

PUBLIC

Code Assessment

of the HilBTC

Smart Contracts

October 31, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Open Findings 13

6 Resolved Findings 21

7 Informational 29

8 Notes 34

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Syntetika with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of HilBTC according to Scope
to support you in forming an opinion on their security risks.

Syntetika implements an ERC-20 token, hBTC, that is a synthetic BTC. The custodian can use the
underlying funds to generate yield which is then forwarded to hBTC stakers whose staking shares are
tokenized as shBTC.

The most critical subjects covered in our audit are asset solvency, functional correctness and access
control. The general subjects covered are testing, documentation, gas efficiency, and upgradeability.

Security regarding most of the above is improvable.

Further, readers are advised to carefully read the report as several findings remain where the risk was
accepted. Below the most notable ones are listed:

• The loss realization process is improvable, see totalAssets() Can Revert and Loss Realization
Process, Inaccurate Loss Realization and Loss Realization Can Be DoSed.

• Users can be penalized even when their cooldown window has passed, see Users Outside of
Cooldown Penalized.

Additionally, the tests are insufficient as several issues could have been caught by testing more
extensively.

Hence, security regarding and quality regarding the aforementioned subjects is improvable. In summary,
we find that the codebase provides an improvable level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 6

• Code Corrected 5

• Risk Accepted 1

Low -Severity Findings 13

• Code Corrected 4

• Code Partially Corrected 2

• Risk Accepted 5

• Acknowledged 2

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the HilBTC repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 15 Sep 2025 a276b312162abee5068fe4dcd86fe5570ff3c574 Initial Version

2 29 Sep 2025 a95fe630fe1e91186c229df878c52bf084b6fa15 First fixes

3 06 Oct 2025 bf9d3c6bc1437a2c1830468576d64b93b914eb8b Second fixes

4 23 Oct 2025 1adf43be5320b79bd06a312171218550e8ff2117 Third fixes

5 29 Oct 2025 59cda6d4df2155978f0228122943a4060a970d90 Fourth fixes

For the solidity smart contracts, the compiler version 0.8.28 was chosen.

The contracts in the following files are in the scope of the review:

deposit-registry/contracts:
 ComplianceChecker.sol
 CompliantDepositRegistry.sol
 Imports.sol

issuance/src:
 helpers:
 Blacklistable.sol
 TokensHolder.sol
 Whitelist.sol
 minter:
 Minter.sol
 token:
 HilBTC.sol
 vault:
 StakingVault.sol

After V2, the scope was updated as follows:

Renamed:

issuance:
 src:
 helpers:
 Blacklistable.sol --> BlacklistableUpgradeable.sol

Added:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

deposit-registry:
 contracts:
 ComplianceCheckerUpgradeable.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries are out of
the scope of this review. More specifically, openzeppelin-contracts is expected to work as intended
and is out of the scope of this review. The Galactica protocol, responsible for managing compliance
checks and issuing the SBTs, is expected to work as intended and is out of the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions. However, note that the system overview, even including the changelog, might thus be
inaccurate for the latest version.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Syntetika offers an ERC20 version of BTC (HilBTC) with a blacklist functionality, and a way to stake it for
increased yield. The issuance of the HilBTC is done by a minter contract that enforces either a manual
whitelist or compliance checks provided by Galactica. All the contracts are deployed behind a transparent
proxy.

2.2.1 Compliance Checker
This contract allows querying whether a user is compliant with a configured set of rules by calling the
isCompliant() function. The COMPLIANCE_ADMIN_ROLE can configure the different compliance
options, each option contains a list of VerificationSBT representing compliance checks. Examples of
compliance options and their SBTs:

• Option 1: user resides in the USA, user is over 21

• Option 2: user resides in EU, user is over 18

In order to be compliant, a user must have all the soulbound tokens (SBT) of at least one compliance
option. The SBTs are issued by Galactica.

2.2.2 Compliant Deposit Registry
The registry offers a list of deposit addresses on another chain that whitelisted investors can register for
and use. The addresses are added by the DEPOSIT_ADDRESS_CREATOR_ROLE and the new batch can
be challenged by the CANCELER_ROLE for batchChallengePeriod seconds after it is submitted. If a
batch is challenged, the addresses it contains will not be made available until they are submitted again.
To be able to register, investors need to pass the isCompliant() check on the attached
ComplianceChecker. Once an investor is linked to an address, they cannot unregister it or request
another one.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 6

https://galactica.com/
https://galactica.com/
https://chainsecurity.com

2.2.3 HilBTC
The HilBTC is an ERC20 representation of BTC on an EVM chain with 8 decimals. It offers a blacklist
feature that the blacklister address can manage, and the tokens are burnable. A blacklisted address
is not able to receive, send nor burn funds. One exception to this rule is that the contract's owner is able
to burnFrom() any address, without requiring any allowance. If the owner has the required allowance,
they can also transfer from arbitrary addresses, even blacklisted ones.

The tokens can be minted by the MINTER_ROLE, which is expected to be held only by the Minter
contract. The HilBTC is expected to be pegged 1:1 to its underlying asset.

2.2.4 Minter
The Minter contract is expected to bear the MINTER_ROLE on the HilBTC token and extends the
ComplianceChecker. It is the entry point for allowed users to mint and redeem HilBTC against some
baseAsset having the same decimals as HilBTC, e.g., WBTC. A user is allowed to mint/redeem if they
are either part of a local whitelist managed by the DEFAULT_ADMIN_ROLE, or are compliant in the sense
of the Compliance Checker. The contract tracks the amount of deposited baseAsset, which is
increased/decreased upon mint/redeem in the variable. If not enough baseAsset is available for
redemption, the function will revert.

The liquidity that is left in the Minter after a mint() can be transferred to the custodian address to
generate some yield by the OPERATOR_ROLE with the transferToCustody() function.

The DISTRIBUTOR_ROLE can call the distributeYield() function when yield has been accrued
from the liquidity transferred to the custodian. This will increase the total deposited amount and trigger
distributeYield() on the Staking Vault.

The contract can be paused by the PAUSER_ROLE, when paused, the mint(), redeem() and
transferToCustody() functions are not available. Note that the DEFAULT_ADMIN_ROLE can mint
unbacked HilBTC.

2.2.5 Staking Vault
The StakingVault is an ERC4626 vault whose underlying asset is HilBTC, it implements a blacklist
similar to HilBTC, delayed withdrawals and redemptions (max 90 days), and optionally early exits with a
fee. A blacklisted address is not able to receive, send nor redeem shares. Holders of HilBTC can deposit
their tokens in the vault and the value of their shares will increase every time yield is distributed. The first
deposit must be made by the contract's owner and 1000 shares will be sent to address(0xdead), the
vault cannot be used prior to this action. The assets amount upon deposit() and mint() must be
greater than the configurable minAssetsAmount.

The totalAssets() function computes the difference between the vault's assets balance and the
currently unvested amount to be distributed. The vesting amount is updated when yield is distributed
through distributeYield(), the vested amount is unlocked linearly over a period of 8 hours. Yield
can be distributed only if the previous vesting has finished and the total supply of shares is above the
number of dead shares.

Upon withdraw() or redeem(), a cooldown starts for the caller. Their shares are burned, and the
assets are sent to a special TokensHolder contract. When the cooldown duration has elapsed, users
can call the claimWithdraw() function. If multiple withdrawals or redemptions are done before the
previous ones are claimed, the whole amount will be subject to the latest cooldown period. If the
cooldownDuration is set to 0, withdrawals and redemptions are instantaneous and do not enter any
cooldown queue.

In the case where early exits are enabled, the claimWithdraw() function can be called right after the
cooldown phase started. The fee taken for an early exit starts at maxEarlyExitFeeBps and then
decreases linearly with time until the end of the cooldown. The fee is
0 <= maxEarlyExitFeeBps < 10%. The fee is then sent to the earlyExitFeeRecipient. By

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

default, the earlyExitFeeRecipient is the StakingVault itself, this configuration has the effect
that the early exit fee increases the value of a share in the vault.

If the custodian incurs a loss in their strategy, Syntetika plans to burn HilBTC from the vault, as
HilBTC should keep its peg. Syntetika plans to have an insurance fund designed as a drawdown
protection mechanism to which they allocate a portion of revenues to.

2.2.6 Changes in V2

• The proxy architecture has been set to UUPS. The ComplianceDepositRegistry and the
TokensHolder are not upgreadeable.

• The CANCELER_ROLE in CompliantDepositRegistry can only cancel the full unfinalized batch,
partial challenge is not possible anymore.

2.2.7 Changes in V3
Assets in the cooldown can now be slashed. Note that more changes were implemented as a response
to fixes.

2.2.8 Changes in V4-V5
To correct the slashing, TokensHolder now implements ERC-4626. Changes were implemented
accordingly.

2.3 Trust Model
• Users are fully untrusted.

• Bearers of the DEFAULT_ADMIN_ROLE in ComplianceChecker are fully trusted. They are
expected to manage the critical roles of the contract correctly and in a non-adversarial manner. In
the worst case, they can grant the DEFAULT_ADMIN_ROLE or the COMPLIANCE_ADMIN_ROLE to
malicious actors.

• Bearers of the COMPLIANCE_ADMIN_ROLE in ComplianceChecker are fully trusted. They are
expected to manage the compliance options correctly and in a non-adversarial manner. In the worst
case, they can register options that either DOS the contract or wrongly grant compliance.

• Bearers of the DEFAULT_ADMIN_ROLE in CompliantDepositRegistry are fully trusted. They
are expected to manage the critical roles of the contract correctly and in a non-adversarial manner.
In the worst case, they can grant the DEFAULT_ADMIN_ROLE,
DEPOSIT_ADDRESS_CREATOR_ROLE and CANCELER_ROLE to malicious actors. Additionally, they
can set the batch challenge period to unreasonable values.

• Bearers of the DEPOSIT_ADDRESS_CREATOR_ROLE in CompliantDepositRegistry are
partially trusted. They are expected to manage the batches of new deposit addresses correctly and
in a non-adversarial manner. They are expected to not collude with bearers of the CANCELER_ROLE.
In the worst case, they can register dead or already used addresses, but they are expected to be
challenged by the CANCELER_ROLE.

• Bearers of the CANCELER_ROLE in CompliantDepositRegistry are fully trusted. They are
expected to challenge the batches correctly and in a non-adversarial manner. They are expected to
not collude with bearers of the DEPOSIT_ADDRESS_CREATOR_ROLE. In the worst case, they can
challenge and remove all the addresses, even the finalized ones.

• Bearers of the DEFAULT_ADMIN_ROLE in HilBTC are fully trusted. They are expected to manage
the critical roles of the contract correctly and in a non-adversarial manner. In the worst case, they
can grant the MINTER_ROLE to malicious actors.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• Bearers of the MINTER_ROLE in HilBTC are fully trusted. They are expected to mint tokens
correctly and in a non-adversarial manner. In the worst case, they can mint unlimited amounts of
HilBTC. This role is expected to be held only by the Minter contract.

• The owner of the HilBTC is fully trusted. They are expected to not burn from arbitrary addresses
without a good reason and to manage the blacklister address correctly. In the worst case, they
can burn arbitrary amounts from arbitrary addresses.

• The blacklister of the HilBTC is fully trusted. They are expected to blacklist and unblacklist
addresses in the best interest of the system and in a non-adversarial manner. In the worst case, they
choose to not blacklist an address that should be blacklisted, or unblacklist it if they previously
blacklisted it. This would violate the system's compliance.

• Bearers of the DEFAULT_ADMIN_ROLE in Minter are fully trusted. They are expected to manage
the critical roles and parameters of the contract correctly and in a non-adversarial manner. In the
worst case, they can grant the OPERATOR_ROLE, PAUSER_ROLE and DISTRIBUTOR_ROLE to
malicious actors, whitelist arbitrary addresses or set a wrong ComplianceChecker. Additionally,
they have the power to perform arbitrary minting of HilBTC.

• Bearers of the OPERATOR_ROLE in Minter are partially trusted. They are expected to transfer
assets to the custodian correctly and in a non-adversarial manner. In the worst case, they can
transfer assets to the custodian as soon as some liquidity arrives in the Minter, DOSing the
redemptions until their role is revoked.

• The custodian in Minter is fully trusted. They are the recipient of funds and are responsible for
handling them securely. In the worst case, a loss of funds leading to a severe depeg could occur.

• Bearers of the PAUSER_ROLE in Minter are partially trusted. They are expected to pause and
unpause the contract in the best interest of the system in a non-adversarial manner. In the worst
case, they can choose to not pause the system in case of an emergency, or pause it to DOS the
system until their role is revoked and the contract is unpaused.

• Bearers of the DISTRIBUTOR_ROLE in Minter are fully trusted. They are expected to distribute the
yield correctly and in a non-adversarial manner. In particular, they are expected to not distribute
more yield than what the custodian's strategy earned, and set a realistic timestamp. In the worst
case, they distribute arbitrary amounts of yield, creating unbacked HilBTC, or DOS the yield
distribution on the StakingVault by setting a timestamp that is far in the future.

• Bearers of the DEFAULT_ADMIN_ROLE in StakingVault are fully trusted. They are expected to
manage the critical roles and parameters of the contract correctly and in a non-adversarial manner.
In the worst case, they can grant the DISTRIBUTOR_ROLE or DEFAULT_ADMIN_ROLE to malicious
actors.

• Bearers of the DISTRIBUTOR_ROLE in StakingVault are fully trusted. They are expected to
distribute the yield correctly and in a non-adversarial manner. In the worst case, they can DOS the
yield distribution by setting a timestamp far in the future.

• The owner of the StakingVault is fully trusted. They can set arbitrary cooldowns and minimum
amounts. In the worst case, they can DoS users.

• The blacklister of the StakingVault is fully trusted. They are expected to blacklist and
unblacklist addresses in the best interest of the system and in a non-adversarial manner. In the
worst case, they choose to not blacklist an address that should be blacklisted, or unblacklist it if they
previously blacklisted it. This would violate the system's compliance.

2.3.1 Changes in V2

• The DEFAULT_ADMIN_ROLE of the StakingVault and Minter, and the owner of HilBTC are
also responsible for upgrading the contracts. They are trusted to not upgrade to malicious versions.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.3.2 Changes in V5

• The owner can now upgrade TokensHolder.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedtotalAssets() Can Revert and Loss Realization Process

Low -Severity Findings 9

• Risk AcceptedInaccurate Loss Realization

• Risk AcceptedLoss Realization Can Be DoSed

• Risk AcceptedUsers Outside of Cooldown Penalized

• AcknowledgedInconsistent Upgrader

• Code Partially CorrectedInitializer Problems

• Code Partially Corrected AcknowledgedChallenge Timing Problems

• Risk AcceptedCooldown and Fee User Agreement Unclear and Unfair

• AcknowledgedERC-4626 Violations

• Risk AcceptedUnnecessary Complexity in Access Control

5.1 totalAssets() Can Revert and Loss
Realization Process
Design Medium Version 1 Risk Accepted

CS-HBTC-006

In case of a loss, Syntetika specified they would burn HilBTC from the StakingVault. While this could
work for small losses, bigger losses might not be fully realizable if they exceed the balance of the
StakingVault. Additionally, the owner of the HilBTC is able to burn from arbitrary addresses, but
needs to be trusted to burn only from the StakingVault for that purpose.

Implementing a dedicated loss realization callpath would crystallize the process and lower the amount of
trust needed. Ultimately, issues arise due to a lack of such a well-defined process.

More specifically, the function StakingVault.totalAssets() carries the following computation:

IERC20(asset()).balanceOf(address(this)) - getUnvestedAmount();

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If getUnvestedAmount() is greater than the contract's balance in the underlying asset(), the
computation will underflow and the function will revert. This can happen if the vault incurs a loss while
yield is being distributed. If the loss or the yield is big enough, the unvested amount will outweigh the
balance.

If StakingVault.totalAssets() reverts, the vault is DOSed until getUnvestedAmount() returns
an amount that is at most equal to the contract's balance. This could be fixed with a dedicated loss
realization function taking care of this case.

Risk accepted:

Syntetika is aware of the issue and accepts the risk based on it being forked from the Ethena codebase.

Version 5

Note that Syntetika introduced the function Minter.realizeLosses() which defines a clear
entrypoint. In , Minter.realizeLosses() was improved to handle burning from the vault and
the tokens holder. However, it only clarifies the loss realiziation process in code but does not consider the
underlying issue.

5.2 Inaccurate Loss Realization
Design Low Version 5 Risk Accepted

CS-HBTC-033

The underlying issue in Fundamentally Broken Loss Realization Process was resolved. However, the
loss realization remains inaccurate:

• Due to a lack of on-chain computations, the TokensHolder and shBTC may be slashed
unproportionally.

• Assuming that the off-chain computation computes it correctly, the validation of seen values is
improper. More specifically, the supply of TokensHolder and shBTC are are validated to match the
expected (seen) supplies during computation. However, the relevant factors are the assets held.
While for TokensHolder this is typically only changing along with the shares, that is not the case
for shBTC which can accure yield.

To summarize, the loss realization remains inaccurate.

Risk accepted:

Syntetika is aware and notes:

This is done intentionally because introducing proportions and percentages would introduce the potential for precision loss.

While the potential precision loss is true, it could have been defined that in case of rounding errors, the
vault, for example, is penalized slightly more.

5.3 Loss Realization Can Be DoSed
Security Low Version 5 Risk Accepted

CS-HBTC-034

Minter.realizeLosses() can be DoSed. More specifically, an attacker can trigger the following
checks to revert:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

require(
 IERC20(address(vault)).totalSupply() == expectedStakingVaultSupply,
 GuardNotPassed()
);
require(
 IERC20(vault.tokensHolder()).totalSupply() ==
 expectedTokensHolderSupply,
 GuardNotPassed()
);

In detail, the attacker could simply mint new shares on either of the two contracts to then trigger a revert.
Note that this is rather unlikely. A longer DoS would require an attacker to spam the network long
enough.

Risk accepted:

Syntetika is aware of the problem but prefers to perform the computations off-chain and to implement
front-running protection this way.

5.4 Users Outside of Cooldown Penalized
Design Low Version 3 Risk Accepted

CS-HBTC-032

The loss realization process will affect both the StakingVault and the TokensHolder. However,
users with registered withdrawals outside of the cooldown period will also be penalized.

Ultimately, the cooldown mechanism does not prevent users from getting slashed after the cooldown
period has ended.

Risk Accepted

Syntetika acknowledged the issue and accepts the risk.

Users should exit the system as soon as possible to prevent getting penalized unnecessarily.

5.5 Inconsistent Upgrader
Design Low Version 2 Acknowledged

CS-HBTC-028

For Minter and StakingVault, DEFAULT_ADMIN_ROLE is the only address that passes
_authorizeUpgrade(). In contrast, for HilBTC this is owner.

Ultimately, the access control is unnecessarily inconsistent.

Acknowledged:

Syntetika is aware of this inconsistency and chose to not change the code.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5.6 Initializer Problems
Design Low Version 2 Code Partially Corrected

CS-HBTC-029

The fixes for Proxied contracts cannot set state in constructor introduced initializers for several contracts.
However, the following problems are present:

1. __ComplianceChecker_init() performs __AccessControl_init(). Also,
Minter.initialize() does the same while also invoking __ComplianceChecker_init().
Thus, the functionality for initializing the access control is duplicated (however, it is a no-op).

2. Similarly, Minter.initialize() grants the DEFAULT_ADMIN_ROLE which is already done in
__ComplianceChecker_init().

3. __ComplianceChecker_init() is an internal initializer but uses the initializer() modifier
instead of onlyInitializing().

4. __Blacklistable_init() performs __Ownable_init(). Also,
StakingVault.initialize() does the same while also invoking
__Blacklistable_init(). Thus, the functionality for initializing owner is duplicated.

5. Similarly, HilBTC.initialize() sets the blacklister storage variable which is already done in
__Blacklistable_init().

6. __Blacklistable_init() is an internal initializer but uses the initializer() modifier
instead of onlyInitializing().

7. __AccessControl_init() is often used even though it is a no-op. Thus, that indicates that even
no-op initializers of ancestor contracts should be used (as recommended by the library docs).
However, various ancestor initializers are ignored (NoncesUpgradeable,
ContextUpgradeable, ...). Ultimately, code is inconsistent.

Code partially corrected:

1. Corrected: __AccessControl_init() in Minter.initialize() was removed.

2. Corrected: granting of the DEFAULT_ADMIN_ROLE in Minter.initialize() was removed.

3. Not corrected.

4. Corrected: __Ownable_init() in StakingVault.initialize() was removed.

5. Corrected: HilBTC.initialize() does not set the blacklister storage variable anymore.

6. Corrected: the modifier was changed to onlyInitializing().

7. Not corrected.

5.7 Challenge Timing Problems
Correctness Low Version 1 Code Partially Corrected Acknowledged

CS-HBTC-008

CompliantDepositRegistry.challengeLatestBatch() performs the following:

// Reset the challenge period to allow a new batch to be generated
latestBatchUnlockTime = block.timestamp;

However, note that the intention behind this is unclear:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

1. Assuming that the full batch was dropped, this could be reasonable to ensure that new batches can
be added. However, addDepositAddresses() requires that the timestamp is in the past. Thus,
one cannot immediately add new addresses.

2. After a challenge, more addresses can still be dropped (similar reasons as above).

3. Partial dropping immediately finalizes the addresses. Thus, the canceller could for example cancel
0 addresses and does immediately make all added one finalized.

Additionally, addDepositAddresses() allows adding a small amount of addresses (e.g. no
addresses). This updates the challenging time. Additionally, the canceller's monitoring will be triggered.
That leads to the following consequences:

1. DEPOSIT_ADDRESS_CREATOR_ROLE can disturb operations.

2. DEPOSIT_ADDRESS_CREATOR_ROLE can trigger unnecessary compute and thus cost for the
CANCELER_ROLE who is expected to monitor the adding of addresses.

Code partially corrected:

The fix for Arbitrary Challenging Problems mitigates the partial dropping issue, a check enforcing that a
new batch should have at least one address was added in addDepositAddresses(). However, after
challenging a batch, the next batch cannot be added immediately and will have to wait for the next block.

Acknowledged:

Syntetika is aware of the remaining inconsistency and chose to not change the code.

5.8 Cooldown and Fee User Agreement Unclear
and Unfair
Design Low Version 1 Risk Accepted

CS-HBTC-009

The contracts implement an unclear and unfair agreement regarding exit times and fees in
StakingVault.claimWithdrawal().

Unfair Cooldown

An unfair cooldown mechanism is implemented. More specifically, the following conditional allows for
potentially unfair execution:

if (
 !earlyExitEnabled &&
 (block.timestamp >= userCooldown.cooldownEnd ||
 cooldownDuration == 0)
) {
 tokensHolder.withdraw(receiver, assets);
}

Consider the following scenario:

1. Alice withdraws while the cooldownDuration == 90 days.

2. The next day, cooldownDuration = 10 days is set.

3. Bob initiates a withdrawal directly after that.

4. Ultimately, Alice will have to wait for 89 days while Bob can enjoy the new cooldown.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Ultimately, the agreement is unfair (e.g. here the cooldown in favor of the user could make sense).

Unclear Agreement

Note that the other conditional within the function creates confusion in the agreement:

else if (earlyExitEnabled) {
 (uint256 fee, uint256 withdrawAmount) = getEarlyExitAmount(
 userCooldown.cooldownStart,
 userCooldown.cooldownEnd,
 assets
);
 tokensHolder.withdraw(receiver, withdrawAmount);
}

Note how the cooldown that was agreed upon on the withdrawal initiation is considered. This contrasts
the following:

• The previous conditional where the current cooldown is relevant (e.g. here the cooldown in favor of
the user could make sense).

• The early exit fee might have increased or decreased since the initiation of the withdrawal (e.g. here
the fee in favor of the user could make sense).

Unfair Fee

Additionally, when both conditionals are combined, the fee might be unfair. Consider the following
scenario:

1. Alice initiates a withdrawal when early exits are not enabled. Assume the cooldown is 10 days.

2. Directly after that, early exits are enabled where the fee is at most 10%.

3. After 5 days, the cooldown is set to 0.

4. Bob does initiate a withdrawal which immediately withdraws without paying fees.

5. If Alice was to withdraw, she would have to pay fees.

Summary

The agreement regarding the cooldown period is inconsistent, unclear and unfair in some cases. The
main reasons are:

• Unfair logic (e.g. can be in favor of user)

• Valid but inconsistent configuration (e.g. could be performed as part of one function)

Risk accepted:

Syntetika is aware of the issue but chose not to resolve it fully.

Only the case where cooldownDuration == 0 is set leads now to immediate withdrawals for all.

5.9 ERC-4626 Violations
Design Low Version 1 Acknowledged

CS-HBTC-010

StakingVault is described as EIP-4626 compatible tokenized vault. However, several violations of the
standard make it non-compatible and hard to integrate with.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 18

https://eips.ethereum.org/EIPS/eip-4626
https://chainsecurity.com

Below, we provide non-exhaustive lists of violations and other potential problems:

• Violations

1. The standard explicitly states that withdrawals and redemptions send out assets. That is
not the case due to delayed withdrawals (i.e. cooldown). Note that implementing a
different standard could be meaningful (e.g. EIP-7540)

2. withdraw() and redeem() completely ignore the arguments receiver and owner.
While that is somewhat required for a safe and efficient cooldown mechanism, it
nonetheless violates the standard.

3. The first deposit may pull more funds than specified as an argument in the deposit
function. Namely, that is due to the first deposit first minting dead shares and then
depositing accordingly.

• Violations depending on interpretation

1. The maxXYZ() functions ignore the blacklist and may return non-zero for blacklisted
addresses. Depending on interpretation, "blacklists" can be interpreted as user limits but
could be interpreted as other reasons of reverts. Note that the inherited ERC4626, for
example, technically blacklists 0x0 but does not adjust the functions.

2. Similarly, the previewXYZ() function could or could not revert depending on
interpretation.

3. Similarly, the first deposit (i.e. DEAD_SHARES creation) is not considered in any of the
maxXYZ() or previewXYZ() functions.

4. Similarly, the minAssetsAmount is ignored by those functions. Depending on
interpretation this may or may not be correct.

• Other behavior problematic for integrations and other:

1. deposit() / mint() and withdraw() / redeem() define minimum amounts. That
includes checks against minAssetsAmount and 0. While these do not necessarily violate
the EIP, they may lead to difficulties for integrators.

2. maxWithdraw() / maxRedeem() and previewWithdraw() / previewRedeem() are
unclear in terms of EIP-4626 on how they could comply with the standard due to the
cooldown mechanism.

Version 5As of , the TokensHolder implements ERC-4626. However, it violates the standard in various
ways and should not be treated as such.

Acknowledged:

Syntetika is aware of that integrators might run into issues when integrating with shBTC and chose to not
modify the code.

5.10 Unnecessary Complexity in Access Control
Design Low Version 1 Risk Accepted

CS-HBTC-013

Access control is unnecessarily complex. More specifically, the following increases its complexity:

1. Mix up of AccessControl and storage variables for roles. Note that this unnecessarily increases
code size and complexity. Consider the following example in HilBTC:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 19

https://eips.ethereum.org/EIPS/eip-7540
https://chainsecurity.com

function setMinter(
 address newMinter
) external onlyRole(DEFAULT_ADMIN_ROLE) {
 require(newMinter != address(0), AddressCantBeZero());
 revokeRole(MINTER_ROLE, minter);
 minter = newMinter;
 _grantRole(MINTER_ROLE, newMinter);
}

Note how the function indicates that there should only be one minter. However, due to
AccessControl multiple are possible (e.g. grantRole()). Additionally, note that all such
occurrences are: Minter.setOperator(), Minter.setPauser(),
Minter.setCustodian(), HilBTC.setMinter() and StakingVault.setDistributor().

Note that it is advised that access control wrappers (e.g. setMinter() which wraps grantRole())
are used. Later computations expect the storage variables to be set appropriately.

Further, this design has lead to the below more objective problems:

• Minter.constructor(): distributor is not set but the role is assigned.

• Minter: There is no explicit function to set distributor (e.g. setDistributor())
while there are equivalent functions for other roles (e.g. setOperator()).

• Minter: The role CUSTODIAN_ROLE can be assigned but is never used for access
control.

• StakingVault.constructor(): distributor is set but the role is not assigned.

1. Mixup of AccessControl and Ownable (inherited through Blacklistable) in HilBTC and
StakingVault contracts. Note that this unnecessarily increases code size and complexity. More
specifically, it creates the following confusion regarding the differences between
DEFAULT_ADMIN_ROLE and owner (both hold significant power):

• owner can call updateBlacklister(), setCooldownDuration() and
setMinAssetsAmount() while DEFAULT_ADMIN_ROLE cannot.

• DEFAULT_ADMIN_ROLE can call setDistributor(), setEarlyExitEnabled(),
setMaxEarlyExitFeeBps(), setEarlyExitFeeRecipient() and manage other roles
while owner cannot.

Ultimately, the access control is mixed up which increases the complexity.

To summarize, access control is not implemented consistently which has led to problems. Optimally,
either only AccessControl or only Ownable with custom storage variables should be used.

Risk accepted:

Syntetika is aware of the design and potential problems.

However, Syntetika corrected the following immediate resulting problems:

• Corrected : The address of the distributor is now set in the initialize() function of the
Minter contract.

• Corrected: The DISTRIBUTOR_ROLE is set in the initialize() function of the StakingVault.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedFundamentally Broken Loss Realization Process

• Code CorrectedIncorrect Early Exit Fees

Medium -Severity Findings 5

• Code CorrectedLoss Realization Function Cannot Be Called

• Code CorrectedUsers Can Escape Losses

• Code CorrectedBlacklisted Addresses Can Still Interact

• Code CorrectedMissing Permit Feature

• Code CorrectedProxied Contracts Cannot Set State in Constructor

Low -Severity Findings 4

• Code CorrectedInconsistent Storage Locations

• Code CorrectedArbitrary Challenging Problems

• Code CorrectedIncorrect Event Emissions

• Code CorrectedIncorrect DEAD_SHARES Logic

Informational Findings 1

• Code CorrectedStakingVault Has No Initial Blacklister

6.1 Fundamentally Broken Loss Realization
Process
Correctness High Version 3 Code Corrected

CS-HBTC-031

The loss realization process introduced to protect against frontrunning attacks fundamentally breaks
various properties for the loss realization.

More specifically, the process is now defined as follows:

1. Losses are recognized (e.g. off-chain strategy).

2. Losses are realized on-chain by burning from the vault. Thus, the vault is immediately penalized.

3. Users with unclaimed withdrawals are penalized by taking the minimum value of the shares burned
and the amount withdrawn.

4. The remaining amount is donated to the vault.

Several problems arise:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

1. Incorrect Conversion of Burned Shares at Current Time.

In StakingVault.claimWithdraw(), an amount of shares is passed to previewWithdraw(),
which expects amount of assets. As a result, the assetsAfterCooldown value will be too small if
the share price increased and users will loose tokens when claiming their withdrawal. On the other
hand, if a loss was incurred, assetsAfterCooldown will be too high and assets will not be
capped, so users will not be affected by the loss.

2. Incorrect Donation to Vault.

In StakingVault.claimWithdraw(), the unclaimed withdrawal from a user (created by the
slashing), is donated to the vault. This creates a scenario where the vault profits from slashed
amounts. However, slashed amounts should be burned. Otherwise, the slash is improperly
realized.

3. Loss Realization Unreasonable or Inaccurate.

Assuming both of the above points were resolved, the loss realization is either completely
unreasonable or it could be possible that an accurate loss realization is impossible to achieve.

1. Loss Realization Unreasonable. If a loss of 10 hBTC occurs and 10 hBTC are burned from
the vault, then the penalization will exceed the intended amount. Consider the following
example.

1. Assume that both Alice and Bob hold 100 shBTC each at an exchange rate of 1 (i.e.
200 hBTC total assets).

2. Now, Bob withdraws everything.

3. Next, a loss of 10 is realized by burning 10 from the vault.

4. Finally, when Bob claims the withdrawal, he will only receive 90 hBTC.

5. Ultimately, 20 hBTC would have been slashed for a loss of 10.

Note that more example can be constructed more extremely.

2. Loss Realization is Inaccurate. As illustrated above, not 10 hBTC can be burned from the
vault. Rather, it should be proportional according to the split of funds (ratio of total assets in
vault and total assets in total (vault and tokens holder)). In the given example, burning 5
hBTC from the vault would have implied that Alice would have paid the remaining 5 (50% of
assets in vault).

However, that approach is inaccurate and unsuitable. Consider the adjusted example below:

1. The same setup is expected with Bob and Alice as in the previous example.

2. Syntetika recognizes the loss and computes the proportion to be 50% so that it should
publish 5 hBTC to be burned from the vault.

3. However, in the time between the on-chain burning and the computation of the amount,
funds arrived in the vault (e.g. Charlie deposited 100 assets).

4. Now, the loss is realized and the vault loses 5 hBTC.

5. Finally, when Bob claims the withdrawal, he will receive 97.5 hBTC.

6. Ultimately, the total burned amount is only 7.5 instead of 10 hBTC.

To summarize, it is impossible to create accurate amounts to burn without the corresponding
on-chain logic.

4. Yield Generated for Tokens Holder.

Yield is still generated for users in the tokens holder. This fundamentally violates accounting and
breaks the system. Consider the following example:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

1. Assume that both Alice holds 10 and Bob holds 90 shBTC at an exchange rate of 1 (i.e. 100
hBTC total assets).

2. Assume that Bob withdraws everything.

3. Assume that an accurate and proportional slashing of 10 hBTC would occur (assuming all of
the above done correctly). Meaning Bob could claim 81 hBTC and Alice would 9 hBTC
underlying.

4. However, note that the slash is not realized yet. Now, assume that 1 hBTC yield is generated.

5. Ultimately, Alice is eligible for 10 hBTC again. Note that the exchange rate is 1 again. When
Bob finally claims, he receives 90 hBTC due to that.

6. Finally, only a slashing of 1 hBTC occured.

To summarize, yield is generated for funds in tokens holder (if they were slashed), which is
incorrect.

Summary: Various problems exist with the current approach, breaking the loss realization process in its
entirety.

Code corrected:

The issue has been resolved. Now, the tokens holder implements shares logic.

1. The amount of shares withdrawn during the withdrawal/redemption is now passed.

2. No self-donation is performed.

3. Losses are now more fairly and more accurately accounted for.

4. No yield is generated for users in cooldown.

6.2 Incorrect Early Exit Fees
Correctness High Version 1 Code Corrected

CS-HBTC-001

StakingVault.claimWithdraw() allows users to finalize their withdrawal. When early exits are
enabled (earlyExitEnabled == true), the transfer of fees has been implemented incorrectly which
leads to a severe loss of unclaimed user funds.

More specifically, the fees and the amount for the user are computed as follows:

function getEarlyExitAmount(...) public view returns (uint256 fee, uint256 withdrawAmount) {
 ...
 withdrawAmount = (assets * feePercent) / BPS;
 fee = assets - withdrawAmount;
}

When transferring, the transfers occur as follows:

} else if (earlyExitEnabled) {
 (uint256 fee, uint256 withdrawAmount) = getEarlyExitAmount(...);
 tokensHolder.withdraw(receiver, withdrawAmount);
 tokensHolder.withdraw(earlyExitFeeRecipient, assets - fee);

Note that the second withdrawal does not transfer fee but assets - fee which is equal to
withdrawAmount.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

As a consequence, the following is possible:

• Revert due to a lack of funds in tokensHolder.

• Loss of funds held in tokensHolder if the contract holds sufficient funds. Note that if the recipient
is a governance-controlled address, the issue could be mitigated by manually transferring. However,
earlyExitFeeRecipient could be StakingVault (and is set as such in the constructor). In that
case, other StakingVault share holders would benefit and treat it as a donation.

Code corrected:

The amount transferred to earlyExitFeeRecipient has been set to fee instead of assets - fee.

6.3 Loss Realization Function Cannot Be Called
Correctness Medium Version 4 Code Corrected

CS-HBTC-030

The function Minter.realizeLosses() will fail everytime because the Minter tries to burn hBTC
from the StakingVault but does not have the required allowance. As an effect, the dedicated loss
realization callpath is completely broken, but losses can still be realized by the owner of the HilBTC
contract, even though it is not the intended use.

Code corrected:

Now, the Minter does not require any approval on HilBTC to burnFrom any user:

if (spender != from && spender != owner() && spender != $.minter) {
 _spendAllowance(from, spender, amount);
}

While the issue is resolved, it further highlights the need for access control to be improved, see
Unnecessary Complexity in Access Control.

6.4 Users Can Escape Losses
Design Medium Version 2 Code Corrected

CS-HBTC-026

In case they see an unrealized loss coming, users can escape it by redeeming their shares before the
loss is realized and buying back the shares at a lower price later. This increases the percentage loss of
the other vault share holders, as they now cover the escaped loss.

Consider the following scenario where there is an unrealized loss of 10%. User A holds 90% of all shares
in the vault:

1. User A redeems all their shares.

2. The loss is realized.

3. User A deposits again (after cooldown)

Now, user A has a 0% loss, while other users in the vault have suffered a 100% loss.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

This increased loss could lead to a situation similar to a bank run, as many users might try to redeem
their shares before the loss is realized, leaving the remaining users to take the loss, and making the vault
insolvent in the worst cases.

Code corrected:

The code has been corrected. Users cannot frontrun exits. More specifically, if the vault is penalized
users with funds held in the tokens holder will be penalized equally.

Note that the solution, however, introduced other problems described in other issues.

6.5 Blacklisted Addresses Can Still Interact
Design Medium Version 1 Code Corrected

CS-HBTC-002

Syntetika requires that a blacklisted address should not be able to move funds at all and that, optimally,
the interactions possible should be kept at a minimum. However, that is not fully enforced:

1. The overridden _update() in StakingVault and HilBTC function called upon transfers only
enforces that the from and to addresses are not blacklisted. By not checking that msg.sender is
also not blacklisted, it allows a blacklisted address to use open allowances they might have,
violating the requirement above.

2. Similarly, that in the StakingVault contract for functions deposit() / mint(). msg.sender
could be blacklisted but the operations would be successful as receiver could not be blacklisted.

3. Additionally, the receiver for claimWithdrawal() could be blacklisted, but the operation could
succeed. However, typically it is expected that the blacklist in HilBTC prevents this from
happening.

Additionally, note that blacklisted addresses could still interact with the code. For example, they can give
approvals to other addresses, but transfers will be blocked. Additionally, note that in some cases the
blacklist will not be applied (e.g. HilBTC when owner() is msg.sender). However, that is expected to
satisfy the requirements.

Code corrected:

The code was updated to ensure that msg.sender is not blacklisted in the functions mentioned above.

Note that, in claimWithdrawal(), the receiver could be blacklisted in shBTC but not in hBTC
(unsynchronized blacklist). Thus, the staking vault could transfer hBTC to a blacklisted address.

However, Syntetika confirmed that this is intended since a user could withdraw to self and transfer the
hBTC to the potentially blacklisted receiver (in shBTC).

6.6 Missing Permit Feature
Design Medium Version 1 Code Corrected

CS-HBTC-004

The NatSpec of HilBTC mentions that the token implements the "permit functionality" (EIP-2612), but
the contract does not implement the functionality.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 25

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

Code corrected:

The HilBTC contract was updated to extend OpenZeppelin's ERC20PermitUpgradeable, which
implement EIP-2612.

6.7 Proxied Contracts Cannot Set State in
Constructor
Correctness Medium Version 1 Code Corrected

CS-HBTC-005

Syntetika specified that the contracts will be deployed behind proxies. But all the contracts have a
constructor that sets some state (e.g., roles, addresses, ...), this is incompatible with the use of proxies
as the state will be set on the implementation contract, but the proxy storage will be untouched. As a
consequence, the system is unusable from the proxies.

Code corrected:

The HilBTC, Minter and StakingVault contracts have been updted to extend OpenZeppelin's
UUPSUpgradeable. Their constructors have been replaced with initializer functions and they override
the _authorizeUpgrade() function. The Blacklistable contract was renamed
BlacklistableUpgradeable and updated to inherit from the upgradeable version of its
dependencies. The ComplianceCheckerUpgradeable contract has been added, it clones the core
logic of the ComplianceChecker while being abstract and upgradeable.

6.8 Inconsistent Storage Locations
Design Low Version 2 Code Corrected

CS-HBTC-027

The contracts StakingVault, Minter, HilBTC, ComplianceCheckerUpgradeable, and
BlacklistableUpgradeable currently define their storage variables in a linear layout, without using
the ERC-7201 storage slot standard. On the other hand, some of their parent contracts (e.g.,
AccessControlUpgradeable) uses ERC-7201.

This inconsistency in storage layout approaches may introduce potential upgradeability risks.
Specifically, future upgrades may inadvertently overwrite storage variables or cause storage collisions.

Code corrected:

All the upgradeable contracts use EIP-7201 now.

6.9 Arbitrary Challenging Problems
Correctness Low Version 1 Code Corrected

CS-HBTC-007

CompliantDepositRegistry.challengeLatestBatch should allow the canceller to drop the latest
batch of addresses. While challengeLatestBatch() ensure that,
challengeLatestBatch(uint256 length) does not consider the number of finalized addresses.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

This leads to multiple problems:

1. Partial Dropping: It is possible to drop the unfinalized addresses partially. However, the
implementation does not give sufficient flexibility.

2. Dropping Finalized Addresses: There is no enforcement that only unfinalized addresses can be
dropped. Thus, an investor might have already claimed an address. As a consequence, a user
might have his deposit address changed (or deleted). Additionally, this can lead to reverts and
other problems.

3. Dropping Initial Address: The initial address might be dropped which should not occur.

Ultimately, several problems regarding the dropping of arbitrary entries exist.

Code corrected:

Partial dropping has been removed, only the full pending batch
(depositAddresses.length - finalizedAddressesLength) can be challenged and dropped.

6.10 Incorrect Event Emissions
Correctness Low Version 1 Code Corrected

CS-HBTC-011

StakingVault._redeemTo() emits the
Unstaked(address indexed user, uint256 assets) event as follows:

emit Unstaked(msg.sender, shares);

Note that shares is emitted instead of assets.

Code corrected:

The code has been updated to emit the assets.

6.11 Incorrect DEAD_SHARES Logic
Correctness Low Version 1 Code Corrected

CS-HBTC-012

The StakingVault.deposit() function burns shares for the first deposit as follows:

// burn shares on first deposit
if (totalSupply() == 0) {
 _checkOwner();
 super.deposit(DEAD_SHARES, BURN);
}

However, note that super.deposit() takes assets as an argument. That leads to the following
amount of shares being created (and in this case "burned"):

shares = DEAD_SHARES.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, Math.Rounding.Floor)
 = 1000.mulDiv(0+1, totalAssets() + 1, Math.Rounding.Floor)
 = 1000 * 1 / (totalAssets() + 1)

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Note that this not imply directly that shares is DEAD_SHARES since totalAssets() can be
manipulated through donations.

Consequently, consider the following:

• distributeYield(): The check totalSupply() > DEAD_SHARES is inaccurate.

• _withdraw(): The check totalSupply() - shares == DEAD_SHARES is inaccurate.

While it is unlikely for the scenarios to occur they might still lead to incorrect executions and unexpected
results.

Code corrected:

Now deposit() invokes super.mint() to mint the exact amount of dead shares. While this resolves
the problem, the solution still leads to an ERC-4626 violation, see ERC-4626 Violations.

6.12 StakingVault Has No Initial Blacklister
Informational Version 1 Code Corrected

CS-HBTC-023

StakingVault does not set the initial blacklister while HilBTC does.

Code corrected:

An initial blacklister is now set in the StakingVault's initialize() function.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Events Emitted Even When State Is Not
Updated
Informational Version 1 Acknowledged

CS-HBTC-014

Events should be emitted on each important storage update of a smart contract in order to allow external
observers to track important events in the contract's life. Emitting an event when a value is replaced by
itself or when no other important update was made can be avoided as no new information is gained, and
also incurs an unnecessary gas cost. Below is a non-exhaustive list functions emitting such events:

• Blacklistable.updateBlacklister()

• Blacklistable.blacklist()

• Blacklistable.unblacklist()

• Whitelist._whitelistAddress()

• Whitelist._setComplianceChecker()

• all the Minter.setXYZ()

• HilBTC.setMinter()

• all the StakingVault.setXYZ()

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.2 Gas Optimizations
Informational Version 1 Acknowledged

CS-HBTC-015

Below is a non-exhaustive list of potential gas optimizations:

1. In CompliantDepositRegistry.registerDepositAddress(), the
ComplianceChecker.requireCompliant() is called twice when the investor receives a
deposit address. Note that one such call is in getDepositAddress().

2. Often access control is checked twice. For example, in the execution of
CompliantDepositRegistry.challengeLatestBatch() the role checks are executed
twice. Similarly, that is the case in Minter.setOperator(), Minter.setPauser(),
Minter.setCustodian(), HilBTC.setMinter() and StakingVault.setDistributor()
(hidden check in revokeRole()).

3. Minter.stakingVault could be immutable.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.3 Inconsistent Revert Statements
Informational Version 1 Acknowledged

CS-HBTC-016

Throughout the codebase, reverts and error raising are done in two different manners:

if(!cond) {
 revert CustomError();
}

and

require(cond, CustomError());

For the sake of code clarity and maintainability, it is recommended to use only one of the ways.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.4 Inconsistent Transfer in TokenHolder
Informational Version 1 Acknowledged

CS-HBTC-017

TokenHolder.withdraw() allows the staking vault to withdraw from the escrowed funds.

Note that SafeERC20.safeTransfer() is not used. While for HBTC this is not relevant, it contradicts
the StakingVault which consistently uses SafeERC20 for the same asset.

Ultimately, StakingVault suggests that the contract that the system is designed with some flexibility in
mind. However, the TokenHolder contract is not consistent with that.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.5 Interfaces Problems
Informational Version 1 Code Partially Corrected

CS-HBTC-018

Below is a non-exhaustive list of functions missing in their respective interfaces:

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

1. CompliantDepositRegistry: challengeLatestBatch(uint256 length) is missing the
interface definition.

2. Whitelist: isAddressWhitelisted() and manualWhitelist() are missing in the interface
definition.

3. TokensHolder: withdraw() is missing in the interface definition.

4. HilBTC / StakingVault / Minter: Various functions are missing in the respective interfaces.

Additionally, the IMinter defines event Deposit which is never used.

Code partially corrected:

1. Corrected: the function was removed.

2. Not corrected.

3. Not corrected.

4. Not corrected.

The Deposit event was removed from the IMinter interface.

7.6 Lack of Events
Informational Version 1 Acknowledged

CS-HBTC-019

Note that various constructors are missing event emissions. That includes:

1. Minter

2. HilBTC

3. StakingVault

Additionally, one could argue that CompliantDepositRegistry lacks an event for the invalid initial
item.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.7 NatSpec Problems
Informational Version 1 Code Partially Corrected

CS-HBTC-021

Below is a non-exhaustive list of functions missing NatSpec:

1. CompliantDepositRegistry.challengeLatestBatch(uint256 length) is missing
NatSpec documentations.

2. ICompliantDepositRegistry does not annotate the getter functions with full NatSpec (e.g.
DEPOSIT_ADDRESS_CREATOR_ROLE())

3. NatSpec is missing for various constructors. Similarly, that is the case for events and custom
errors.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

4. While it generally it is fine not to provide NatSpec for internal and private functions, the NatSpec is
inconsistent in that regard.

5. Minter.constructor(): _distributor and _stakingVault are undocumented.

6. Minter.distributeYield() / Minter.pause() / Minter.unpause(): No NatSpec
provided.

7. Minter.redeem(): The NatSpec mentions redemption for "a specified address", but the function
only accepts one amount parameter and the redemption is always done for msg.sender.

8. StakingVault.distributeYield(): timestamp is undocumented.

9. StakingVault.getEarlyExitAmount(): No NatSpec provided.

Further, note that @inheritdoc could be used to not need to copy-paste NatSpec from interface
definitions.

Code partially corrected:

1. Corrected. The function has been removed.

2. Not Corrected. NatSpec is inconsistently implemented for external/public getter functions.

3. Not Corrected. NatSpec is inconsistently implemented for contrustor/initializer, errors and events.

4. Not Corrected. NatSpec is inconsistently implemented for internal/private functions.

5. Corrected. NatSpec updated.

6. Corrected. NatSpec added.

7. Corrected. NatSpec updated.

8. Corrected. NatSpec updated.

9. Corrected. NatSpec added.

7.8 Sanity Checks
Informational Version 1 Acknowledged

CS-HBTC-022

The codebase performs sanity checks on various occasions. Thus, the lack of some checks implies an
inconstency:

1. No checks against 0x0:

1. CompliantDepositRegistry.constructor()

2. ComplianceChecker.constructor()

3. TokensHolder.constructor()

4. StakingVault.constructor() (_distributor)

2. TokensHolder.constructor() could retrieve HILBTC from STAKING_VAULT.asset().

3. No 0x0 checks for the SBTs in the compliance options when they are added in
ComplianceChecker.setComplianceOptions().

Note that ultimately, the sanity checks could be more consistent.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.9 StakingVault Has No Initial Early Exit Fee
Informational Version 1 Acknowledged

CS-HBTC-024

The maxEarlyExitFeeBps storage variable in the StakingVault is not set in the constructor and the
setEarlyExitEnabled() function does not check that it is non-zero. While a 0-value fee is a valid
configuration, Syntetika needs to check and update the configuration of the contract prior to enabling
early exits if they want to charge a fee.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.10 Unbound Array in Compliance Checker
Informational Version 1 Acknowledged

CS-HBTC-025

ComplianceChecker._complianceOptions is a two-dimensional array that is unbound in both
dimensions. Note that operations could revert or become inefficient if the array is sufficiently large.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Cooldown Increases for All Pending
Withdrawals
Note Version 1

Users should be aware that the cooldown end increases for all pending withdrawals. Consider the
following scenario:

1. Alice withdraws 10 assets. The cooldown is 10 days.

2. After 5 days, she withdraws 10 assets again. The cooldown is still 10 days.

3. Only after a total of 15 days can she withdraw her 20 assets. Note that the first withdrawal is hence
additionally delayed.

8.2 Losses Can Be Front-Run When Cooldown Is
Small
Note Version 3

When the cooldown period is small or even 0, it is possible for users to observe the mempool, or the
on-chain state of the strategy if any, in order to front-run an incoming loss and escape it. Syntetika is
expected to set a cooldown period that reflects the risk of the strategy to ensure fair operations in the
vault.

8.3 Owner Special Cases
Note Version 1

The owner has special powers for token related operations in HilBTC. More specifically, they can call
burnFrom() without needing allowance and even transfer from and to blacklisted addresses. Note that
this is intended to be used for seizing funds and covering strategy loss scenarios.

Note that StakingVault does not implement such functionality intentionally due to weaker legal
requirements.

8.4 Partial EIP-165 Support
Note Version 2

The contract AccessControl[Upgradeable] implements the EIP-165
(https://eips.ethereum.org/EIPS/eip-165) for interface detection. However, the contracts extending
AccessControl[Upgradeable] (ComplianceChecker, ComplianceCheckerUpgradeable,
Minter, HilBTC, StakingVault) do not extend the support by overriding the
supportsInterface() function, limiting the interface detection to AccessControl[Upgradeable].

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 34

https://eips.ethereum.org/EIPS/eip-165
https://chainsecurity.com

8.5 Redeeming HilBTC
Note Version 1

Consider the following scenario:

1. Alice deposits by calling Minter.mint(). Note that this increases totalDeposits.

2. In a separate mechanism, Bob deposits to his deposit address. The owner initiates
Minter.ownerMint() to mint the respective amount accordingly. That increases
totalDeposits.

3. After some time Bob decides to withdraw. However, he does so by calling Minter.redeem().

4. Alice can now not redeem() her HilBTC as they are backed by BTC on Bob's deposit address.

Users should be aware that:

• The above is intended.

• Syntetika owns and controls the deposit addresses.

• Off-chain rebalancing will be performed to ensure that funds can be accessed.

• If an address wants to receive BTC on Bitcoin, they will call burn().

However, note that this mechanism is not described nor specified in detail and that it is expected to work
correctly and that sufficient data is present for the mechanism to work properly.

8.6 Temporary DoS and Griefing of Deposit
Registry
Note Version 1

Investors can claim deposit addresses with
CompliantDepositRegistry.registerDepositAddress(). However, Syntetika should be aware
that there might be temporary DoS and griefing possibilities.

More specifically, the set of deposit addresses is limited and needs to be pushed by a privileged role. The
addresses can be claimed by addresses that satisfy the compliance requirements. However, these
addresses could still be malicious with the intent to disturb operations. Hence, they could claim all
unclaimed deposit addresses which leads to:

• Temporary DoS: To publish new addresses the time delay needs to be satisfied. Hence, a waiting
time might be enforced.

• Griefing: Syntetika must pay for gas fees to publish the addresses. Thus, claiming addresses
unnecessarily might lead to higher operating cost.

Nonetheless, such scenarios are unexpected since:

• The set of compliant addresses is expected to be small.

• Each compliant address can claim one deposit address at most.

To summarize, while unlikely it could still be possible to disturb the operations in the deposit registry.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

8.7 User DoSed by Minima
Note Version 1

Note that users can be DoSed by the minimum minAssetsAmount. Below is a non-exhaustive list of
example scenarios:

• A user has shares that have a value of 100 tokens. Then, the minimum is increased to 150 tokens.
The user cannot withdraw.

• A user has shares worth 100 tokens and transfers 60 to another user. If the minimum is 50 tokens,
the user cannot withdraw.

• A user sees a minimum of 10 tokens and wants to deposit 20. However, another pending transaction
increasing the minimum to 30 is executed before. The user is griefed. Note that this scenario
typically is not problematic as the user can always re-execute. However, integrators should not rely
on being able to deposit any amount.

8.8 Vault Integration Considerations
Note Version 1

Syntetika, users and integrators should be aware that classical manipulation attacks are possible for
StakingVault. However, these are limited by the underlying vault contract used (i.e. ERC4626) and the
dead shares mechanism.

More specifically, all relevant parties should be aware that:

1. Share price manipulations are possible (e.g. donations to the contract).

2. Consequently, inflation attacks are possible.

3. Therefore, second depositor attacks are possible.

To summarize, all related parties should do their due diligence and ensure the safety of using the
StakingVault.

Syntetika - HilBTC - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Compliance Checker
	2.2.2 Compliant Deposit Registry
	2.2.3 HilBTC
	2.2.4 Minter
	2.2.5 Staking Vault
	2.2.6 Changes in V2
	2.2.7 Changes in V3
	2.2.8 Changes in V4-V5

	2.3 Trust Model
	2.3.1 Changes in V2
	2.3.2 Changes in V5

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 totalAssets() Can Revert and Loss Realization Process
	5.2 Inaccurate Loss Realization
	5.3 Loss Realization Can Be DoSed
	5.4 Users Outside of Cooldown Penalized
	5.5 Inconsistent Upgrader
	5.6 Initializer Problems
	5.7 Challenge Timing Problems
	5.8 Cooldown and Fee User Agreement Unclear and Unfair
	5.9 ERC-4626 Violations
	5.10 Unnecessary Complexity in Access Control

	6 Resolved Findings
	6.1 Fundamentally Broken Loss Realization Process
	6.2 Incorrect Early Exit Fees
	6.3 Loss Realization Function Cannot Be Called
	6.4 Users Can Escape Losses
	6.5 Blacklisted Addresses Can Still Interact
	6.6 Missing Permit Feature
	6.7 Proxied Contracts Cannot Set State in Constructor
	6.8 Inconsistent Storage Locations
	6.9 Arbitrary Challenging Problems
	6.10 Incorrect Event Emissions
	6.11 Incorrect DEAD_SHARES Logic
	6.12 StakingVault Has No Initial Blacklister

	7 Informational
	7.1 Events Emitted Even When State Is Not Updated
	7.2 Gas Optimizations
	7.3 Inconsistent Revert Statements
	7.4 Inconsistent Transfer in TokenHolder
	7.5 Interfaces Problems
	7.6 Lack of Events
	7.7 NatSpec Problems
	7.8 Sanity Checks
	7.9 StakingVault Has No Initial Early Exit Fee
	7.10 Unbound Array in Compliance Checker

	8 Notes
	8.1 Cooldown Increases for All Pending Withdrawals
	8.2 Losses Can Be Front-Run When Cooldown Is Small
	8.3 Owner Special Cases
	8.4 Partial EIP-165 Support
	8.5 Redeeming HilBTC
	8.6 Temporary DoS and Griefing of Deposit Registry
	8.7 User DoSed by Minima
	8.8 Vault Integration Considerations

