PUBLIC

Code Assessment

of the Threshold Network
Smart Contracts

November 09, 2021

Produced for
by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o B~ WN P

Notes

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG

© 00 N b~ W

11
14

https://chainsecurity.com

1 Executive Summary

Dear Sir or Madam,

First and foremost we would like to thank Threshold Network for giving us the opportunity to assess the
current state of their Threshold Network system. This document outlines the findings, limitations, and
methodology of our assessment.

The Threshold team was always responsive and professional. We did not uncover critical issues. Two
medium issues were found. The remaining issues are low severity issues. All issues have been fixed or
acknowledged.

We hope that this assessment provides more insight into the current implementation and provides
valuable findings. We are happy to receive questions and feedback to improve our service and are highly
committed to further support your project.

Sincerely yours,

ChainSecurity

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EXTED-Severity Findings 0
(C)-Severity Findings 0
(Medium)-Severity Findings 2
8 Code Corrected) 1
B Ris Accepted 1
(Low)-Severity Findings 8
8 Code Corrected) 5
'Svecitcation Changed) 1
B Risc Accepted 1
B Acknowiedged 1

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Threshold Network repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

Date Commit Hash Note
V

14 October 913c04debclb5a733ea402bf5dacd5e8 | Initial Version Token and
1| 2021 5da0db8a VendingMachine

20 October aeba9733038e0c36d3572f7bbe6e68a8 | Initial Version Staking
2| 2021 302c10c5

09 November | 024b98cc657becl19289676223d5d69a4 | Third Version
3| 2021 81e17525

For the solidity smart contracts (Version 1) the compiler version 0. 8. 4 was chosen. The compiler was

updated in (Version 3)t0 0. 8. 9.

Following files from repository contracts folder were part of the assessment scope:

Token and vending machine :

/ gover nance/ Checkpoi nt s. sol
/ token/ T. sol
/ vendi ng/ Vendi ngMachi ne. sol

Staking :

/ st aki ng/ | Appl i cati on. sol

/ st aki ng/ | St aki ng. sol

/ st aki ng/ St aki ngPr ovi ders. sol
/ st aki ng/ TokenSt aki ng. sol
futils/PercentUils.sol

2.1.1 Excluded from scope

Any contracts not mentioned above. Mock and testing contract that might rely on scope contracts.
Imported libraries are assumed to behave according to their specification and are not part of the
assessment scope. The connected contract like the legacy staking contracts are considered to behave
correctly and are assumed to be safe. The Nu staking contract is unfinished and WIP. We do not know
the final implementation. Interactions with this contract might be vulnerable and, hence, could not be fully
audited. We also do not know the connected applications and assume all applications as trusted and the
interaction as correct and secure.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section we have added a version icon to each of the findings to increase the
readability of the report.

The planned merge of Keep Network (KEEP token) and NuCypher (NU token), will form a new network
called Threshold network with a new native token called T. The contracts under review offer KEEP and
NU holders to wrap and unwarp their tokens into the newly created T tokens and a staking contract to
stake them but simultaneously supports the legacy staking contracts.

2.2.1 T token

T is an ERC20 token. On top of the usual ERC20 properties there are :
« Delegation : holders can delegate their tokens to a delegatee
» Checkpoints :
1. records delegations weights for each delegatee, new checkpoint at each delegation and
token transfer

2. records state of T's total supply, new checkpoint at each mint or burn

* EIP-2612 Permit : allows holders to approve a spender for an amount by signing a message with a
validity deadline

» Misfund recovery : owner of T's contract can transfer back ERC20 and ERC721 tokens that have
been mistakenly sent to the contract

2.2.2 Vending Machine

This contract wraps KEEP and NU tokens to T, and unwraps T into KEEP and NU. The conversion is
done with a fixed and immutable rate.

One contract will be deployed for each one of the tokens. The exchange rate will be the ratio between the
allocated amount of T tokens assigned to the wrapped token and the supply amount of token to be
wrapped. Plan is to equally split the supply of T between KEEP and NU token holder.

2.2.3 Staking contract

Threshold Network also offers a staking contract that allows KEEP, NU and T tokens to be staked.
Although T staking is simply the transfer of tokens to the contract, legacy KEEP and NU staking is more
sophisticated. The staker can use the stake on the legacy staking contract of his choice and, sync the
new staking contract with it. The legacy stake will be accounted as it is staked in T, so that all staked
tokens have their amounts accounted in T.

A staker needs to define the following roles to stake :
e owner : the original staker/delegator, owner of the tokens

« operator : address approved by the owner to manage its stake, each operator can have at most one
owner

« authorizer : address approved by the owner to increase and decrease the stake amount allocated to
each application

* beneficiary : address where rewards can be paid

The contract's logic can be split in five subsections :

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Stake delegation : owner can either start staking with KEEP, NU or T. Operator, authorizer and
beneficiary are set at this point. If owner stakes T, a simple transfer to the contract will occur. If
owner stakes KEEP or NU, the staking contract will query the legacy staking contracts for the staked
amount and will account it in converted T amount.

Stake top up : once owner did start staking on this contract, he can stake more. This can be done in
KEEP, NU or T. If owner tops up in T, a token transfer will occur. If owner wants to top up with KEEP
or NU, he must top up in the legacy staking contracts in the first place, and then call top up on this
contract to sync the amounts. The operator can also sync KEEP and NU amounts for the owner.

Authorize application : a set of applications will be authorized access to the staking contract, they
will be chosen by governance. An authorizer can allow and disallow stake amounts to different
applications. The stake amount is shared across applications. Applications can also slash
misbehaving operators, by doing so, a slashing event will be added to a queue. There are two ways
for an application to ask for slashing, either by calling sei ze, or by calling sl ash. On the first one, a
notifier can be specified and will receive notificationReward * _rewardMiltiplier%
amount of T per notified misbehaving operator as a reward. noti fi cati onRewar d can be tuned
by governance and _rewar dMul ti pli er is given by the calling application. There is an incentive
for processing the queue of pending slashes since the processor will receive a reward of 5% of the
total slashed amount. The tokens will be slashed in this order : T, KEEP, NU.

Undelegating stake : owner and its operator can lower their stake from the contract. Upon
undelegation, the contract will check that the remaining stake amount can cover the maximum
amount allowed to an application. If the check succeeds, T tokens will be transferred back to their
owner, KEEP and NU amounts will simply get removed from the accounting of this contract but stay
in legacy staking contracts.

Incentive to synchronization : to mitigate stake discrepancies, i.e. this contract accounts more legacy
tokens than legacy staking contracts have, the system relies on notifiers. Their role is to watch for
such discrepancies and notify the staking contract, which will validate the discrepancy, punish the
owner and reward the notifier. The st akeDi screpancyPenal ty is a fixed amount that can be
changed by governance, the notifier's reward is
5% * stakeDi screpancyRewardMultiplier% * stakeDi screpancyPenalty, where
st akeDi screpancyRewar dMul ti pli er is also a parameter adjustable by governance.

The stake contract has three privileged roles:

1.
2.
3.

The owner of the stake - can stake, allocate the stake and top up
The Threshold governance - can call administrative setters

A panic account per application - can disable an application

Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts associated with the items defined in the
engagement letter on whether it is used in accordance with its specifications by the user meeting the
criteria predefined in the business specification. We draw attention to the fact that due to inherent
limitations in any software development process and software product an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third party technology stack itself. Report readers should also take into account
the facts that over the life cycle of any software product changes to the product itself or to its
environment, in which it is operated, can have an impact leading to operational behaviours other than
initially determined in the business specification.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severities. These severities
are derived from the likelihood and the impact using the following table, following a standard risk
assessment procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved, have been moved to
the Resolved Findings section. All of the findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings £

(C)-Severity Findings 0

(Medium)-Severity Findings 1
« Ineffective Try Catch Statement

(Low)-Severity Findings 2
* Missing Sanity Checks ()

« Possibly Uninitialized Penalties G Sa eI

5.1 Ineffective Try Catch Statement
(Design LTI (RITIRY| Risk Accepted

Try catch statements should handle critical code parts that might fail and their respective exertions
correctly. The used try catch statement in aut hori zati onDecrease simple fails silently if not
successful. Resulting in potential incorrect authorization decrease.

Risk accepted :

Threshold Network accepts that a decrease fails silently. The event
Aut hori zati onl nvol unt ar yDecr eased has been added to track involuntary decreases, it contains
a field to indicate whether the call to the application succeeded or not.

5.2 Missing Sanity Checks
(Low] [Version 1](]

For security reasons stakers use different roles to manage the stake. If different roles exist, it seems
consistent to enforce the use of different keys. st ake and st akeNu do not check if the addresses
(operator, beneficiary, owner, authorizer) are the same. In a more limited way this is also the case for
st akeKeep.

Acknowledged :

Threshold Network does not consider that roles having different addresses must be enforced. In their
modelling, they always assumed that some stakers will reuse addresses for different roles.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5.3 Possibly Uninitialized Penalties

D (Cow) (Version 1) (ETEETED)

The constructor function initializes important variables for the staking contract. However,
t akeDi screpancyPenal ty and st akeDi screpancyRewardMul ti plier are not initialized and
need to be set separately in set St akeDi screpancyPenal ty. The onl yGover nance modifier
ensures that only the community controlled governance contract can call this function. Calls from
community driven governance contracts usually have a long reaction time due to voting and other
collective decisions that need to be taken before. Hence, the variables might be uninitialized and result in
no penalties for misbehaving.

Risk accepted :

These parameters need to be set by governance, Threshold Network believes that in the interim, zero
penalty is an acceptable behavior.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 1
« Unauthorized Top Ups

(Low)-Severity Findings 6

« Compiler Version Not Fixed and Outdated
» Inefficient Struct Packing

« Inefficient processSlashing Loop

« Interface File Name Convention

» Misleading Variable count

» Specifications Mismatch

6.1 Unauthorized Top Ups
CITD) (Viedium) (Version 1) (CXIYSIRT)

With the current design, anybody can call topUp on any operator (in Kepp, Nu and T). This could lead to
KEEP or NU staked in legacy contract, that the owner may not want to be staked on the new staking
contract, ending staked on the new contract.

On Nu this might lead to trolling by calling t opUpNu after a user send an unst akeNu transaction and
blocking the Nu withdraw through:

1. X calls unst akeNu

2. Y calls t opUpNu on X

3. X tries to withdraw from NU legacy staking contract, but it fails because there is still an amount
of NU accounted in the new staking contract

With Keep the issue is more severe as non-malicious behavior could be slashed with a sandwich attack
like follows:

1. Someone wants to unstake keep and calls "unstakeKeep"

2. The user sends the tx for the Keep legacy contract to "undelegate”

3. This tx lands in the men pool and someone front runs it by calling "topUpKeep"

4. The undelegate is mined after the top up

5. The attacker calls the notify keep discrepancy function to slash

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Code corrected :
A modifier has been added to all three top up functions to restrict the access only to owner and operator.

6.2 Compiler Version Not Fixed and Outdated
7D (Low) (Version 1) (XTI

The solidity compiler is not fixed in the Checkpoi nts. sol . The version, however, is defined in the
har dhat . confi g. s tobeO. 8. 4.

In the code the following pragma directives are used:
pragma solidity ~0.8.0;

Known bugs in version 0. 8. 4 are:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by version.json#L1562
More information about these bugs can be found here:
https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0. 8. 9 which contains some bugfixes.

Code corrected :

Compiler version is now 0. 8. 9 and fixed all files.

6.3 Inefficient Struct Packing
(Design [(CTYNELITBY Code Corrected

The variable order inside structs is not optimized by the compiler. Hence, tight variable packing needs to
be done manually. The struct Qper at or | nf o could be packed differently, to save two storage slots.

Code corrected :

Struct has been optimized.

6.4 Inefficient processSl ashi ng Loop

(D (Cow) (Version 1) R

State operations are expensive. Additionally, Threshold Network told that the pr ocess Sl ashi ng is gas
critical. The function processSl ashi ng reads and writes the state variable sl ashi ngQueuel ndex
multiple times. The loop even does operations in each iteration.

Additionally, a sanity check for count parameter in processSl ashi ng instead of a check at every
iteration of the for loop could save gas.

Code corrected :

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 12

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1562
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

sl ashi ngQueuel ndex is now updated only once after the for loop with an internal counter in memory.

The stopping condition of the for loop has been optimized, maxindex is now capped at max queue's
length and an event is emitted with the effective number of slashes.

6.5 Interface File Name Convention

(D (Low) (Version 1) CXIEEIEED)

The file St aki ngProvi der s. sol is an interface definition. To be consistent with the naming, the file
should be renamed with a leading | .

Code corrected :
Filename updated.

6.6 Misleading Variable count

(Design {(FTR] Code Corrected

One of the stop conditions of the for loop in pr ocessSl ashi ng allows the function to process one more
pending slash than initially intended. sl ashi ngQueuel ndex <= maxlndex should be
sl ashi ngQueuel ndex < maxl ndex if it should match the passed in count argument. One more
unintended iteration also would cost the processor more gas than they may have wanted to spend in the
first place.

Code corrected :

Loop's stopping condition has been updated.

6.7 Specifications Mismatch

(Desigi ETO LR Specifcation Changed)

Specs of processSl ashi ng say that processor can get either 4% or 5% of the slashed amount,
depending on the type of call the application did, but in practice processor always gets 5%, no matter the
application called sei ze or sl ash.

get St art TSt aki ngTi nest anp specs say that result is zero when operator has no stake or
when they was topped-up, but top up functions do not update the staking timestamp

Specification partially changed :

For both mentioned issues the specifications were updated accordingly.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Applications Share the Same Stake

Threshold Network informed that the same stake can be used in different applications. Sharing the same
stake practically means that if one application slashes or seizes all stake, all other applications that
shared the stake will have no stake left to seize or slash.

@ Threshold Network - Threshold Network - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 T token
	2.2.2 Vending Machine
	2.2.3 Staking contract

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Ineffective Try Catch Statement
	5.2 Missing Sanity Checks
	5.3 Possibly Uninitialized Penalties

	6 Resolved Findings
	6.1 Unauthorized Top Ups
	6.2 Compiler Version Not Fixed and Outdated
	6.3 Inefficient Struct Packing
	6.4 Inefficient processSlashing Loop
	6.5 Interface File Name Convention
	6.6 Misleading Variable count
	6.7 Specifications Mismatch

	7 Notes
	7.1 Applications Share the Same Stake

