 200, so it is not possible to set a value of zero.

Code corrected:

The gas compensation logic has been completely removed from the contracts.

However, there is still the debtTokenGasCompensation parameter in the CollateralParams of
AdminContract, which is now unused.

6.6 Liquidations Are Not Disabled
Correctness Medium Version 1 Specification Changed

CS-TRI-019

Version 1In of the specification, it was stated that liquidations should be disabled.

However, the code was not modified compared to Gravita, and liquidations were still possible.

Specification changed:

Version 2In of the specification, it was decided that liquidations should be possible by whitelisted
addresses.

6.7 Redemption Fees Are Locked in Distributor
Correctness Medium Version 1 Code Corrected

CS-TRI-006

When a redemption occurs, any redemption fees (charged in collateral asset) are sent to
AddressesConfigurable.treasuryAddress. The borrowing fees are also sent to
treasuryAddress, assumed to be the address of the Distributor contract. Therefore, redemption fees
are sent to the Distributor contract. However, this contract does not offer any way of retrieving assets
other than TRI, and as a consequence, the redemption fees will be locked in Distributor. The locked fees
could be retrieved by the owner of the Distributor, by upgrading the contract.

Code corrected:

A new distributorAddress has been added to the system. Now, the distributorAddress
receives the borrowing fees, and the separate treasuryAddress receives the redemption fees. The
treasuryAddress will be configured to be able to handle all collateral assets.

6.8 SavingsTRI Does Not Correctly Implement
ERC4626
Correctness Medium Version 1 Code Corrected

CS-TRI-007

SavingsTRI does not correctly implement ERC4626 due to the following discrepancies from the
specification:

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The specification for maxDeposit() contains the following:

MUST factor in both global and user-specific limits, like if deposits
are entirely disabled (even temporarily) it MUST return 0.

In SavingsTRI, the maxDeposit function does not factor in that a user may be unable to deposit. This
could be the case if the user has not passed the verifyUser() check, or if the contract is paused. In
these cases maxDeposit() should return 0, but it does not. The same issue is also present in
maxMint(), maxWithdraw() and maxRedeem().

Code corrected:

Trinity has corrected the code by overriding the ERC4626 view functions mentioned above and
incorporating the following check:

if (paused() || !isUserAllowed(receiver)) return 0;

6.9 Some Vessels Cannot Be Redeemed
Design Medium Version 1 Specification Changed

CS-TRI-017

Version 1In of the specification, the system was supposed to only have redemptions and no liquidations.
It was intended that a vessel could be redeemed if its individual collateral ratio (ICR) was too low.

However, the code did not allow this. The redeemCollateral function will start redemptions with the
first vessel that has an ICR that is greater than the MCR (minimum collateral ratio).

currentBorrower = ISortedVessels(sortedVessels).getLast(_asset);
 // Find the first vessel with ICR >= MCR //@audit we also want to redeem vessels with ICR < MCR
 while (
 currentBorrower != address(0) &&
 IVesselManager(vesselManager).getCurrentICR(_asset, currentBorrower, totals.price) <
 IAdminContract(adminContract).getMcr(_asset)
) {
 currentBorrower = ISortedVessels(sortedVessels).getPrev(_asset, currentBorrower);
 }

Version 1Vessels with ICR < MCR can only be liquidated, not redeemed. As intended for liquidations to
be disabled, these vessels could only be closed by their owners and could not be redeemed or liquidated.

Specification changed:

Version 2In of the specification, it was decided that liquidations should be possible. This resolves the
issue, as now vessels with ICR < MCR can be liquidated.

6.10 Some Parameters Cannot Be Set to the
Intended Values
Correctness Low Version 1 Code Corrected

CS-TRI-010

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The specification states that "There are no redemption fees in Trinity". The redemption fees are
composed of 2 parts: the redemption fee floor and the base rate. The redemption fee floor can be
disabled. However, the setRedemptionFeeFloor function in the AdminContract requires that the
value is set to at least 0.01%, so it cannot be zero.

Version 2In , the CCR parameter is intended to be set to zero. However, because of the following check:

safeCheck("CCR", _collateral, newCCR, 1 ether, 10 ether)

In AdminContract, the value of the CCR is restricted between 1e18 and 10*1e18, which prevents it from
being set to zero.

Code corrected:

Trinity has corrected the code: now the function setRedemptionFeeFloor can set the redemption fee
floor to zero and the function setCCR can set the CCR to zero.

6.11 Outdated Documentation
Informational Version 1 Specification Changed

CS-TRI-012

In StabilityPool, the code comments contain a section called "Trinity issuance to stability pool depositors".
However, the token issuance to the stability pool that was present in Gravita has been removed in Trinity.

In BorrowerOperations, there is a comment that says "the borrowing fee partial refund is not burned here,
as it has already been burned by the FeeCollector". However, the FeeCollector does not exist in Trinity.

The README of the trinity-sc_code repo mentions the FeeCollector contract, even though it was
removed in Trinity.

Specification changed:

The incorrect comments have been removed.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Collateral Decimals Value Could Return
Incorrect Value
Informational Version 1 Acknowledged

CS-TRI-009

In AdminContract.addNewCollateral, the _decimals value passed as input is required to be 18.
This value will then be stored in the collateral parameters and returned by the getter getDecimals.
However, collateral tokens with fewer than 18 decimals should also be supported.

This is currently only possible by incorrectly passing 18 as decimals when adding the collateral, which
means that the getter would return an incorrect value.

Acknowledged:

Trinity responded:

The decimal enforcement has been implemented in the forked protocol by the Gravita team.
While it has to always be strictly set to 18, all of the necessary decimals conversions are
handled by the contracts and the protocol allows accepting tokens with any number of decimal places.

7.2 Users That Lose Verification Still Receive
Rewards
Informational Version 1 Acknowledged

CS-TRI-013

The SavingsTRI vault only allows verified users to transfer their sTRI tokens. Consequently, unverified
users cannot have sTRI minted or burned, and cannot be the source or the recipient of a transfer.

Note that when a user who was once verified is removed from the verified list, they keep their tokens. The
user will keep having a share of the vault and receive reward distributions from borrow fees, but not be
able to withdraw.

Acknowledged:

Trinity responded:

We find it as a very unlikely scenario for a user to be removed from the whitelist while they
are providing to the Savings TRI vault, but if it ever occurs, we would resolve the issue manually.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

7.3 openVessel assetAmount Is Unintuitive
Informational Version 1 Acknowledged

CS-TRI-015

In BorrowerOperations, the openVessel function takes an argument assetAmount. The
assetAmount needs to be given as the amount of assets to deposit, scaled to 18 decimals. For
example, if the collateral had 6 decimals and the user wanted to deposit one token, the user would need
to input 1E18, not 1E6 as they would expect.

The documentation could be updated to clarify this behavior.

Acknowledged:

Trinity responded:

This issue is caused by the original Gravita design with 18 decimals enforcements.
We handle this for our users using the trinity UI. We assume that a user interacting
with the contract directly is doing so at their own risk.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Compounding Borrowing Fees
Note Version 1

The borrowing fees are added to the user's debt every week and therefore compound over time. For
example, if the weekly borrow rate is set to 0.077 (4 % / 52), and it is charged separately every week,
then the debt increases by 4.07% in a year:

4.07% = (1 + 4%/52)52 − 1
Governance should take this compounding effect into account when setting the borrowing fees to ensure
that the debt does not increase by more than expected.

8.2 Volatile Collateral Could Lead to Depeg
Note Version 1

Trinity is designed to only be used with low-volatility collateral. As the recovery mode is disabled, the
system does not incentivize using a collateralization ratio higher than the minimum. If any of the collateral
tokens go down in value by more than the MCR (Minimum Collateral Ratio), the system will be
undercollateralized and the TRI token should trade at a price lower than 1 USD.

E.g. if the MCR is 105% and the collateral value drops by 10%, the TRI token should trade around 0.95
USD.

TRI holders should be aware of this risk and ensure that they understand the scenarios in which the
value of the enabled collaterals could drop significantly.

Trinity - Trinity - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Review Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Major modifications compared to Gravita
	2.2.2 SavingsTRI
	2.2.3 Distributor
	2.2.4 Trust Model
	2.2.5 Initial specification
	2.2.6 Changes in Version 3

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Borrowing Fees Are Not Applied Before Closing a Vessel
	5.2 Borrowing Fees Need to Be Triggered Every Epoch
	5.3 Distributor Rewards Are Not Distributed Evenly

	6 Resolved Findings
	6.1 Redemptions Are Not Possible in Recovery Mode
	6.2 Vessel Fees Are Not Added to Global Debt
	6.3 Borrowing Fees Are Paid in Recovery Mode
	6.4 Distributor Can Run Out of Tokens
	6.5 Gas Compensation Cannot Be Disabled
	6.6 Liquidations Are Not Disabled
	6.7 Redemption Fees Are Locked in Distributor
	6.8 SavingsTRI Does Not Correctly Implement ERC4626
	6.9 Some Vessels Cannot Be Redeemed
	6.10 Some Parameters Cannot Be Set to the Intended Values
	6.11 Outdated Documentation

	7 Informational
	7.1 Collateral Decimals Value Could Return Incorrect Value
	7.2 Users That Lose Verification Still Receive Rewards
	7.3 openVessel assetAmount Is Unintuitive

	8 Notes
	8.1 Compounding Borrowing Fees
	8.2 Volatile Collateral Could Lead to Depeg

