

PUBLIC

Code Assessment

of the Divergence Protocol v1c

Smart Contracts

December 15, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 18

7 Informational 27

8 Notes 31

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Divergence Team,

Thank you for trusting us to help Tenet Technology Ltd with this security audit. Our executive summary
provides an overview of subjects covered in our audit of the latest reviewed contracts of Divergence
Protocol v1c according to Scope to support you in forming an opinion on their security risks.

Tenet Technology Ltd implements an Automated Market Maker(AMM) for digital options. In this system,
liquidity providers (LPs) provide liquidity at their positions of interest. Afterwards, traders can buy put or
call digital options to take a position whether the price of an underlying asset exceeds the strike price at
maturity or not. LPs collect the option premiums and fees paid by traders.

The most critical subjects covered in our audit are functional correctness, solvency of battles, and access
control. Security regarding all aforementioned subjects is satisfactory.

The general subjects covered are rounding errors, denial-of-service, documentation and gas efficiency.
The security regarding rounding errors is satisfactory, while the security regarding denial-of-service is
improvable (see Battles With Malicious Starting Prices). The codebase could be improved regarding gas
efficiency (see Gas Optimizations). The documentation and inline code specification can also be
improved.

We thank the Tenet Technology Ltd team for always being responsive and very professional during this
engagement.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Code Corrected 2

• Specification Changed 1

• Acknowledged 1

Low -Severity Findings 19

• Code Corrected 10

• Specification Changed 1

• Code Partially Corrected 4

• Risk Accepted 2

• Acknowledged 2

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Divergence Protocol v1c repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 10 Jul 2023 11640136962afb46d35ff19e29502a9dbe48a03e Initial Version

2 27 Oct 2023 1c0b9317e38bdddb541259d04d0e4a37a6f6ea88 Fixes version

3 15 Dec 2023 f9378a8ba9f4d9d31ba94d08b20be821e16caf4b Final Version

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The following files in folders core and periphery were in the scope:

• core/erros/Errors.sol

• core/libs/*

• core/params/*

• core/token/SToken.sol

• core/types/*

• core/Arena.sol

• core/Battle.sol

• core/Oracle.sol

• core/utils.so;

• periphery/base/*

• periphery/lens/Quoter.sol

• periphery/libs/*

• periphery/params/*

• periphery/types/common.sol

• periphery/Manager.sol

2.1.1 Excluded from scope
Third party libraries (including libraries from Uniswap-V3), tests, and any other files not listed above are
excluded from the scope. The new contract OracleCustom added in the recent commit is also out of
scope. Furthermore, external oracles and any token contract used as collateral were not in the scope of
this code assessment. Finally, this code assessment was focused on the correctness of the
implementation, however the correctness of the whitepaper and the soundness of the financial model
was not evaluated.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Tenet Technology Ltd offers a noncustodial automated market maker (AMM) for options with a
predefined payoff structure. To track the relative prices between European digital call and put options, A
Uniswap V3 compatible curve is used.

Divergence Protocol v1c's core element is a European digital call or put option. An option gives its holder
the right to receive a fixed amount of payout at the maturity. A European digital call option on an
underlying asset worth S, with strike price K at maturity T pays 1 collateral token when the price of assets
exceeds the strike price at the maturity, else 0 collateral tokens. In contrast, a European digital put option
pays 1 token when the price does not reach the predefined strike price, else 0 tokens.

Considering a portfolio holding a European digital call and a European digital put option, it must be
valued the same as longing (holding) one collateral, in terms of payout, as only one of the options will
have a non-zero payout. A riskless profit can be made if a European digital call and a European digital
put can be bought for less than a collateral. Therefore, to remain arbitrage-free, effective prices for
European digital puts and calls must add up to one:

ΔC0
ΔV0

+ ΔC1
ΔV1

= 1

Divergence Protocol v1c assumes that, for a given range of the curve, a same amount of call options
(referred as spear) or put options (referred as shield) can be bought in a transaction (). In
this case, the expected amount of payoff for is the same as :

ΔV0 = ΔC0 + ΔC1

ΔV1 = ΔC0 + ΔC1

In this case, and represent the collateral corresponding to Token 0 (spear) and Token 1
(shield), respectively. Hence, the price of Token 1 quoted by Token 0 is:

P1
0 = ΔC1

ΔC0

Divergence Protocol v1c makes use of Uniswap v3 virtual curves to represent the collateral quoting
Token 0 () and the collateral quoting Token 1 (). It enables swapping between collateral amounts

 and :

(C0 + L
√ PH

)(C1 + L√ PL) = L2

By tracking the current sqrtPrice and the invariant , the battle can determine the collateral
change for a price change given an amount of liquidity:

ΔC0 = Δ 1
√P1

0
L, ΔC1 = Δ√P1

0 L

These European digital options are implemented using transferrable ERC-20 tokens. Spear is the token
representing a European digital call while Shield represents a European digital put. In this text we refer to
these ERC-20 tokens as sToken, whenever we talk about general behavior of them. Once minted,
sTokens can be exchanged on a third-party decentralized exchanges (DEXs).

The main actors interacting with Divergence Protocol v1c are:

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

1. Liquidity Providers (LP). These users deposit their collateral or prior to depositing, buy sTokens and
then deposit them into the protocol to provide liquidity in a given range. Any minted European
digital option should be backed by the same amount of collateral. LPs take a short position for
options that traders buy, in other words, they sell (short) both digital call and put options. Based on
the selected price range, they net short either digital calls or puts. When users buy options from a
liquidity position owned by an LP, a net owed value gets accrued for the LP. The pool backs any
amount minted digital option by the same amount of collateral. LPs can later remove their liquidity
before options' maturity. In this case, pool holds a portion of their liquidity to back the shorted
options. If these options expire worthless, LPs can reclaim the reserved collateral. Alternatively,
LPs can buy sTokens from the pool, and close their net shorts before options' maturity.

2. Traders: Traders pay a premium in collateral to buy (long) a European digital options. If they hold a
winning sToken, they get the underlying collateral after the battle is settled. In the current
implementation, neither a support for trading tokens directly with each-other nor selling tokens back
to protocol is supported. But, sToken holders can act as an LP and sell them as liquidity to a
position. However, since stokens are ERC-20 compliant, a third-party DEX can be used for
exchanges.

2.2.1 Deployment
Divergence Protocol v1c is organized in two components:

1. Core: The virtual curve is implemented in the core contracts. On high-level, core consists of the
following elements:

1. Arena: This contract tracks fee rates, whitelisted collaterals and underlying assets. Also,
it serves as a factory to deploy new battles. Fee rates are quoted by 1_000_000
meaning 1_000_000 corresponds to 100%.

2. Battle: Implements the main logic of the virtual curve. This contract is responsible for
minting and burning of sToken, compute amount in and amount out on trading, collecting
fees, and deciding the winning sToken. Battle instances are deployed through a proxy
pattern. Upon deployment, an expiry for each battle is set. These expiries must be at 8
A.M. UTC.

3. Oracle: A smart contract that stores the link between an underlying asset and its
respective external oracle. Chainlink oracles are used to query the price of an underlying
asset at maturity.

2. Periphery: LPs willing to deposit their collaterals/tokens into the system can interact with the core
only through Manager. Hence, user interactions are regulated through the periphery, namely
Manager.

Considering the functionalities mentioned above, these main contracts should be deployed in the
following order:

1. Oracle and the contract implementing the logic of Battle.

2. Arena initialized with Oracle address and implementation of Battle.

3. Manager. After deploying Manager, owner of Arena must set its address in the contract Arena.

Users willing to deploy a new battle can call createAndInitializeBattle() with the correct
parameters. Maturity times for European digital options must always be set at 8 a.m. UTC.

2.2.2 Adding Liquidity
LPs can add liquidity through Manager.addLiquidity(). It goes through the following steps:

1. Finding out liquidity according to the liquidity type (being collateral or sToken), current price, and
ticks bordering the position(formulas 20, 21, 22, and 23 in the white paper)

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2. Then, it calls into Battle.mint():

1. Checks that the battle has not expired.

2. For sToken liquidity, it must hold the correct relation between the current price, price low,
and price high.

3. Updates the position and its bordering ticks. If bordering ticks (and) are not
initialized, they would be initialized.

4. Calls mintCallback() of Manager, which transfers collateral/sToken held by the LP to
the battle.

3. Mint an enumerable NFT for the LP, as a receipt.

4. Add the newly created position to its local mapping _positions.

As NFTs are minted with a unique ID, an LP can add liquidity to the same position multiple times which
mints new NFTs each time.

2.2.3 Trading
Traders can sell their collateral and receive sTokens by calling Manager.trade() which performs the
following steps:

1. Fetch the corresponding battle defined by its key in Arena.

2. Set the caller as payer. This address is used later to pull the collateral from and mint sTokens.

3. If trader has not specified a price limit, it sets the limit to TickMath.MIN_SQRT_RATIO + 1 or
TickMath.MAX_SQRT_RATIO - 1 when buying Spear or Shield respectively.

4. Calls into Battle.trade():

1. Checks that the battle has not expired.

2. Checks that depending on the direction of trade, price limit does not cross the minimum
and maximum ratios.

3. In an iterative manner, Battle.trade() tries to fill the order starting from current tick
and keeping the available liquidity into account. Fees and premiums are accounted in the
global growth.

4. Updates global and available liquidity.

5. Calculates amount of collateral (cAmount) and sToken (sAmount) in the following way:

cAmount = amountSpecified − amountSpecifiedRemaining + transactionFee + protocolFee

where amountSpecified is the collateral amount specified by the user,
amountSpecifiedRemaining is the unfilled amount of the order. transactionFee and
protocolFee are added to be paid by the trader.

6. Call tradeCallback() on the Manager to transfer cAmount of collateral from the trader to
the Battle

7. Mint the sAmount of sToken

5. Performs slippage protection to assure a minimum amount of sTokens has been bought.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.4 Removing Liquidity
An LP holding an NFT can call Manager.removeLiquidity(). It is necessary the caller of this
function be the address holding the NFT. This function is callable if and only if, the state of the position
determined by the NFT-ID is PositionState.LiquidityAdded. It does the following steps:

1. Calls into Battle.burn().

2. Fetch the remote position in the battle and update the local version through updateInsideLast.

3. Calls getObligation() to get the amount of collateral removable (formula 33 in white paper)

Cowed = Cseed + CinOwed − CObligation

as well as owed amount of sToken (if the initial provided liquidity was of sToken type)

4. Battle.collect() will finally send the collateral amount to the recipient and mint sToken, if any.

By removing the liquidity from a position, its state changes to PositionState.LiquidityRemoved.

2.2.5 Redeeming Obligation
Once an LP has removed his liquidity before maturity, it might desire to close his net short exposure.
Redeeming is only possible as long as the battle is ongoing (not settled).
Manager.redeemObligation() performs the following actions:

1. Finds the sToken having more obligation.

2. Burns the surplus amount of this sToken from the caller (buying back the sToken).

3. Sends the surplus amount of collateral to the owner of NFT.

Please note that in order to redeem the obligation, any other user holding the surplus amount of the
sToken can close the net short exposure of the LP. After redeeming obligation, state's position changes
to PositionState.ObligationRedeemed.

2.2.6 Withdrawing Obligation
After removing liquidity and after maturity, LP can unlock the extra amount of the sToken which expired
out-of-money (losing token); as during removing the liquidity, the maximum obligation of sTokens is kept
as the obligation. Hence, if more Spears are sold but they expire out-of-money or if more Shields are sold
and they expire out-of-money, the difference can be paid back in collateral to the LP, through calling
Manager.withdrawObligation(). This function changes the state of the position to
PositionState.ObligationWithdrawn.

An LP can either redeem his obligation before the maturity or withdraw it after maturity. Performing both
is mutually exclusive.

2.2.7 Settling the Battle
In order to settle the battle and determine the outcome after maturity, anyone can call
Battle.settle(). It queries the price of the underlying by calling into
Oracle.getPriceByExternal(). By comparing the queried price with the preset strike value,
outcome of the battle is set.

It is important to note that only the first price after battle's expiration reported by the external oracle is
used as the final price to settle the battle.

2.2.8 Exercising
After settling the battle, any user can call Battle.exercise() if they hold winning options. sTokens
are burned and a collateral is paid out to users, deducting a fee if set.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.2.9 Roles and Trust Model
Owner of Arena: Any account with this role is considered to be fully trusted and always behave in the
best interests of the system. owner can whitelist collaterals and underlying assets used in battles, update
manager address in Arena, and collect protocol fees from battles.

Owner of Oracle: This contract is assumed to be trusted and always behave correctly and in the best
interests of the protocol. owner can set the addresses of external oracles for supported underlying
assets and the default prices when external oracles do not work as expected.

We assume roles of manager and arena in all contracts are held respectively by Manager.sol and
Arena.sol.

Oracles: We assume the external oracles are Chainlink oracles, which are assumed to be trusted and
continuously publish correct prices on chain. If oracles misbehave or are malicious, user's funds in
battles are at risk.

Collateral assets: They are assumed to be compliant with the ERC20 standard, implement decimals
function, and be non-malicious. Only ERC20-compliant tokens without special behavior (e.g., transfer
callbacks, transfer fees, or inflationary/deflationary tokens) are supported.

Finally, traders and LPs are considered untrusted.

2.3 Changes in Version 2
• When users call trade() on the manager side or directly on the battle they have to set a signed

integer variable TradeParams.amountSpecified. If positive, it means how many collaterals
(plus some fees added to it at the end) they want to pay and Battle.trade() calculates how
many sTokens they are eligible to receive. And if negative, it dictates how many sTokens they want
to receive at the end, and then Battle.trade() finds out how much collateral (plus some fees)
they have to pay.

• Oracles have a new functionality, where the owner can manually set prices for a given oracle
supporting an underlying at a given timestamp. When settling the battle, the respective Chainlink
oracle for the underlying asset is queried. If it fails to report a price between 8 A.M. and 9 A.M. UTC,
then these manually set prices are used to resolve the battle result.

• Traders can provide approvals to their trusted accounts to execute actions on behalf of an NFT in
Manager.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• AcknowledgedTraders Pay More Collateral Than Specified

Low -Severity Findings 8

• Code Partially CorrectedUnused Imports

• Code Partially CorrectedLiquidityDelta Check in Position.update

• AcknowledgedMismatch of Min/Max Ticks With the Edge Prices

• Code Partially CorrectedMissing Sanity Checks

• AcknowledgedNFTs Are Never Burned in Manager

• Risk AcceptedPossible to Frontrun Fee Updates in Arena

• Code Partially CorrectedUnclear Specifications for the Format of Strike Price

• Risk AcceptedUpdate of Oracle Addresses

5.1 Traders Pay More Collateral Than Specified
Correctness Medium Version 1 Acknowledged

CS-DPV1-005

Users buying call or put options (spear or shield tokens) specify the amount of collateral they are willing
to pay and receive as many options as possible. Traders also pay transaction fees on top of option
premiums. Fees are computed as follows:

step.feeAmount = FullMath.mulDiv(step.amountOut, fee.transactionFee, 1e6);
...
state.transactionFee += step.feeAmount;

Note that step.amountOut refers to the amount of options that are bought in a trading step. However,
fees are collected in the collateral asset:

cAmount = params.amountSpecified - state.amountSpecifiedRemaining
 + state.transactionFee + state.protocolFee;

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If fees are set for a battle, cAmount will be larger than params.amountSpecified for a trade, hence
the function reverts if traders do not have enough balance (cAmount) or they have not provided enough
allowance to Manager.

Acknowledged:

Tenet Technology Ltd is aware of this issue but has decided to keep the smart contracts unchanged.
Tenet Technology Ltd will inform users in the UI for the fee amount that should be paid on top of the
premiums. However, users that interact directly with the smart contracts should be aware of this behavior
and take the respective measures.

5.2 Unused Imports
Design Low Version 2 Code Partially Corrected

CS-DPV1-012

Several contracts in the codebase import libraries or contracts that remain unused. We present a
non-exhaustive list below:

Manager.sol

import { IERC20 } from "@oz/token/ERC20/IERC20.sol";
import { SafeCast } from "@oz/utils/math/SafeCast.sol";
import { IManagerState } from "./interfaces/IManagerState.sol";

Arena.sol

import { IBattleActions, IBattleMintBurn } from
 "core/interfaces/battle/IBattleActions.sol";

Battle.sol

import { IBattleBase } from "core/interfaces/battle/IBattleActions.sol";
import { IBattleState } from "core/interfaces/battle/IBattleState.sol";
import { IBattleInit } from "core/interfaces/battle/IBattleInit.sol";
import { IBattleMintBurn } from "core/interfaces/battle/IBattleActions.sol";
import { IArenaState } from "core/interfaces/IArena.sol";
import { DiverSqrtPriceMath } from "core/libs/DiverSqrtPriceMath.sol";

Code partially corrected:

Some of the unused imports have been removed, while other are still present. For example:

Manager.sol

import { IManagerState } from "./interfaces/IManagerState.sol";

Battle.sol

import { IBattleBase } from "core/interfaces/battle/IBattleActions.sol";
import { IBattleInit } from "core/interfaces/battle/IBattleInit.sol";
import { IBattleMintBurn } from "core/interfaces/battle/IBattleActions.sol";

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

import { IArenaState } from "core/interfaces/IArena.sol";
import { DiverSqrtPriceMath } from "core/libs/DiverSqrtPriceMath.sol";

Please note that the aforementioned list is non-exhaustive and there might still exist some other unused
imports in the codebase.

5.3 LiquidityDelta Check in Position.update
Design Low Version 1 Code Partially Corrected

CS-DPV1-001

The function Position.update performs a check whether liquidityDelta == 0. Following all
callpaths suggests it can never be a case, as update() is called from Battle._updatePosition()
which is called from Battle._modifyPosition(). The latest is called only during minting and
burning. In Battle.mint() an earlier check is done on liquidity being non-zero. Once minted with
non-zero liquidity, calling Manager.removeLiquidity() assures that the liquidity of this position is
also non-zero.

Code partially corrected:

As mentioned above, when minting there already exists a check that the liquidity amount to be added to a
position is non-zero, hence minting on the battle-side is also called with a non-zero liquidity. When
removing liquidity from a position, as upon adding liquidity, the liquidity is already non-zero. Hence, this
check is redundant.

5.4 Mismatch of Min/Max Ticks With the Edge
Prices
Correctness Low Version 1 Acknowledged

CS-DPV1-007

The whitepaper suggests that prices 0.01 and 0.99 are valid priced in the curve:

In implementation , are bounded within [0.01, 0.99].

Library TickMath sets the minimum tick to -45953 and maximum tick to 45953, which correspond to
prices 0.0101 and 0.9899 respectively, hence prices 0.01 and 0.99 cannot be reached in the curve.

Acknowledged:

Tenet Technology Ltd has decided to keep the min/max ticks unchanged, and they provide the following
reasoning:

The difference in prices computed from min/max ticks and the theoretical limits set
in the whitepaper is so minuscule that it is deemed fit for production.

5.5 Missing Sanity Checks
Design Low Version 1 Code Partially Corrected

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

CS-DPV1-009

The following functions set important state variables but do not implement any sanity check on the inputs:

1. _fee in Arena.setFeeForUnderlying().

2. fee in setUnderlyingWhitelist().

3. bk.strikeValue in createBattle(), i.e., after calling getAdjustPrice(),
bk.strikeValue should not be rounded down to 0.

4. _oracleAddr and _battleImpl in Arena.constructor().

5. _manager in Arena.setManager().

6. _arena and _WETH9 in contract PeripheryImmutableState.

Code partially corrected:

The sanity checks reported in points 3-6 have been added.

5.6 NFTs Are Never Burned in Manager
Design Low Version 1 Acknowledged

CS-DPV1-010

The NFTs minted in Manager are not burned after an LP removes its liquidity and/or withdraws/redeems
its obligations. Hence, the state is not cleared and old NFTs remain in the balance of users, possibly
degrading user experience.

Acknowledged:

Tenet Technology Ltd acknowledged this behavior and provided the following reasoning:

NFTs are kept in order to provide historical records to users, who may need reference for past trade.

5.7 Possible to Frontrun Fee Updates in Arena
Security Low Version 1 Risk Accepted

CS-DPV1-011

The mapping fees in the contract Arena stores the fees for an underlying. On battle deployment, Arena
sets battle's fees for the respective underlying. Fees in the battle cannot be changed after deployment
even if they are updated in the Arena. Consider the scenario, in which owner of Arena decides to
increase fees for an underlying. In this case, users can front-run this transaction to deploy their battles
with lower fees, hence making them more attractive for traders.

Risk accepted:

Tenet Technology Ltd is aware of this issue but has decided to keep the relevant codebase unchanged.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

5.8 Unclear Specifications for the Format of Strike
Price
Correctness Low Version 1 Code Partially Corrected

CS-DPV1-015

Users should specify a strike price when deploying a new battle. The function
createAndInitializeBattle takes as input a struct which includes the field
battleKey.strikeValue. This value is expected to be in 18 decimals, however the specifications do
not clarify the format of the strike price and its quote token. Incomplete or missing specifications increase
the likelihood of mistakes from users or third-party systems that interact with the system.

Code partially corrected:

Version 2In , the following inline comment is added for function getAdjustPrice:

/// @param price price of underlying. price has decimal 18, eg. eth price 1500 will be 1500 * 10**18

However, public and external functions such as createAndInitializeBattle() that are called by
end users do not describe the expected format of inputs.

5.9 Update of Oracle Addresses
Design Low Version 1 Risk Accepted

CS-DPV1-016

The account owner in the contract Oracle can update the address of an oracle for an underlying
(symbol) via the function setExternalOracle. The address change of an external oracle effects only
the new battles that are deployed afterwards, while the ongoing battles do not reflect the change.
Therefore, ongoing battles cannot settle if the external oracles fail to publish prices as expected. The
function getPriceByExternal that gets called by battles do not check that cOracleAddr is still the
correct oracle for the respective symbol.

Rick accepted:

Tenet Technology Ltd is aware of this behavior and has decided to keep the code unchanged, providing
the following motivation:

The update of oracle addresses during on-going battles is disabled as it is considered
an attack vector, in which a malicious actor may update the oracle address to affect
settlement results. In case of external oracles fail to publish prices as expected,
the owner will be given the ability to address the issue an hour post expiry, only after
all prior processes fail to settle a pool.

Version 2In of the codebase, the severity of the issue presented above is limited as the oracle defaults to
prices reported by owner in case the external oracle does not work as expected. However, this requires
additional trust for owner to behave correctly.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 3

• Code CorrectedIncorrect Iteration of Rounds From Chainlink Oracle

• Specification ChangedMissing Sanity Checks on Price From Oracle

• Code CorrectedMissing Slippage Protection When Providing Liquidity

Low -Severity Findings 11

• Code CorrectedEvents Missing in Arena

• Code CorrectedHardcoded Balances for Spear and Shield in getAllBattles

• Code CorrectedIntended Oracle Address for a Battle

• Code CorrectedIntended Use of Owed Values in Battle

• Code CorrectedMissing Natspec

• Specification ChangedRounding Errors

• Code CorrectedSpecial Behavior of getAdjustPrice

• Code CorrectedSpecial Case in Function Pay

• Code CorrectedStorage Variable deploymentParameters in Arena

• Code CorrectedUnused Functions in PeripheryPayments

• Code Corrected_safeMint Not Used in Manager

Informational Findings 6

• Code CorrectedIndistinguishable Spear and Shield Tokens

• Code CorrectedRedundant Import of Library

• Code CorrectedCommented Code and Remaining ToDos

• Code CorrectedPossible Event Reentrancy in addLiquidity

• Code CorrectedUnused Error NotNeedChange

• Code CorrectedNFT Approvals Not Considered in Manager

6.1 Incorrect Iteration of Rounds From Chainlink
Oracle
Correctness Medium Version 1 Code Corrected

CS-DPV1-002

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The internal function Oracle._getPrice iterates backward through the rounds reported by a Chainlink
oracle as follows:

for (uint80 i = id; i > 0; i--) {
 (, int256 answer, uint256 startedAt,,) = cOracle.getRoundData(i);
 ...
}

As described in the docs of oracles, there is no guarantee that round IDs are monotonically increasing.
More specifically, when the aggregator updates the implementation, a gap in the between two
consequent roundIDs is created. If such an update happens between a battle's expiry and its
settlement, the function _getPrice reverts as it queries prices for invalid roundID. Therefore, the battle
cannot settle and neither liquidity providers, nor traders can claim their collateral tokens.

Code corrected:

Version 2In , the first round in the current phase is fetched and the code iterates backward from the latest
ID to the starting ID in the current phase. Hence, all the round IDs are valid. Note, if there is an update of
phase ID after the expiry of a battle, oracle returns the manually set prices by its owner.

6.2 Missing Sanity Checks on Price From Oracle
Design Medium Version 1 Specification Changed

CS-DPV1-003

The internal function Oracle._getPrice does not enforce a restriction on the maximum delay between
the battle expiration and the first price reported by the Chainlink oracle after expiration:

for (uint80 i = id; i > 0; i--) {
 (, int256 answer, uint256 startedAt,,) = cOracle.getRoundData(i);
 if (startedAt < ts) {
 break;
 }
 if (startedAt >= ts) {
 p = decimalDiff * answer.toUint256();
 actualTs = startedAt;
 }
}
require(p != 0, "price not exist");

It might happen that the Chainlink publishes a price shortly before the expiration and the next overwritten
with a significant delay which possibly deviates from the correct price at expiration, however it still gets
used as the settlement price by the battle.

Specification changed:

Version 2The contract Oracle has been refactored in and the specifications of the function _getPrice
have changed. The new specifications consider prices from the external oracles (i.e., Chainlink) to be
valid if they are published in the first hour after the expiration of a battle, otherwise fallback prices
provided by the owner of the contract Oracle are used.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 19

https://web.archive.org/web/20230712105829/https://docs.chain.link/data-feeds/historical-data#roundid-in-proxy
https://chainsecurity.com

6.3 Missing Slippage Protection When Providing
Liquidity
Security Medium Version 1 Code Corrected

CS-DPV1-004

The function Manager.addLiquidity does not implement any slippage protection mechanism, hence
leaving LPs susceptible to front-running attacks. In a scenario where an LP intends to provide liquidity
into a slot that covers the current price, the transaction can be front-run to move the current price outside
the slot such that less liquidity is minted for the victim transaction.

Similarly, a victim LP that deploys a new battle with a target initial price and adds liquidity to it can be
attacked by front-runners to deploy the same battle (same battle key) but with a malicious initial price
such that the honest LP receives less liquidity.

Code corrected:

Version 2In , a slippage protection in the following form has been added to
LiquidityManagement._addLiquidity():

if (sqrtPriceX96 < params.minSqrtPriceX96 || sqrtPriceX96 > params.maxSqrtPriceX96) {
 revert Errors.Slippage();
}

Hence, if due to the front-running, the current price on the battle-side has changed unexpectedly, the
transaction reverts.

6.4 Events Missing in Arena
Design Low Version 1 Code Corrected

CS-DPV1-006

The function setFeeForUnderlying modifies the state, however the respective event FeeChanged
declared in the interface IArena is not emitted. Similarly, the function setManager updates an
important state variable but does not emit an event.

Code corrected:

In Arena for evey state changing function, a relevant event gets emitted.

6.5 Hardcoded Balances for Spear and Shield in
getAllBattles
Design Low Version 1 Code Corrected

CS-DPV1-036

The function getAllBattles queries the state of all battles, except for spearBalance and
shieldBalance which are set to 0:

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

infos[i] = BattleInfo({
 ...
 spearBalance: 0,
 shieldBalance: 0,
 ...
});

However, as the balance of spear and shield in a battle is not defined, holding these values is
meaningless.

Code corrected:

Tenet Technology Ltd has removed these fields from the struct BattleInfo.

6.6 Intended Oracle Address for a Battle
Design Low Version 1 Code Corrected

CS-DPV1-033

The struct CreateAndInitBattleParams includes a field named oracle, however the function
createBattle uses the address in the state variable oracleAddr when setting the deployment
parameters for a new battle.

Code corrected:

Tenet Technology Ltd has removed the oracle field from the struct CreateAndInitBattleParams.

6.7 Intended Use of Owed Values in Battle
Design Low Version 1 Code Corrected

CS-DPV1-034

Struct PositionInfo has the field insideLast that accounts for the growth inside a position per unit
of liquidity, and another field owed which accounts the growth inside the position. However, the field
owed is not read by the contracts in scope and appears to be redundant as all positions in battle
contracts are held by the manager.

Code corrected:

The unused field owed has been removed from the updated codebase.

6.8 Missing Natspec
Design Low Version 1 Code Corrected

CS-DPV1-008

A large number of functions are missing proper documentation and description. Natspec helps to
understand more quickly the intention of functions which improves code readability. Natspec of external

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

functions also helps third-parties that integrate with the system, e.g., by providing information regarding
the format of input values.

Code corrected:

Version 3The inline comments and specifications have been extended in the .

6.9 Rounding Errors
Correctness Low Version 1 Specification Changed

CS-DPV1-013

In Battle._modifyPosition(), in case of adding collateral liquidity to a position covering the current
tick, spear and shield collaterals (csp and csh) are rounded down. When called from Battle.mint(),
seed = csp + csh is used as the amount of collateral an LP has to pay. Hence, LP pays less
collateral than expected.

Specification changed:

Version 2The function _modifyPosition has been refactored in and the computation that was prone to
rounding errors has been removed.

6.10 Special Behavior of getAdjustPrice
Correctness Low Version 1 Code Corrected

CS-DPV1-014

The function getAdjustPrice behaves differently depending on the value of the input price: i) values
smaller than 10**11 are rounded down to 0; ii) values smaller than 10**12 are rounded down to one
significant digit; ii) other values are rounded down to two significant digits.

The implementation of getAdjustPrice() does not match the formula in the Natspec of the function.

Code corrected:

Tenet Technology Ltd has revised the function to require that input price is larger than 10**12, so for
any allowed price, getAdjustPrice() returns the price with 2 decimals.

6.11 Special Case in Function Pay
Design Low Version 1 Code Corrected

CS-DPV1-035

The internal function pay in PeripheryPayments considers a case when payer == address(this).

else if (payer == address(this)) {
 // pay with tokens already in the contract (for the exact input multihop case)
 TransferHelper.safeTransfer(tokenAddr, recipient, value);
} else {
 // pull payment

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

 TransferHelper.safeTransferFrom(tokenAddr, payer, recipient, value);
}

This case is redundant.

Code corrected:

Tenet Technology Ltd has correctly removed this redundant case.

6.12 Storage Variable deploymentParameters in
Arena
Design Low Version 1 Code Corrected

CS-DPV1-032

The contract Arena defines a storage variable named deploymentParameters. It is set during
createBattle() and practically stores the deployment information about the last instance of battle
being deployed. This increases gas costs on both deployment and runtime.

Code corrected:

Version 2

The state variable deploymentParameters has been removed from the updated codebase in
.

6.13 Unused Functions in PeripheryPayments
Design Low Version 1 Code Corrected

CS-DPV1-031

The abstract contract PeripheryPayments that is inherited by Manager implements several functions that
are declared as payable, do not implement any access control, and transfer any token balance held by
Manager to arbitrary addresses:

• unwrapWETH9()

• sweepToken()

• refundETH

Code corrected:

The functions listed above have been removed from the updated codebase.

6.14 _safeMint Not Used in Manager
Design Low Version 1 Code Corrected

CS-DPV1-017

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

The function Manager.addLiquidity mints new NFTs by calling the internal function _mint which
does not perform any check on the recipient address. Therefore, if recipient is a smart contract
that cannot handle NFTs, the newly minted NFT would be locked.

If recipient is a smart contract, then the function _safeMint checks whether it implements the
interface IERC721Receiver. Note that _safeMint performs a call to untrusted address recipient.

Code corrected:

Version 2In , function _safeMint is used when creating a new NFT. _safeMint() reverts if the
recipient of the NFT is a smart contract that does not implement the interface IERC721Receiver.

6.15 Possible Event Reentrancy in addLiquidity
Informational Version 2 Code Corrected

CS-DPV1-030

The function addLiquidity calls ERC721._safeMint which triggers the onERC721Received hook
on the recipient, effectively giving control to an untrusted contract. At this point, the external contract
could reenter the contract and call addLiquidity() again which mints a new NFT token. In this case,
events LiquidityAdded would not be ordered sequentially, therefore potentially complicating the
monitoring and reconstruction of contract state based on the events info.

Code corrected:

The minting of the NFT has been moved into the end of the function addLiquidity.

6.16 Commented Code and Remaining ToDos
Informational Version 1 Code Corrected

CS-DPV1-018

Commented out code is present in the function Battle.trade and in the contract Manager. Also, a
todo note is remaining in the Natspec of the function getSTokenDelta. Removing commented code
and addressing remaining note could help improve the readability.

Code corrected:

The commented code and remaining ToDos have been removed from the updated codebase.

6.17 Indistinguishable Spear and Shield Tokens
Informational Version 1 Code Corrected

CS-DPV1-022

Arena deploys a set of ERC20 tokens named spear and shield for each battle created. These ERC20
tokens have the same name (Spear/Shield) and symbol (SPEAR/SHIELD) for all battles, hence
possibly confusing for users to distinguish them.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Code corrected:

The function Arena.createBattle has been revised to deploy STokens with distinguishable name
and symbol by appending the battle number after their name and symbol (Spear-X/Shield-X):

string memory indexString = Strings.toString(battleList.length);
address spear = address(new SToken(string.concat("Spear", indexString),
 string.concat("SPEAR", indexString), decimals, battle));
address shield = address(new SToken(string.concat("Shield", indexString),
 string.concat("SHIELD", indexString), decimals, battle));

6.18 NFT Approvals Not Considered in Manager
Informational Version 1 Code Corrected

CS-DPV1-025

The ownership of LP positions in Manager is tracked with NFTs. The contract ERC721 allows holders of
NFTs to provide approvals for a specific NFT or all NFTs to other trusted accounts. However, this
functionality is not considered in Manager as only the owner of an NFT can call functions that modify the
position of an NFT.

Code corrected:

Functions removeLiquidity(), withdrawObligation() and redeemObligation now use the
following modifier to restrict the access:

modifier isAuthorizedForToken(uint256 tokenId) {
 require(_isApprovedOrOwner(msg.sender, tokenId), "Not approved");
 _;
}

Hence, a user holding approvals of NFT, can withdraw the liquidity on behalf of the owner. The recipient
of collateral is the onwer of the NFT.

6.19 Redundant Import of Library
Informational Version 1 Code Corrected

CS-DPV1-027

Library FixedPoint128 is imported twice in the contract Manager.

Code corrected:

The redundant import of this library is removed.

6.20 Unused Error NotNeedChange
Informational Version 1 Code Corrected

CS-DPV1-029

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

Library Errors declares the error NotNeedChange which is unused in the codebase.

Code corrected:

This error has been removed.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Compiler Version
Informational Version 1

CS-DPV1-019

The compiler version used (0.8.19) has the following known bugs:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1834

This is just a note as we do not see any issue applicable to the current code.

The contracts should be deployed using a compiler version they have been thoroughly tested with. Using
a very recent version may not be recommend as it may not be considered battle-proof yet. At the time of
writing the most recent version is 0.8.21.

For more information please refer to the release notes: https://github.com/ethereum/solidity/releases

7.2 Dependency Versions
Informational Version 1

CS-DPV1-020

The smart contract libraries used by the project are:

openzeppelin
chainlink
uniswap/v3-core
uniswap/v3-periphery

These libraries are either not up-to-date (openzeppelin and chainlink), or do not refer to a tagged
commit (v3-core and v3-periphery) in the third-party repository.

7.3 Gas Optimizations
Informational Version 1 Code Partially Corrected

CS-DPV1-021

The codebase could be more efficient in terms of gas usage. Reducing the gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1. The mapping Oracle.externalOracleOf is declared public, however a public getter function
getCOracle is redundantly implemented.

2. Function Oracle.getPriceByExternal could exit early if latestRoundData() returns a
price before the option's expiry.

3. Function Arena.setPermissionless performs redundant SLOADs when accessing the state
variable isPermissionless. Instead of toggling the state variable isPermissionless it can
take the intended value as input parameter.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 27

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1834
https://github.com/ethereum/solidity/releases
https://chainsecurity.com

4. Function Arena.createBattle performs redundant SLOADs when accessing the state variable
managerAddr.

5. Functions initState and init in the Battle could be merged to avoid one external call from
Manager contract to the Battle during deployment.

6. Function addLiquidity creates a new memory variable p1 with the field recipient overwritten,
however it's not used.

7. The external call spearAndShield() in function _addLiquidity can be avoided if collateral is
being deposited.

8. Function Battle.mint performs external calls to verify that the intended amount of tokens has
been transferred to battle, however, as the function can be called only by manager,
mintCallback ensures that the funds are transferred.

9. Contract Arena could deploy the pair of SToken contracts as proxies to reduce the gas costs of
battle deployment. However, note that this approach would increase gas costs on execution.

10. The code assigning the value of pmMemory.liquidityType to bp.liquidityType in function
removeLiquidity could be simplified.

11. The modifier lock in contract Battle could be more gas efficient if non-zero values are used to
record the state.

12. The calculation of state.protocolFee could be moved outside the while-loop.

13. The check params.amountRemaining < 0 in function computeTradeStep is redundant as
amountRemaining is of type uint256, hence cannot be negative.

14. Function computeTradeStep calculates first the capacity (cap), then in the else branch
computes again the same value for amountIn (except rounding). The computation of amountIn
could be avoided if cap was rounded up.

15. Function Manager.tradeCallback implements a redundant logic with function
verifyCallback.

16. Battle.maxLiquidityPerTick is set to Tick.tickSpacingToMaxLiquidityPerTick(1)
which has a predefined value. Hence, it can be changed to constant.

17. Battle._modifyPosition() calculates the seed using the same formula for Spear and Shield
liquidity. Hence, those two can be merge to a single else-statement.

18. TradeMath.computeTradeStep() calculates amountIn and amountOut in the same way,
whether params.amountRemaining < cap or not. Therefore, those lines calculating amountIn
and amountOut can be moved out of if-else-statement.

19. Input arguments of Oracle.setExternalOracle() can be defined as calldata.

20. sAmount input argument in Manager.tradeCallback() is not used and could be commented
out.

21. data input argument in Quoter.tradeCallback() is not used and could be commented out.

22. DiverSqrtPriceMath.getSTokenDelta(), in the current status of the codebase, is always
called with non-negative liquidity. Hence, checking for negative liquidity is unnecessary.

Version 2 :

23. The field DeploymentParams.arenaAddr is not used.

24. Function Battle.init() performs two checks to ensure that the battle has not been initialized
before.

25. Function Battle.init() performs an external call to retrieve decimals of the collateral token
which could be passed as function argument from Arena.

26. Function Battle.mint() declares a storage pointer positionInfo which remains unused.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

27. Arena.createBattle() checks if params.bk.strikeValue == 0. This cannot happen, as
params.bk.strikeValue is the return value of getAdjustPrice() which never returns 0.

28. Oracle.getPriceByExternal() can be defined as external.

29. Position.update() needs to calculate liquidityNext if liquidityDelta != 0. Hence,
this calculation can be moved inside the if-statement.

30. Position.tokenId is a redundant field, as on the manager-side, the respective position is stored
in a mapping with the tokenId as key.

31. BattleInitializer.createAndInitializeBattle() does not need to check if the the
battle is already deployed in the Arena, as the same check is done in the Arena.

Code partially corrected:

The codebase has been updated to implement several gas savings reported above. However, points 3,
8, 11, 16, 19-27, 29 and 31 are still present.

7.4 Magic Values in Codebase
Informational Version 1

CS-DPV1-023

Several magic values are used in the codebase that could be declared as constant. For instance, the
function Arena.createBattle uses values 28_800 and 86_400 that could be replaced with
constants. Similarly, the contract Battle uses the value 1 for tick spacing which can be replaced with a
constant variable to improve code readability.

7.5 Missing Functions in Interfaces
Informational Version 1

CS-DPV1-024

The interface IBattleState does not include the getter function for the state variable fee. Similarly,
the interface IQuoter does not include the function quoteExactInput among others.

7.6 Possible Packing of State Variables
Informational Version 1

CS-DPV1-026

Several struct data types in the codebase could be optimized to use less storage by reordering or using
smaller types. For instance, the field expiries stores timestamps which can be saved in less than 256
bits, hence its type can be changed so that both collateral and expiries fit into a single storage
slot. Similarly, the struct Fee could be optimized by changing variable types given that values stored do
not exceed 10**6, while struct Position could be optimized by reordering its fields.

7.7 Relaxed Condition on Collateral
Informational Version 1

CS-DPV1-037

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Manager.getObligation() calculates the return value collateral in the following way:

collateral = pm.owed.collateralIn + pm.seed == obligation ?
 0 : pm.owed.collateralIn + pm.seed - obligation - 1;

for liquidity type of collateral. Relaxing the condition by changing == to <= could prevent some corner
cases in which due to rounding errors, pm.owed.collateralIn + pm.seed is slightly rounded down.
The same argument holds for other liquidity types.

7.8 Rounding Errors on Computing sTokens
Informational Version 1

CS-DPV1-028

The function getSTokenDelta in library DiverSqrtPriceMath takes as last input the flag roundUp. The
function rounds up all intermediary values when the flag roundUp is set to true. Therefore, it is possible
that the function returns an amount with a higher difference than 1 compared to the amount returned by
the same function when called with roundUp set to false.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Battles Should Be Settled After Expiration
Note Version 1

The contract Battle implements a public function settle that can be called by anyone to decide the
winning token (spear/shield). However, there is no additional incentive to call this function, hence can be
called with a delay.

Function settle triggers a call to Oracle._getPrice() which implements a for-loop that iterates
through historical prices reported by the oracle until the correct one (closest to and after the battle's
expiration) is found. The loop could run out-of-gas if settle() is called with a considerable delay and
enough prices have been published by the oracle. In this case, for-loop will run out of gas to reach the
desired price and will consequently fail.

8.2 Battles With Malicious Starting Prices
Note Version 1

The deployer of a battle can freely choose the initial price startSqrtPriceX96 as long as it falls in the
range of allowed prices. Therefore, it is possible that for an attacker to initialize battles with a malicious
price (which does not reflect the fair price of options at the time of deployment) to degrade user
experience or cause denial-of-service (DoS). The attacker has to pay for the gas costs to deploy new
battles, while the process and cost to recover the battle (set a fair price) depends on the behavior of the
attacker.

A battle initialized with a malicious starting price could recover more easily if the attacker did not add
liquidity into it. In this scenario, an honest LP should add collateral as liquidity around the fair price and
then a trade should happen. However, the trade is limited on buying the option that was priced higher by
the attacker on deployment which might be inconvenient for traders.

If an attacker initializes a battle with a malicious price and adds liquidity into it, the process of recovering
becomes more costly. In this scenario, the attacker sets the starting price to one edge of the curve (e.g.,
around minimum tick where spear is very expensive), then adds collateral as liquidity into a range above
the current tick where spear is still priced higher than the fair price. The only way for the battle to recover
is for traders to consume all liquidity provided by the attacker which means buying options for a price
higher than the fair one. Hence, such battles could remain unused, which degrades the user experience.

An attacker can even cause temporary DoS for a pair of collateral and underlying assets. As described in
Limited Entropy for Battle Keys, an attacker could deploy all possible battles for a target expiration date
(e.g., end of month), and a price change range (±10%) to render such battles useless.

8.3 Fallback Prices in Oracle
Note Version 2

Oracle.getPriceByExternal() gets called when the battle is to be settled after the expiry. Tenet
Technology Ltd has informed us that they have an off-chain agreement with Chainlink to publish prices
between 8 A.M. and 9 A.M. UTC (1 hour interval) for all collateral tokens used in battles. If for any reason

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Chainlink fails to publish valid prices during this interval, Oracle contract defaults to the fixPrices
which are manually set by the owner.

Furthermore, getPriceByExternal() queries Chainlink prices sequencially to find out the first price
published after a battle expires. However, if it happens that the aggreggator implementation of the oracle
is updated during this time, getPriceByExternal() fails to query older prices (due to phaseId
change). In this scenario also, the contract Oracle defaults to the fixPrices set by the owner.

8.4 Function quoteExactInput Is Gas Inefficient
Note Version 1

The function Quoter.quoteExactInput is a helper function that allows traders to estimate how much
collateral they should pay and how many option tokens they receive for a set of trading parameters. The
function is implemented in such a way that it calls the actual Battle.trade function to find out spend
(collateral) and get (options) amounts. This means that quoteExactInput() triggers all state changes
that a normal trade would do, but reverts in the end. Therefore, the gas costs of calling this function
on-chain are comparable with gas costs of Battle.trade.

8.5 Limited Entropy for Battle Keys
Note Version 1

The battle key in Arena is computed as follows:

bytes32 battleKeyB32 = keccak256(abi.encode(bk.collateral, bk.underlying, bk.expiries, bk.strikeValue));

The entropy for battle keys comes from expiries and strikeValue for a given pair of collateral
and underlying. However, both expiries and strikeValue can be values from discrete sets, and it
is feasible for one to deploy all possible battles for a target expiry (e.g., end of month) and a price range
(e.g., ±10%).

8.6 String Type Used as Key in Mappings
Note Version 1

The mappings externalOracleOf in Oracle, and fees and underlyingWhitelist in Arena use
keys of type string. We highlight the possibility to have different Unicode characters that render
similarly or using invisible Unicode characters, which could be misused by attackers to trick users.

8.7 Users Should Validate Collateral Tokens
Note Version 2

If Arena.isPermissionless is set, users can deploy battles with arbitrary tokens as collateral.
However, the smart contracts in scope of this review work as expected only with standard ERC20 tokens
that do not implement special features such as transfer hooks, rebasing, or transfer fees. See Section
Roles and Trust Model for more details.

Tenet Technology Ltd - Divergence Protocol v1c - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Deployment
	2.2.2 Adding Liquidity
	2.2.3 Trading
	2.2.4 Removing Liquidity
	2.2.5 Redeeming Obligation
	2.2.6 Withdrawing Obligation
	2.2.7 Settling the Battle
	2.2.8 Exercising
	2.2.9 Roles and Trust Model

	2.3 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Traders Pay More Collateral Than Specified
	5.2 Unused Imports
	5.3 LiquidityDelta Check in Position.update
	5.4 Mismatch of Min/Max Ticks With the Edge Prices
	5.5 Missing Sanity Checks
	5.6 NFTs Are Never Burned in Manager
	5.7 Possible to Frontrun Fee Updates in Arena
	5.8 Unclear Specifications for the Format of Strike Price
	5.9 Update of Oracle Addresses

	6 Resolved Findings
	6.1 Incorrect Iteration of Rounds From Chainlink Oracle
	6.2 Missing Sanity Checks on Price From Oracle
	6.3 Missing Slippage Protection When Providing Liquidity
	6.4 Events Missing in Arena
	6.5 Hardcoded Balances for Spear and Shield in getAllBattles
	6.6 Intended Oracle Address for a Battle
	6.7 Intended Use of Owed Values in Battle
	6.8 Missing Natspec
	6.9 Rounding Errors
	6.10 Special Behavior of getAdjustPrice
	6.11 Special Case in Function Pay
	6.12 Storage Variable deploymentParameters in Arena
	6.13 Unused Functions in PeripheryPayments
	6.14 _safeMint Not Used in Manager
	6.15 Possible Event Reentrancy in addLiquidity
	6.16 Commented Code and Remaining ToDos
	6.17 Indistinguishable Spear and Shield Tokens
	6.18 NFT Approvals Not Considered in Manager
	6.19 Redundant Import of Library
	6.20 Unused Error NotNeedChange

	7 Informational
	7.1 Compiler Version
	7.2 Dependency Versions
	7.3 Gas Optimizations
	7.4 Magic Values in Codebase
	7.5 Missing Functions in Interfaces
	7.6 Possible Packing of State Variables
	7.7 Relaxed Condition on Collateral
	7.8 Rounding Errors on Computing sTokens

	8 Notes
	8.1 Battles Should Be Settled After Expiration
	8.2 Battles With Malicious Starting Prices
	8.3 Fallback Prices in Oracle
	8.4 Function quoteExactInput Is Gas Inefficient
	8.5 Limited Entropy for Battle Keys
	8.6 String Type Used as Key in Mappings
	8.7 Users Should Validate Collateral Tokens

