PUBLIC

Security Audit

of TENX’s Smart Contracts

February 15, 2019

Produced for

O

TenX

by

C CHAINSECURITY

Table Of Content

Foreword 1
Executive Summary 1
Audit Overview L e 2
1. Scopeofthe Audit 2
2. Depthof Audit. o 3
3. Terminology L e 3
Limitations 4
System OVErVIEW L e e 5
1.0 OVEIVIEBW . . . e 5
2. ExtraToken Features 5
Best Practices in TENX’s project o 6
1. Hard Requirements e 6
2. Soft Requirements e 6
Security ISSUES e 7

1. Dependence on block information =~ FARCNGEIERGERE 7

3. Possibility to withdraw additional reward tokens 0 7
4. Possibility to get double rewards [PANRROTIRREE] - - - - o 7
Trust ISSUBS e e 9

1. Inconsistent way of issuing tokens 0 9

2. Inconsistent PAY token balance in the Rewards contract 0 9
3. PAY token to TENX token conversion happens off-chain m v/ Acknowledged [9

TOC ‘ https://chainsecurity.com

https://chainsecurity.com

4. Redundant issuer scheme 0 10

5. The Controller and Regulator responsibilities are partially conflicting o v Addressed |EEu————]

6. Itis possible to mint (in total) too many TENX token m 10

7. Input to reward scheme m v Acknowledged | 10

Design ISSUES 11

1. PauserRolesolnotused [PAREGRN. - - - - - o oo 11

2. Inconsistent reward scheme m 11

3. ERC-1644 and ERC-1594 standard functions have public visibility ~ |[PELeel - - - - - - - 11

4. Inefficient struct m 12
5. Issuer allowed to update claim amount m v Acknowledged | 12

6. Omitted function return ::‘ 12
7. Unnecessary function call : 12
8. No sanity check for new regulator :; 13
9. SignedSafeMath should be updated m 13

10. Possibility of unclaimabletokensz:%jizé v Acknowledg e | 13

11. Locked PAY Tokens [RRERRN - - - - - o oo 13
Recommendations / Suggestions 15
Disclaimer e 16

ChainSecurity Security Audit Report

Foreword

We first and foremost thank TENX for giving us the opportunity to audit their smart contracts. This documents
outlines our methodology, limitations, and results.

— ChainSecurity

Executive Summary

The TENX smart contracts have been analyzed under different aspects, with a variety of tools for automated
security analysis of Ethereum smart contracts.

Overall, CHAINSECURITY found that TENX employs good coding practices. Anyway, CHAINSECURITY found
one higher security issue and some flaws. But the majority of these are trust and design issues that could be
avoided and were addressed or fixed by TENX in a professional manner. TENX uses a new token standard
(ERC—1400) that is currently still in draft status and thereby could still be subject to changes. Therefore,
CHAINSECURITY recommends TENX to keep an eye on the latest developments regarding this standard.

ChainSecurity Security Audit Report

Audit Overview

Scope of the Audit

The scope of the audit is limited to the following source code files. All of these source code files were received
on January 23, 2019. The latest update has been received on February 12, 2019. The corresponding Git
commit is: 10e8ef4de4d426e5a6ec1553268cfd040c7£07F1.

File

SHA-256 checksum

./contracts/lib/CanReclaimPAY.sol

e4002dbeeb523ebal487b949a2e56042718ae006e69c8c9a667ae7a73£62f0cld

./contracts/lib/Blacklistable.sol

50c£57835181dba3c17192£80da1460b3d228398bf43f8e31aa3a83159e29af8

./contracts/lib/Whitelistable.sol

08fadabff2dc2456c8f£5c2588b2313a696711177£fe7418761cdccdc46957d85

./contracts/token/RewardableToken.sol

824266cd13156668d82293eb81e8a1112fd921aaf7cb671fcfeb7cef4cab9131

/contracts/token/PayToken.sol

eael72df1f9acae985b17£38£778b5fe724eb902d7b0fdb800c68£47b8912fb0

./contracts/token/ERC1644.sol

ada77bc1565£96aa5892cb74bfbb235bee8394817d89f3996e481ebf1a608c13

./contracts/token/ERC1594.sol

289d5a2d4a214fc78c705abafclbalbed4cl1e65167681932d66b8e2be14953dc8

./contracts/token/ERC20Redeemable.sol

6£4d39968306148bd76435a598ab90bc863644b7e15fd7ede36c01d38065c080

/contracts/token/ERC20Capped.sol

e82755100d18b813d54e43b21d41a60d8df5b36746299d20237d6b3d0d0aaadd

./contracts/token/ERC1400.sol

97b59831b66aeeb69deacaec87bfelb6bdabf0a605c24c9c94ad6c94b812115a

./contracts/token/TENXToken.sol

5869cb009c78£d3612bc3470fc79f0d8148ede228a861cf90b56460be7d82696

./contracts/rewards/Rewards.sol

463e7aadee5a3a808f7b9f6cbc25488b66b4598285f£024537c44ael176636fc9

./contracts/rewards/Rewardable.sol

ad63efd0668e9b94blccbc81277581e8d6ccb4eddf76861e66ea39eacd62560a

./contracts/compliance/Regulated.sol

a364948b9264f1320317aa4a77a05098caf9ad85410c2eeb92dfb685d7c23683

/contracts/compliance/PermissionedRegulator.sol

eabeb6ce87d016e57ab3acddcfed87895531db68db3482b0cc9e2a70£5£d93c8

/contracts/compliance/BasicRegulator.sol

18927177789edbbc9825£7c2677cdf5e61917b50cad170f3addf55fab7bbdac3

./contracts/compliance/BlacklistRegulator.sol

89a1d72e851e564e152c4£940£297c7d73c0eb0e847497e2808a78e785e9ffb3

./contracts/issuance/Issuer.sol

07£42866efb8329fffc9d775bc55cf8f2a09eb337d2bd8447a72b39a6ca9ced7

/contracts/roles/RegulatorRole.sol

0597b32d8c914f2c02063ae2cOac1f6dc4198aabb8af7e681eef02d2c680a303

./contracts/roles/IssuerStaffRole.sol

46fa4ff63868618556a2c904db11005f£6a7003404456ee4142f05273b9%ebdc2

./contracts/roles/RewarderRole.sol

174eb75abcd0bd6d7ed4a59df8a0010bc3e6e548ad766fal1c979d7602abe3abf

./contracts/roles/IssuerRole.sol

2921c9cccb6856c8acl18bcaf9cc2e40673beb87951c694d47de8124da3e09af

./contracts/roles/ControllerRole.sol

dd6fcfd9e7bd643b9003dbd348ce215125fcef7d01cbf0447147a1b400dba446

./contracts/interfaces/IERC1644.sol

6154670109e0bd1919d617c5934453bd61465dbdb518caaad7542d3a59957d01

./contracts/interfaces/lIssuer.sol

397f1e3eala26768dbaa9704f10dbec185e03653d401e41clalca90£4681bbd5

./contracts/interfaces/IPAY Token.sol

362faecabaeb56ce997587e998a6607dac9a0013e77b79737db8247a3fbb5e3b9

./contracts/interfaces/IERC1594Capped.sol

e46£212b80fc5e972ef1c0£d86c7£3d388153abcb30aba8effab0af293cc2203

Jcontracts/interfaces/IERC20Capped.sol

1c80f4a3e1d167df6a8b6812ef4677487d35a36d3b79afadfae469059110e88e

./contracts/interfaces/IRegulator.sol

7d3e24a63aldada3a9ce2212727a9df21dca2165e6e113d07eac981ccdc03120

/contracts/interfaces/IHaslssuership.sol

2e6fa4c89fff6d74fa65905£67ef7e1180224d32b9dd013d0702d81c2b727e30

./contracts/interfaces/IERC1594.sol

aac02004£5d001a51625£47b7d159713e£73832080c0def95005b869e509d7e9

./contracts/interfaces/IRewards.sol

5d61aef76cfb8764717725£7b2b4d55b9e3ba2ffebaf3£f9f018628d7f25e5ffe

./contracts/interfaces/IRewardable.sol

bb8cedf75£f0fa91baf19c5337115efeb67d2ceaf92a138e7f3be50c8a492ece8

https://chainsecurity.com

https://chainsecurity.com

Depth of Audit

The scope of the security audit conducted by CHAINSECURITY was restricted to:

e Scan the contracts listed above for generic security issues using automated systems and manually in-
spect the results.

e Manual audit of the contracts listed above for security issues.

Terminology

For the purpose of this audit, we adopt the following terminology. For security vulnerabilities, we specify the
likelihood, impact and severity (inspired by the OWASP risk rating methodology).

Likelihood represents the likelihood of a security vulnerability to be encountered or exploited in the wild.
Impact specifies the technical and business related consequences of an exploit.
Severity is derived based on the likelihood and the impact calculated previously.

We categorize the findings into 4 distinct categories, depending on their severities:

S

Low: can be considered as less important

° 0 Medium: should be fixed
° o High: we strongly suggest to fix it before release

° e Critical: needs to be fixed before release

These severities are derived from the likelihood and the impact using the following table, following a stan-
dard approach in risk assessment.

IMPACT

LIKELIHOOD

During the audit concerns might arise or tools might flag certain security issues. After careful inspection of
the potential security impact, we assign the following labels:

o AT no security impact
o : during the course of the audit process, the issue has been addressed technically
o WAVAGLICERTEIN: issue addressed otherwise by improving documentation or further specification

o ANGIEo[SIel: issue is meant to be fixed in the future without immediate changes to the code

Findings that are labelled as either or RALYLIEERETo] are resolved and therefore pose no security
threat. Their severity is still listed, but just to give the reader a quick overview what kind of issues were found
during the audit.

"https://www.owasp.org/index.php/0OWASP_Risk_Rating_Methodology

ChainSecurity Security Audit Report

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology

Limitations

Security auditing cannot uncover all existing vulnerabilities, and even an audit in which no vulnerabilities are
found is not a guarantee for a secure smart contract. However, auditing allows to discover vulnerabilities that
were overlooked during development and areas where additional security measures are necessary.

In most cases, applications are either fully protected against a certain type of attack, or they lack protection
against it completely. Some of the issues may affect the entire smart contract application, while some lack
protection only in certain areas. We therefore carry out a source code review trying to determine all locations
that need to be fixed. Within the customer-determined timeframe, CHAINSECURITY has performed auditing in
order to discover as many vulnerabilities as possible.

https://chainsecurity.com

https://chainsecurity.com

System Overview

Token Name & Symbol TENX TOKEN, TENX
Decimals 18
Issuing Rate 1 PAY: 1 TENX
Hard Cap 205,218,255.948577763364408207
Token Type ERC-20, ERC-1400 (ERC-1594, ERC-1644)
Token Generation Issuable, Burnable, Capped, Redeemable
Vesting No
Pausable Yes
KYC Can be added
Owner Rewards Yes

Table 1: Facts about the TENX token and the Token Sale.

Overview

TENX introduces a security token. The token implements the ERC-20 and ERC-1400 (ERC-1644 and ERC-
1594) specifications. It grants the right to receive Y% (Y = amount TENX tokens owned by account / total
amount of TENX tokens) of the PAY tokens which are deposited in the rewards contract by TENX. An eligible
user can withdraw his share of PAY token from the reward contract. A user is eligible if he passed KYC and
held TENX token when the deposit was made.

The TENX token is issued to all PAY token holders (based on a snapshot from end of 2018). The ratio PAY
token/TENX token is 1:1. To receive PAY token the account needs to go through KYC and maybe also claim
the token (depending if the token is issued or airdropped by the issuer). The token is transferable only between
KYC approved accounts. If TENX tokens are transferred, past rewards still belong to the account which had
the tokens when the reward was deposited. For security reasons it is possible to pause and unpause token
and reward transfers.

Extra Token Features

Emergency Drain The Owner of the contract can drain any amount of funds from the Rewards contract.

Rewards TENX tokens holders are entitled to receive a share of the PAY tokens that are deposited into the
Rewards contract by TENX.

Damping TENX keeps track of the rewards. A TENX token transfer does only transfer the tokens but not past
unclaimed rewards.

ERC-1400 (ERC-1644 and ERC-1594) The combination of ERC-1644 and ERC-1594 introduces the possibil-
ity for a regulator role to verify and interfere with token transfers (ERC-1594). Furthermore, a controller
role has the power to redeem or transfer tokens from and to any account (ERC-1644).

ChainSecurity Security Audit Report

Best Practices in TENX’s project

Projects of good quality follow best practices. In doing so, they make audits more meaningful, by allowing
efforts to be focused on subtle and project-specific issues rather than the fulfillment of general guidelines.
Avoiding code duplication is a good example of a good engineering practice which increases the potential
of any security audit.
We now list a few points that should be enforced in any good project that aims to be deployed on the
Ethereum blockchain. The corresponding box is ticked when TENX’s project fitted the criterion when the audit
started.

Hard Requirements

These requirements ensure that the TENX’s project can be audited by CHAINSECURITY.
m The code is provided as a Git repository to allow the review of future code changes.
m Code duplication is minimal, or justified and documented.

Libraries are properly referred to as package dependencies, including the specific version(s) that are
compatible with TENX’s project. No library file is mixed with TENX’s own files.

The code compiles with the latest Solidity compiler version. If TENX uses an older version, the reasons
are documented.

m There are no compiler warnings, or warnings are documented.
Soft Requirements

Although these requirements are not as important as the previous ones, they still help to make the audit more
valuable to TENX.

IZ There are migration scripts.

L/] There are tests.

IZ The tests are related to the migration scripts and a clear separation is made between the two.

|Z[The tests are easy to run for CHAINSECURITY, using the documentation provided by TENX.

|:| The test coverage is available or can be obtained easily.

IZ The output of the build process (including possible flattened files) is not committed to the Git repository.

The project only contains audit-related files, or, if not possible, a meaningful separation is made between
modules that have to be audited and modules that CHAINSECURITY should assume correct and out of
Scope.

m There is no dead code.
IZ The code is well documented.

The high-level specification is thorough and allow a quick understanding of the project without looking at
the code.

Both the code documentation and the high-level specification are up to date with respect to the code
version CHAINSECURITY audits.

m There are no getter functions for public variables, or the reason why these getters are in the code is given.

IZ Function are grouped together according either to the Solidity guidelines?, or to their functionality.

®https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions

m https://chainsecurity.com

https://solidity.readthedocs.io/en/latest/style-guide.html#order-of-functions
https://chainsecurity.com

Security Issues

In the following, we discuss our investigation into security issues. Therefore, we highlight whenever we found
specific issues but also mention what vulnerability classes do not appear, if relevant.

Dependence on block information . [P Qe

The functions canSend(), canReceive(), isTimelocked() and setPermission(), which are located inside
the PermissionedRegulator contract makes use of the special block . timestamp field. Although block ma-
nipulation is considered hard to perform, a malicious miner is able to move forward block timestamps by up to
900 seconds (15 min) compared to the actual time. CHAINSECURITY notes that TENX and its users should be
aware of this and adhere to the 15 seconds rule®

Likelihood: Low

Impact: Low

Acknowledged: TENX has acknowledged that they are aware of this and will adhere to the 15 seconds rule.

Front running possible v Acknowledged

The issuer can issue a new claim, containing an amount and a payee. Such a claim can then be claimed by
the payee. In case, the issuer update the amount of a previously created claim, this update is vulnerable to
front running by the payee. If the claimable amount is lowered in the new claim, the payee can front-run the
update by calling the claim function to receive the higher amount.

Likelihood: Low

Impact: Medium

Acknowledged: TENX has acknowledged that they are aware about this issue. TENX added this as a func-
tionality to re-issue an unclaimed claim in case one was made with a wrong amount. Although this is super
unlikely to happen TENX has decided to keep the functionality as is.

However, CHAINSECURITY recommend to document this functionality.

Possibility to withdraw additional reward tokens °

The way the damping value is recalculated after the redemption of TENX TOKENSs allows redeeming users
to claim a higher amount of reward tokens than they would normally be entitled to. If a user makes such an
additional claim, then the additionally withdrawn tokens are being stolen from other honest users.

Likelihood: Medium

Impact: High

Fixed: TENX changed the damping calculation after redemption. Now a redemption also leads to an update of
the totalRewards variable which therefore, makes sure that already withdrawn rewards cannot be withdrawn
again.

Possibility to get double rewards v Acknowledged

In theory, a token holder can claim a double reward by performing many transfers with tiny token amounts.
Token transfers are supposed to update the _dampings which is updated as follows: _totalRewards x
_sharesChange / _totalShares.

If _sharesChange, so the amount of transferred tokens, is smaller than _totalShares / _totalRewards,
then no _dampings change will occur. This allows an attacker to withdraw rewards multiple times. However,
this is very unlikely, as it occurs high gas costs.

We provide an example:

Shitps://consensys.github.io/smart-contract-best-practices/recommendations/#the-15-second-rule

ChainSecurity Security Audit Report

_totalShares =200 million TENX
_totalRewards = 10,000 PAY

e Maximum transfer amount without _dampings update < 200,000,000/ 10,000 = 20,000 TENX Wei

e Hence to transfer 1 TENX token using such small amounts more than 50,000,000,000,000 transfers are
needed

e Each of these transfers has a gas cost of at least 10,000 gas resulting in gas cost of 5 * 1017 gas
e Given a low gas price of 1 GigaWei, these transfers cost at least 500,000,000 ETH

e |f the attacker manages to use a gas price of 1 Wei, e.g. because it is also mining, these transfers cost
at least 0.5 ETH.

e As a reward, the attacker receives 1 * 10,000 / 200 million =5 * 10**-5 PAY tokens

Therefore, the attack is unlikely to be performed. It becomes impossible once so many rewards have
accumulated that _totalShares <= _totalRewards.

Acknowledged: TENX has acknowledged this issue and is aware of it.

https://chainsecurity.com

https://chainsecurity.com

Trust Issues

The issues described in this section are not security issues but describe functionality which is not fixed inside
the smart contract and hence requires additional trust into TENX, including in TENX’s ability to deal with such
powers appropriately.

Inconsistent way of issuing tokens 0

There exist two different ways of issuing tokens. The expected way is through the Issuer contract. However,
the Issuer or Owner role of the TENXToken contract could directly call TENXToken . issue() and thereby mint
new token. This bypasses the checks done in the Issuer contract:

require(_payee != address(@), "Payee must,not,be a,zero,address.");
require(_payee != msg.sender, "Issuers,cannot,airdrop, for themselves");
require(_amount > @, "Claim amount must be positive.");

claims|[_payee] = Claim({

status: ClaimState.CLAIMED,
amount: _amount,
issuer: msg.sender

1)

Thus, the payee could be the msg.sender and the tokens are not tagged as claimed.

Fixed: TENX solved the problem by separating the roles into two differnt roles. Furthermore, TENX makes
sure that only one issuer can be active at a time. The owner has the power to transfer this issuer role.

Inconsistent PAY token balance in the Rewards contract 0

The Rewards contract manages the PAY tokens paid out. However, it contains the function reclaimTokens().
Calling the reclaimTokens () function drains all funds but the totalRewards variable stays untouched.

This creates an inconsistency between the perceived balance (represented by totalRewards, which is
updated after each deposit() call) and the real balance and breaks the contract’s functionality. Consequently,
deposits will be computed incorrectly.

Furthermore, TENX might consider, if it shall be allowed for the owner to withdraw all funds from the contract
at all. The funds are deposited by the Rewarder role. Allowing the owner to drain the funds might be an
inconsistent use of the defined roles.

Fixed: TENX uses the reclaimTokens() only in emergency cases when there is the need to migrate to a
new contract. Therefore, the totalRewards variable needs to stay unchanged. TENX changed the permission
to call this emergency functions. Now, only the owner is allowed to call it instead of the rewarder. After calling
reclaimTokens() the Reward contract gets unusable.

PAY token to TENX token conversion happens off-chain 0 v Acknowledged

TENX is using a .csv file in a private repository as the PAY token balance snapshot taken earlier. This file is
the base for paying out the TENX tokens to PAY token holders. Even though all information could be checked,
this check is very hard to perform for a usual user. A user needs to check all accounts’ balances at the time
the snapshot was made and compare them to all the tokens that were issued. Additionally, the user needs to
take into account all burn, redeem and similar events.

Acknowledged: TENX acknowledged that they will open source the script on their GitHub*, that generates the
token snapshot, so that anyone can audit and run the script themselves.

“https://github.com/tenx-tech/TENX/tree/master/snapshot

ChainSecurity Security Audit Report

https://github.com/tenx-tech/TENX/tree/master/snapshot

Redundant issuer scheme 0

There are two issuer roles which are redundant. First, we have the issuers which are added to the Issuer
contract. They are supposed to issue new TENX TOKENs. Secondly, the TENXToken contract itself has an
Issuer role assigned. In the current migration scripts, the Issuer contract and the deployer of the TENXToken
are assigned this second role.

This setup leads to two different and redundant issuer roles, which do have different power. For the current
setup to work correctly, both roles are needed. The second role is required to call the finishIssuance
function, while the first role is required to perform regular issuances.

Individual accounts assigned the second role, can also directly issue tokens. This leads to the issue de-
scribed as “Inconsistent way of issuing tokens”.

Fixed: TENX solved the problem by adding a new role called IssuerStaff. This role now controls the Issuer
contract.

The Controller and Regulator responsibilities are partially conflicting 0 v Addressed

ERC—-1644 and ERC-1594 are partially conflicting. While ERC—-1594 enforces transfer restrictions through
the canTransfer function, ERC—1644 allows forced transfers between any addresses using the controller
Transfer. Thus, the Controller can bypass the Regulator’s checks. The ERC-1644 standard says that
a controllerTransfer may “potentially also need to respect other transfer restrictions”. Therefore, TENX
should clearly state how this conflict should be handled as it represents the power balance between the differ-
ent roles.

Addressed: TENX addressed the issue and added the functions verifyControllerTransfer and verify
ControllerRedeem to check for this conflict. But at present the functions do not enforce anything in the
regulator contracts.

It is possible to mint (in total) too many TENX token m

The TENXToken contract is also an ERC20Capped contract which maintains the maximum cap of the total
Supply of the TENX tokens. However, while redeeming or burning the TENX tokens, the totalSupply is also
reduced. Therefore, the total number of minted tokens might be larger than the cap.

CHAINSECURITY notes that this can only be done until finishIssuance is called.

Fixed: TENX solved the problem by introducing an additional variable totalMinted which only increments
and keeps track of the total amount of minted TENX TOKENS.

Input to reward scheme m v Acknowledged

The funding of the reward scheme is not guaranteed on-chain. The user needs to trust TENX, that the correct
reward amount is deposited into the Rewards contract by TENX.

Acknowledged: TENX acknowledged that there is no change for this. Users need to trust TENX for fair deposit
of rewards amount into Rewards contract.

https://chainsecurity.com

https://chainsecurity.com

Design Issues

The points listed here are general recommendations about the design and style of TENX’s project. They
highlight possible ways for TENX to further improve the code.

PauserRole.sol not used

TENX implements a Pauser role in the PauserRole.sol contract. This role is not being used in any contract.
Yet, the functionality is implemented because TENX uses the OpenZeppelin Pausable contract. CHAINSECU-
RITY recommends removing their own implementation of the PauserRole if it is not used.

Fixed: TENX removed the contract PauserRole.sol.

Inconsistent reward scheme m

The reward scheme does not efficiently allocate funds in case the totalSupply reduces over time. The reward
calculation is based on the amount given in the constructor in Rewards.sol (totalShares = _cap). Thus,
the amount of total TENX TOKENS is assumed to be constant.

But this value is not really constant. TENX TOKEN can be burned or redeemed by the Controller. This
will change the total supply of TENX TOKEN. Hence, the rewards calculation is not correct any more.
For example:

Let's assume two accounts (A and B)

The total supply (all TENX TOKEN) is 20 (instead of ~200m)

A owns 10 TENX TOKEN and B owns 10 TENX TOKEN

TENX deposits 10 PAY token in the reward contact. Thus:

Reward A =5 PAY =10 % 10 / 20 = _userShares.mul(_totalRewards).div(_totalShares)

RewardB =5 PAY =10 % 10 / 20 = _userShares.mul(_totalRewards).div(_totalShares)

A now burns his 10 TENX TOKEN intentionally or unintentionally (or it is redeemed by the Controller
because he is not allowed to own them or any other reason). The total supply is changed!

TENX now deposits another 10 PAY in the reward contact. Hence:

Reward A =0 PAY =0 % 10 / 20 = _userShares.mul(_totalRewards).div(_totalShares)

RewardB =5 PAY =10 % 10 / 20 = _userShares.mul(_totalRewards).div(_totalShares)

We end up with a leftover of 5 unallocated PAY tokens.

After issuing has been finished the reward calculation could be more accurate by using up-to-date total
Supply.

Fixed: TENX solved the problem by keeping track of the maximum amount of non-redeemed TENX TOKENS
which is then used for the reward calculation. Hence, no rewards will be allocated for burnt tokens. These
rewards will be distributed to active token holders proportionally.

ERC-1644 and ERC-1594 standard functions have public visibility = =

The ERC—1644 and IERC—1594.so0l standard interfaces are defined in IERC—1644.sol and ERC—1594. The
implemented functions have the visibility public.

However, the actually implemented ERC-1644° & ERC-1594° standard functions have their visibility defined
as external. CHAINSECURITY recommends to correct the visibility of these functions.

Fixed: TENX solved the problem by correcting the visibility of the functions.

Shttps://github.com/ethereum/EIPs/issues/1644
Shttps://github.com/ethereum/EIPs/issues/1594

ChainSecurity Security Audit Report

https://github.com/ethereum/EIPs/issues/1644
https://github.com/ethereum/EIPs/issues/1594

Inefficient structm

In the Issuer contract there is a struct called Claim, to store the status of the token claims. The struct is
not tightly packed and would consume more gas in storage.

struct Claim {
ClaimState status;
uint amount;
address issuer;

}

This struct can be optimized to consume less gas during the call to issue() function.

struct Claim {
address issuer;
ClaimState status;
uint amount;

}

Using the above struct the function call to issue() would reduce the gas cost per function call.

Fixed: TENX solved the problem by rearranging the struct as proposed.

Issuer allowed to update claim amount m v Acknowledged

An Issuer is able to update the claim amount of a payee. To do so, they perform the following operations:
e An Issuer calls the issue(payeeX, amountX) function of the Issuer contract.

e An Issuer calls the issue(payeeX, amountY) function again with the updated amount amountY for the
same address. This has to be done before the payee calls the c1aim() function.

As pointed out as a security issue, this can be vulnerable to front running attacks.

Acknowledged: TENX acknowledged that they are aware about this as this is a functionality.

Omitted function return =~

When calling ERC-20 standard functions like transfer(), they return the result as boolean to let the caller
know about the execution. The function transferWithData() in the ERC—1594 contract is making a call to
super .transfer(_to, _value), however it is not checking the returned result.

CHAINSECURITY recommends checking the returned result, by enclosing the statement with an require().

Fixed: TENX fixed the problem by wrapping the function calls with require().

The Rewards contract defines _claimedRewards as private state variable.

mapping(address => uint) private _claimedRewards;

The getter function for this is defined like:

function claimedRewards(address _payee) public view returns(uint) ({
return _claimedRewards|[_payee];

}

Also, to access the values from the _claimedRewards the contract uses function claimedRewards() like
below:

g https://chainsecurity.com

https://chainsecurity.com

_claimedRewards [payee] = claimedRewards(payee).add(_amount);

Same is the case with _dampings state variable.

CHAINSECURITY recommends changing the visibility of the _claimedRewards variable to public, the com-
piler will autogenerate getter function. Then the explicitly defined function can be removed and the code can
directly access the mapping instead of calling the function.

Fixed: TENX removed the custom getter for the _claimedRewards variable and set it to public. But did not
do it for the _dampings variable.

No sanity check for new regulator |

The setRegulator () function of the ERC—1594 contract takes the regulator contract’s address and directly
updates the regulator state variable.

It performs no sanity checks, such as checking for an accidentally supplied address (@) or checking for the
existence of a contract at the provided address.

Fixed: TENX solved the problem by checking if the address is a zero address and if the address is a contract.
It therefore uses the OpenZeppelin implementation to check this which uses extcodesize to do so. This should
be fine in this case but CHAINSECURITY wants to generally highlight that extcodesize is not a bulletproof way
to check if the address is a contract. As mentioned in the OpenZeppelin Address.sol contract's comments,
this check will be incorrect if invoked during the constructor of a contract, as the code is not actually created
until after the constructor finishes.

SignedSafeMath should be updated m

The SignedSafeMath library was taken from a gnosis repository. However, the development on it has consid-
erably progressed. Hence, TENX should update their version of the SignedSafeMath’. Among other things,
asserts have been replaced with requires.

Fixed: TENX solved the issue by replacing the library code with the suggested OpenZeppelin library.

Possibility of unclaimable tokens ‘ v Acknowledged

This is not a major issue but by design there will be PAY token which are not withdrawable for some users in
the Rewards contract. The reason is that rounding errors inevitable occur in some calculations.

The snapshot lists some user with a very low PAY token balance. Thus, resulting in a low TENX TOKEN bal-
ance. The reward calculation is _userShares.mul(_totalRewards).div(_totalShares). Hence, to receive
any reward at all (more than one PAY token) this equation needs to hold:

_userShares x _total Rewards
_totalShares

This will not be possible if either the _totalRewards or the _userShares are too low. But as the _total
Rewards will sum up, at some future point the possibility to withdraw the rewards increases (but still depends on
the amount of _userShares. CHAINSECURITY checked this and this occurs only if the amounts are super low.
Furthermore, there is an inevitable rounding error of up to 1 TENX wei for each reward calculation. However,
this value is very small and does not accumulate over time.

>1 (1)

Acknowledged: TENX has acknowledged this issue and is aware of it.

Locked PAY Tokens =~

Given the close connection between PAY tokens and TENX tokens, PAY tokens might accidentally be sent to
a wrong contract, e.g. the TENX token contract. In such a case, they would be locked in that contract. TENX
could add a functionality to recover PAY tokens from these contracts.

Note, that TENX token can be recovered using the controllerTransfer.

7Example: https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/drafts/SignedSafeMath.sol

ChainSecurity Security Audit Report “

https://github.com/OpenZeppelin/openzeppelin-solidity/blob/master/contracts/drafts/SignedSafeMath.sol

Fixed: TENX solved the problem by creating a CanReclaimPAY contract with a function reclaimPAY to reclaim
tokens send to the contract address. TENX inherited this functionality to the TENXToken and Issuer contract.

https://chainsecurity.com

https://chainsecurity.com

Recommendations / Suggestions

m TENX claims, that the TENX token can only be transferred between KYC-approved accounts. The
BasicRegulator contract does simply approve all transactions. TENX already pointed out that the
BasicRegulator contract is fine according to their legal advisors. Anyway, this is a clear mismatch
between TENX’s claims and what is implemented and hence, needs to be mentioned.

CHAINSECURITY therefore, suggests to properly update the documentation and mention both contracts
and also how they will be used.

TENX needs to remember to upgrade the migration scripts which currently still hold some TODOs.

|:| The constructor of the Rewards.sol contract sets the PAY token address. This address is known be-
cause the contract is already deployed. To avoid a trust issue, for the live system, it would make sense
to hardcode this address, to avoid any mistakes/misuse and simultaneously build trust.

Post-audit comment: TENX has fixed some of the issues above and is aware of all the implications of
those points which were not addressed. Given this awareness, TENX has to perform no more code changes
with regards to these recommendations.

ChainSecurity Security Audit Report

Disclaimer

UPON REQUEST BY TENX, CHAINSECURITY LTD. AGREES MAKING THIS AUDIT REPORT PUBLIC. THE
CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND WAR-
RANTIES OF ANY KIND, AND CHAINSECURITY LTD. DISCLAIMS ANY LIABILITY FOR DAMAGE ARISING
OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT. COPYRIGHT OF THIS REPORT REMAINS

WITH CHAINSECURITY LTD..

https://chainsecurity.com

https://chainsecurity.com

	Foreword
	Executive Summary
	Audit Overview
	Scope of the Audit
	Depth of Audit
	Terminology

	Limitations
	System Overview
	Overview
	Extra Token Features

	Best Practices in TenX's project
	Hard Requirements
	Soft Requirements

	Security Issues
	Dependence on block information repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Front running possible repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Possibility to withdraw additional reward tokens replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Possibility to get double rewards repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Trust Issues
	Inconsistent way of issuing tokens repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inconsistent PAY token balance in the Rewards contract repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	PAY token to TENX token conversion happens off-chain repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Redundant issuer scheme repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	The Controller and Regulator responsibilities are partially conflicting repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Addresseddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	It is possible to mint (in total) too many TENX token repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Input to reward scheme repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Design Issues
	PauserRole.sol not used repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inconsistent reward scheme repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	ERC-1644 and ERC-1594 standard functions have public visibility repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Inefficient struct repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Issuer allowed to update claim amount repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Omitted function return repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Unnecessary function call repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	No sanity check for new regulator repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	SignedSafeMath should be updated replapush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Possibility of unclaimable tokens repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Acknowledgedcyanpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth
	Locked PAY Tokens repla push0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpopwhite. Fixeddarkgreenpush0.3098 0.29805 0.30196 rg 0.3098 0.29805 0.30196 RGpoptowidthheightdepth

	Recommendations / Suggestions
	Disclaimer

