PUBLIC

Code Assessment

of the HIIBTC
Smart Contracts

October 31, 2025

Produced for

[}

wd SYNLETIKA

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG

11
12
13
21
29
34

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Syntetika with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of HIIBTC according to Scope
to support you in forming an opinion on their security risks.

Syntetika implements an ERC-20 token, hBTC, that is a synthetic BTC. The custodian can use the
underlying funds to generate yield which is then forwarded to hBTC stakers whose staking shares are
tokenized as shBTC.

The most critical subjects covered in our audit are asset solvency, functional correctness and access
control. The general subjects covered are testing, documentation, gas efficiency, and upgradeability.

Security regarding most of the above is improvable.

Further, readers are advised to carefully read the report as several findings remain where the risk was
accepted. Below the most notable ones are listed:

* The loss realization process is improvable, see totalAssets() Can Revert and Loss Realization
Process, Inaccurate Loss Realization and Loss Realization Can Be DoSed.

e Users can be penalized even when their cooldown window has passed, see Users Outside of
Cooldown Penalized.

Additionally, the tests are insufficient as several issues could have been caught by testing more
extensively.

Hence, security regarding and quality regarding the aforementioned subjects is improvable. In summary,
we find that the codebase provides an improvable level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Syntetika - HiIBTC - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
(C)-Severity Findings 2
Y Code Corrected 2
(Medium)-Severity Findings 6
N Gisicasiis) 5
Wik Accepied 1
(Low)-Severity Findings 13
Y Code Corrected 4
o) 2
W kisi Accepted) 5
B A cknowiedged 2
I:$: Syntetika - HiIBTC - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the HilBTC repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 15Sep 2025 | a276b312162abee5068fe4dcd86fe5570ff3c574 Initial Version
2 | 29 Sep 2025 | a95fe630fele91186¢229df878c52bf084b6fals First fixes

3 | 06 Oct 2025 bf9d3c6bc1437a2c1830468576d64b93b914eb8b Second fixes
4 | 23 Oct 2025 ladf43be5320b79bd06a312171218550e8ff2117 Third fixes

5 | 29 Oct 2025 59cda6d4df2155978f0228122943a4060a970d90 Fourth fixes

For the solidity smart contracts, the compiler version 0. 8. 28 was chosen.

The contracts in the following files are in the scope of the review:

deposit-regi stry/contracts:
Conmpl i anceChecker . sol
Conpl i ant Deposi t Regi stry. sol

I nports. sol

i ssuance/ src:

hel pers:

Bl ackl i st abl e. sol
TokensHol der . sol
VWhitelist. sol

m nt er ;

M nt er . sol

t oken:

H | BTC. sol

vaul t :

St aki ngVaul t . sol

After V2, the scope was updated as follows:

Renamed:
i ssuance:
src:
hel pers:
Bl ackl i stable.sol --> Bl acklistabl eUpgradeabl e. so
Added:

Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

deposit-registry:
contracts:
Conmpl i anceChecker Upgr adeabl e. sol

2.1.1 Excluded from scope

Any contracts not explicitly listed above are out of the scope of this review. Third-party libraries are out of
the scope of this review. More specifically, openzeppel i n- contr act s is expected to work as intended
and is out of the scope of this review. The Galactica protocol, responsible for managing compliance
checks and issuing the SBTSs, is expected to work as intended and is out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions. However, note that the system overview, even including the changelog, might thus be
inaccurate for the latest version.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Syntetika offers an ERC20 version of BTC (Hi | BTC) with a blacklist functionality, and a way to stake it for
increased yield. The issuance of the Hi | BTC is done by a minter contract that enforces either a manual
whitelist or compliance checks provided by Galactica. All the contracts are deployed behind a transparent

proxy.

2.2.1 Compliance Checker

This contract allows querying whether a user is compliant with a configured set of rules by calling the
i sConpl iant () function. The COVPLI ANCE_ADM N_RCLE can configure the different compliance
options, each option contains a list of Ver i fi cat i onSBT representing compliance checks. Examples of
compliance options and their SBTs:

« Option 1: user resides in the USA, user is over 21

 Option 2: user resides in EU, user is over 18

In order to be compliant, a user must have all the soulbound tokens (SBT) of at least one compliance
option. The SBTs are issued by Galactica.

2.2.2 Compliant Deposit Registry

The registry offers a list of deposit addresses on another chain that whitelisted investors can register for
and use. The addresses are added by the DEPOSI T_ADDRESS CREATOR_ROLE and the new batch can
be challenged by the CANCELER_ROLE for bat chChal | engePer i od seconds after it is submitted. If a
batch is challenged, the addresses it contains will not be made available until they are submitted again.
To be able to register, investors need to pass the isConpliant() check on the attached
Compl i anceChecker. Once an investor is linked to an address, they cannot unregister it or request
another one.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 6

https://galactica.com/
https://galactica.com/
https://chainsecurity.com

2.2.3 HIIBTC

The Hi | BTC is an ERC20 representation of BTC on an EVM chain with 8 decimals. It offers a blacklist
feature that the bl ackl i st er address can manage, and the tokens are burnable. A blacklisted address
is not able to receive, send nor burn funds. One exception to this rule is that the contract's owner is able
to bur nFrom() any address, without requiring any allowance. If the owner has the required allowance,
they can also transfer from arbitrary addresses, even blacklisted ones.

The tokens can be minted by the M NTER _RCOLE, which is expected to be held only by the Minter
contract. The Hi | BTCis expected to be pegged 1:1 to its underlying asset.

2.2.4 Minter

The M nter contract is expected to bear the M NTER_ROLE on the HilBTC token and extends the
Compl i anceChecker . It is the entry point for allowed users to mint and redeem Hi | BTC against some
baseAsset having the same decimals as Hi | BTC, e.g., WBTC. A user is allowed to mint/redeem if they
are either part of a local whitelist managed by the DEFAULT_ADM N_RCLE, or are compliant in the sense
of the Compliance Checker. The contract tracks the amount of deposited baseAsset, which is
increased/decreased upon mint/redeem in the vari abl e. If not enough baseAsset is available for
redemption, the function will revert.

The liquidity that is left in the M nt er after a mi nt () can be transferred to the cust odi an address to
generate some yield by the OPERATOR_RCLE with the t r ansf er ToCust ody() function.

The DI STRI BUTOR_ROLE can call the di stri buteYiel d() function when yield has been accrued
from the liquidity transferred to the cust odi an. This will increase the total deposited amount and trigger
di stributeYiel d() on the Staking Vault.

The contract can be paused by the PAUSER ROLE, when paused, the nint(), redeen() and
transf er ToCust ody() functions are not available. Note that the DEFAULT_ADM N_ROLE can mint
unbacked Hi | BTC.

2.2.5 Staking Vault

The St aki ngVaul t is an ERC4626 vault whose underlying asset is Hi | BTC, it implements a blacklist
similar to Hi | BTC, delayed withdrawals and redemptions (max 90 days), and optionally early exits with a
fee. A blacklisted address is not able to receive, send nor redeem shares. Holders of Hi | BTC can deposit
their tokens in the vault and the value of their shares will increase every time yield is distributed. The first
deposit must be made by the contract's owner and 1000 shares will be sent to addr ess(Oxdead) , the
vault cannot be used prior to this action. The assets amount upon deposit() and m nt () must be
greater than the configurable m nAsset sAnount .

The t ot al Asset s() function computes the difference between the vault's assets balance and the
currently unvested amount to be distributed. The vesting amount is updated when vyield is distributed
through di stri but eYi el d(), the vested amount is unlocked linearly over a period of 8 hours. Yield
can be distributed only if the previous vesting has finished and the total supply of shares is above the
number of dead shares.

Upon wi t hdraw() or redeen(), a cooldown starts for the caller. Their shares are burned, and the
assets are sent to a special TokensHol der contract. When the cooldown duration has elapsed, users
can call the cl ai MmN/ t hdraw() function. If multiple withdrawals or redemptions are done before the
previous ones are claimed, the whole amount will be subject to the latest cooldown period. If the
cool downDur at i on is set to 0, withdrawals and redemptions are instantaneous and do not enter any
cooldown queue.

In the case where early exits are enabled, the cl ai MW t hdr aw() function can be called right after the
cooldown phase started. The fee taken for an early exit starts at maxEar| yExi t FeeBps and then
decreases linearly with time unti the end of the cooldown. The fee s
0 <= maxEarl yExit FeeBps < 10% The fee is then sent to the ear| yEXi t FeeReci pi ent. By

(S: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

default, the ear | yExi t FeeReci pi ent is the St aki ngVaul t itself, this configuration has the effect
that the early exit fee increases the value of a share in the vault.

If the cust odi an incurs a loss in their strategy, Syntetika plans to burn Hi | BTC from the vault, as
Hi | BTC should keep its peg. Syntetika plans to have an insurance fund designed as a drawdown
protection mechanism to which they allocate a portion of revenues to.

2.2.6 Changesin V2

* The proxy architecture has been set to UUPS. The Conpl i anceDeposit Regi stry and the
TokensHol der are not upgreadeable.

* The CANCELER_ROLE in Conpl i ant Deposi t Regi st ry can only cancel the full unfinalized batch,
partial challenge is not possible anymore.

2.2.7 Changesin V3

Assets in the cooldown can now be slashed. Note that more changes were implemented as a response
to fixes.

2.2.8 Changes in V4-V5

To correct the slashing, TokensHol der now implements ERC-4626. Changes were implemented
accordingly.

2.3 Trust Model

* Users are fully untrusted.

* Bearers of the DEFAULT_ADM N_ROLE in Conpl i anceChecker are fully trusted. They are
expected to manage the critical roles of the contract correctly and in a non-adversarial manner. In
the worst case, they can grant the DEFAULT_ADM N_ROLE or the COVPLI ANCE_ADM N_RCLE to
malicious actors.

» Bearers of the COMPLI ANCE_ADM N_ROLE in Conpl i anceChecker are fully trusted. They are
expected to manage the compliance options correctly and in a non-adversarial manner. In the worst
case, they can register options that either DOS the contract or wrongly grant compliance.

* Bearers of the DEFAULT_ADM N_ROLE in Conpl i ant Deposi t Regi stry are fully trusted. They
are expected to manage the critical roles of the contract correctly and in a non-adversarial manner.
In the worst case, they can grant the DEFAULT_ADM N ROLE,
DEPQCSI T_ADDRESS CREATOR_ROLE and CANCELER ROLE to malicious actors. Additionally, they
can set the batch challenge period to unreasonable values.

e Bearers of the DEPOSI T_ADDRESS CREATCOR RCLE in Conpli ant DepositRegi stry are
partially trusted. They are expected to manage the batches of new deposit addresses correctly and
in a non-adversarial manner. They are expected to not collude with bearers of the CANCELER_RCLE.
In the worst case, they can register dead or already used addresses, but they are expected to be
challenged by the CANCELER_RCLE.

* Bearers of the CANCELER _ROLE in Conpl i ant Deposi t Regi stry are fully trusted. They are
expected to challenge the batches correctly and in a non-adversarial manner. They are expected to
not collude with bearers of the DEPOSI T_ADDRESS CREATCR_RCLE. In the worst case, they can
challenge and remove all the addresses, even the finalized ones.

 Bearers of the DEFAULT_ADM N_RCLE in Hi | BTC are fully trusted. They are expected to manage
the critical roles of the contract correctly and in a non-adversarial manner. In the worst case, they
can grant the M NTER_ROLE to malicious actors.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

« Bearers of the M NTER _RCLE in Hi | BTC are fully trusted. They are expected to mint tokens
correctly and in a non-adversarial manner. In the worst case, they can mint unlimited amounts of
Hi | BTC. This role is expected to be held only by the M nt er contract.

* The owner of the Hi | BTC is fully trusted. They are expected to not burn from arbitrary addresses
without a good reason and to manage the bl ackl i st er address correctly. In the worst case, they
can burn arbitrary amounts from arbitrary addresses.

* The bl ackl i st er of the Hi | BTC is fully trusted. They are expected to blacklist and unblacklist
addresses in the best interest of the system and in a non-adversarial manner. In the worst case, they
choose to not blacklist an address that should be blacklisted, or unblacklist it if they previously
blacklisted it. This would violate the system's compliance.

Bearers of the DEFAULT_ADM N_ROLE in M nt er are fully trusted. They are expected to manage
the critical roles and parameters of the contract correctly and in a non-adversarial manner. In the
worst case, they can grant the OPERATOR RCOLE, PAUSER ROLE and DI STRI BUTOR ROLE to
malicious actors, whitelist arbitrary addresses or set a wrong Conpl i anceChecker . Additionally,
they have the power to perform arbitrary minting of Hi | BTC.

Bearers of the OPERATOR_ROLE in M nt er are partially trusted. They are expected to transfer
assets to the custodian correctly and in a non-adversarial manner. In the worst case, they can
transfer assets to the custodian as soon as some liquidity arrives in the M nt er, DOSing the
redemptions until their role is revoked.

The cust odi an in M nt er is fully trusted. They are the recipient of funds and are responsible for
handling them securely. In the worst case, a loss of funds leading to a severe depeg could occur.

Bearers of the PAUSER ROLE in M nt er are partially trusted. They are expected to pause and
unpause the contract in the best interest of the system in a non-adversarial manner. In the worst
case, they can choose to not pause the system in case of an emergency, or pause it to DOS the
system until their role is revoked and the contract is unpaused.

Bearers of the DI STRI BUTOR_ROLE in M nt er are fully trusted. They are expected to distribute the
yield correctly and in a non-adversarial manner. In particular, they are expected to not distribute
more yield than what the custodian's strategy earned, and set a realistic timestamp. In the worst
case, they distribute arbitrary amounts of yield, creating unbacked Hi | BTC, or DOS the yield
distribution on the St aki ngVaul t by setting a timestamp that is far in the future.

Bearers of the DEFAULT_ADM N _ROLE in St aki ngVaul t are fully trusted. They are expected to
manage the critical roles and parameters of the contract correctly and in a non-adversarial manner.
In the worst case, they can grant the DI STRI BUTOR_RCLE or DEFAULT_ADM N_RCLE to malicious
actors.

Bearers of the DI STRI BUTOR_RCOLE in St aki ngVaul t are fully trusted. They are expected to
distribute the yield correctly and in a non-adversarial manner. In the worst case, they can DOS the
yield distribution by setting a timestamp far in the future.

The owner of the St aki ngVaul t is fully trusted. They can set arbitrary cooldowns and minimum
amounts. In the worst case, they can DoS users.

The bl ackl i ster of the Staki ngvVault is fully trusted. They are expected to blacklist and
unblacklist addresses in the best interest of the system and in a non-adversarial manner. In the
worst case, they choose to not blacklist an address that should be blacklisted, or unblacklist it if they
previously blacklisted it. This would violate the system's compliance.

2.3.1 Changesin V2

* The DEFAULT_ADM N_ROLE of the St aki ngVaul t and M nt er, and the owner of Hi | BTC are
also responsible for upgrading the contracts. They are trusted to not upgrade to malicious versions.

(S: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.3.2 Changes in V5

» The owner can now upgrade TokensHol der .

@ Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG

10

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E

(C)-Severity Findings 0

(Medium)-Severity Findings 1
» totalAssets() Can Revert and Loss Realization Process

(Low)-Severity Findings 9

* Inaccurate Loss Realization (a4
* Loss Realization Can Be DoSed ELSEEETE
» Users Outside of Cooldown Penalized GELSL L

« Inconsistent Upgrader ()

« Initializer Problems ()

+ Challenge Timing Problems () ()

» Cooldown and Fee User Agreement Unclear and Unfair
« ERC-4626 Violations ()

* Unnecessary Complexity in Access Control GIE a1

5.1 total Assets() Can Revert and Loss
Realization Process

(Design JCT TN Risk Accepted

In case of a loss, Syntetika specified they would burn Hi | BTC from the St aki ngVaul t . While this could
work for small losses, bigger losses might not be fully realizable if they exceed the balance of the
St aki ngvaul t . Additionally, the owner of the Hi | BTC is able to burn from arbitrary addresses, but
needs to be trusted to burn only from the St aki ngVaul t for that purpose.

CS-HBTC-006

Implementing a dedicated loss realization callpath would crystallize the process and lower the amount of
trust needed. Ultimately, issues arise due to a lack of such a well-defined process.

More specifically, the function St aki ngVaul t . t ot al Asset s() carries the following computation:

| ERC20(asset ()). bal anceO (address(this)) get Unvest edAnount () ;

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If get Unvest edAnmount () is greater than the contract's balance in the underlying asset (), the
computation will underflow and the function will revert. This can happen if the vault incurs a loss while
yield is being distributed. If the loss or the yield is big enough, the unvested amount will outweigh the
balance.

If St aki ngVaul t . t ot al Asset s() reverts, the vault is DOSed until get Unvest edAnmount () returns
an amount that is at most equal to the contract's balance. This could be fixed with a dedicated loss
realization function taking care of this case.

Risk accepted:
Syntetika is aware of the issue and accepts the risk based on it being forked from the Ethena codebase.

Note that Syntetika introduced the function M nter.realizelLosses() which defines a clear
entrypoint. In (Version 5) M nt er . real i zeLosses() was improved to handle burning from the vault and
the tokens holder. However, it only clarifies the loss realiziation process in code but does not consider the
underlying issue.

5.2 Inaccurate Loss Realization

D (Low) (Version 5) (ETEET)

The underlying issue in Fundamentally Broken Loss Realization Process was resolved. However, the
loss realization remains inaccurate:

CS-HBTC-033

«Due to a lack of on-chain computations, the TokensHol der and shBTC may be slashed
unproportionally.

* Assuming that the off-chain computation computes it correctly, the validation of seen values is
improper. More specifically, the supply of TokensHol der and shBTC are are validated to match the
expected (seen) supplies during computation. However, the relevant factors are the assets held.
While for TokensHol der this is typically only changing along with the shares, that is not the case
for shBTC which can accure yield.

To summarize, the loss realization remains inaccurate.

Risk accepted:
Syntetika is aware and notes:

This is done intentionally because introducing proportions and percentages would introduce the potential for precision |oss.

While the potential precision loss is true, it could have been defined that in case of rounding errors, the
vault, for example, is penalized slightly more.

5.3 Loss Realization Can Be DoSed

D (Cow) (Version 5) (ETTETED)

M nter.realizeLosses() can be DoSed. More specifically, an attacker can trigger the following
checks to revert:

CS-HBTC-034

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

require(
| ERC20(address(vault)) . total Suppl y() expect edSt aki ngVaul t Suppl v,
Guar dNot Passed()
Ik
require(
| ERC20(vaul t . t okensHol der ()) . t ot al Suppl y()
expect edTokensHol der Suppl v,
Guar dNot Passed()

)

In detail, the attacker could simply mint new shares on either of the two contracts to then trigger a revert.
Note that this is rather unlikely. A longer DoS would require an attacker to spam the network long
enough.

Risk accepted:

Syntetika is aware of the problem but prefers to perform the computations off-chain and to implement
front-running protection this way.

5.4 Users Outside of Cooldown Penalized

(D) (Cow) (Version 3) R

The loss realization process will affect both the St aki ngVaul t and the TokensHol der. However,
users with registered withdrawals outside of the cooldown period will also be penalized.

CS-HBTC-032

Ultimately, the cooldown mechanism does not prevent users from getting slashed after the cooldown
period has ended.

Risk Accepted
Syntetika acknowledged the issue and accepts the risk.

Users should exit the system as soon as possible to prevent getting penalized unnecessarily.

5.5 Inconsistent Upgrader
T (Low) (Version 2)()
CS-HBTC-028

For Mnter and StakingVault, DEFAULT ADM N RCLE is the only address that passes
_aut hori zeUpgr ade() . In contrast, for Hi | BTC this is owner .

Ultimately, the access control is unnecessarily inconsistent.

Acknowledged:

Syntetika is aware of this inconsistency and chose to not change the code.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

5.6 Initializer Problems
[Low][Version 2][]

The fixes for Proxied contracts cannot set state in constructor introduced initializers for several contracts.
However, the following problems are present:

CS-HBTC-029

1. Conpli anceChecker _init () performs __AccessControl _init(). Also,
Mnter.initialize() does the same while also invoking __Conpl i anceChecker _init().
Thus, the functionality for initializing the access control is duplicated (however, it is a no-op).

2. Similarly, M nter.initialize() grants the DEFAULT_ADM N_ROLE which is already done in
__Conpl i anceChecker _init().

3. __Compl i anceChecker _init() is an internal initializer but uses the i ni ti al i zer () modifier
instead of onl yl ni tializing().

4. Blacklistable_init() performs __Omnable_init(). Also,
StakingVault.initialize() does the same while also invoking
__Blacklistabl e_init(). Thus, the functionality for initializing owner is duplicated.

5. Similarly, Hi | BTC. i niti alize() sets the blacklister storage variable which is already done in
__Blacklistable_init().

6. Blacklistable_init() is an internal initializer but uses the initializer() modifier
instead of onl yl nitializing().

7. __AccessControl _init() isoften used even though it is a no-op. Thus, that indicates that even
no-op initializers of ancestor contracts should be used (as recommended by the library docs).
However, various ancestor initializers are ignored (NoncesUpgr adeabl e,
Cont ext Upgr adeabl e, ...). Ultimately, code is inconsistent.

Code partially corrected:
1. Corrected: __AccessControl _init() inMnter.initialize() wasremoved.
2. Corrected: granting of the DEFAULT_ADM N ROLEinM nter.initialize() wasremoved.
3. Not corrected.
4. Corrected: __Omable_init() inStakingVault.initialize() wasremoved.
5. Corrected: Hi | BTC. i niti al i ze() does not set the blacklister storage variable anymore.
6. Corrected: the modifier was changed to onl yl ni ti ali zi ng().

7. Not corrected.

5.7 Challenge Timing Problems
(EIITED (Low) (Version 1)()(

Conpl i ant Deposi t Regi stry. chal | engeLat est Bat ch() performs the following:

CS-HBTC-008

| at est Bat chUnl ockTi e bl ock. ti nest anp;

However, note that the intention behind this is unclear:

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

1. Assuming that the full batch was dropped, this could be reasonable to ensure that new batches can
be added. However, addDeposi t Addr esses() requires that the timestamp is in the past. Thus,
one cannot immediately add new addresses.

2. After a challenge, more addresses can still be dropped (similar reasons as above).

3. Partial dropping immediately finalizes the addresses. Thus, the canceller could for example cancel
0 addresses and does immediately make all added one finalized.

Additionally, addDeposi t Addr esses() allows adding a small amount of addresses (e.g. no
addresses). This updates the challenging time. Additionally, the canceller's monitoring will be triggered.
That leads to the following consequences:

1. DEPCSI T_ADDRESS_CREATOR_ROLE can disturb operations.

2. DEPCSI T_ADDRESS_CREATOR_RCOLE can trigger unnecessary compute and thus cost for the
CANCELER_ROLE who is expected to monitor the adding of addresses.

Code partially corrected:

The fix for Arbitrary Challenging Problems mitigates the partial dropping issue, a check enforcing that a
new batch should have at least one address was added in addDeposi t Addr esses() . However, after
challenging a batch, the next batch cannot be added immediately and will have to wait for the next block.

Acknowledged:

Syntetika is aware of the remaining inconsistency and chose to not change the code.

5.8 Cooldown and Fee User Agreement Unclear
and Unfair

(D (Low) (Version 1) (ETIETED)
CS-HBTC-009

The contracts implement an unclear and unfair agreement regarding exit times and fees in
St aki ngvaul t. cl ai MA t hdrawal ().

Unfair Cooldown

An unfair cooldown mechanism is implemented. More specifically, the following conditional allows for
potentially unfair execution:

if (
ear | yExi t Enabl ed
(bl ock. ti mest anp user Cool down. cool downEnd
cool downDur ati on 0)

) |

t okensHol der . wi t hdraw(r ecei ver, assets);
}

Consider the following scenario:
1. Alice withdraws while the cool downDur ati on == 90 days.
2. The next day, cool downDur ati on = 10 days is set.
3. Bob initiates a withdrawal directly after that.

4. Ultimately, Alice will have to wait for 89 days while Bob can enjoy the new cooldown.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Ultimately, the agreement is unfair (e.g. here the cooldown in favor of the user could make sense).
Unclear Agreement

Note that the other conditional within the function creates confusion in the agreement:

el se i f (earlyExitEnabled) {
(ui nt 256 fee, uint256 w thdrawAnount) get Ear | yExi t Amount (
user Cool down. cool downSt art
user Cool down. cool downEnd,
assets
¥
t okensHol der. wi t hdraw(recei ver, w t hdrawAnmount) ;
}

Note how the cooldown that was agreed upon on the withdrawal initiation is considered. This contrasts
the following:

» The previous conditional where the current cooldown is relevant (e.g. here the cooldown in favor of
the user could make sense).

» The early exit fee might have increased or decreased since the initiation of the withdrawal (e.g. here
the fee in favor of the user could make sense).

Unfair Fee

Additionally, when both conditionals are combined, the fee might be unfair. Consider the following
scenario:

1. Alice initiates a withdrawal when early exits are not enabled. Assume the cooldown is 10 days.
2. Directly after that, early exits are enabled where the fee is at most 10%.

3. After 5 days, the cooldown is set to O.

4. Bob does initiate a withdrawal which immediately withdraws without paying fees.

5. If Alice was to withdraw, she would have to pay fees.

Summary

The agreement regarding the cooldown period is inconsistent, unclear and unfair in some cases. The
main reasons are:

« Unfair logic (e.g. can be in favor of user)

« Valid but inconsistent configuration (e.g. could be performed as part of one function)

Risk accepted:
Syntetika is aware of the issue but chose not to resolve it fully.

Only the case where cool downDur ati on == 0 is set leads now to immediate withdrawals for all.

5.9 ERC-4626 Violations
[Low] (Version 1)[)

St aki ngVaul t is described as EIP-4626 compatible tokenized vault. However, several violations of the
standard make it non-compatible and hard to integrate with.

CS-HBTC-010

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 18

https://eips.ethereum.org/EIPS/eip-4626
https://chainsecurity.com

Below, we provide non-exhaustive lists of violations and other potential problems:

« Violations

1. The standard explicitly states that withdrawals and redemptions send out asset s. That is
not the case due to delayed withdrawals (i.e. cooldown). Note that implementing a
different standard could be meaningful (e.g. EIP-7540)

2.wi thdraw() and redeen{) completely ignore the arguments r ecei ver and owner.
While that is somewhat required for a safe and efficient cooldown mechanism, it
nonetheless violates the standard.

3. The first deposit may pull more funds than specified as an argument in the deposit
function. Namely, that is due to the first deposit first minting dead shares and then
depositing accordingly.

« Violations depending on interpretation

1. The maxXYZ() functions ignore the blacklist and may return non-zero for blacklisted
addresses. Depending on interpretation, "blacklists" can be interpreted as user limits but
could be interpreted as other reasons of reverts. Note that the inherited ERC4626, for
example, technically blacklists 0x0 but does not adjust the functions.

2. Similarly, the previ ewXYZ() function could or could not revert depending on
interpretation.

3. Similarly, the first deposit (i.e. DEAD SHARES creation) is not considered in any of the
maxXYZ() or previ ewxYZ() functions.

4. Similarly, the m nAsset sAnmount is ignored by those functions. Depending on
interpretation this may or may not be correct.

 Other behavior problematic for integrations and other:

1.deposit() / mnt() and withdraw() / redeen() define minimum amounts. That
includes checks against ni nAsset sAnmount and 0. While these do not necessarily violate
the EIP, they may lead to difficulties for integrators.

2. maxW t hdraw() / maxRedeen{) and previ ewN t hdraw() / previ ewRedeen() are
unclear in terms of EIP-4626 on how they could comply with the standard due to the
cooldown mechanism.

As of (Version 5), the TokensHol der implements ERC-4626. However, it violates the standard in various
ways and should not be treated as such.

Acknowledged:

Syntetika is aware of that integrators might run into issues when integrating with shBTC and chose to not
modify the code.

5.10 Unnecessary Complexity in Access Control

D (Cow) (Version 1) GEIEETED)

Access control is unnecessarily complex. More specifically, the following increases its complexity:

CS-HBTC-013

1. Mix up of AccessContr ol and storage variables for roles. Note that this unnecessarily increases
code size and complexity. Consider the following example in Hi | BTC:

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 19

https://eips.ethereum.org/EIPS/eip-7540
https://chainsecurity.com

function setM nter(
address newM nt er
) external onlyRol e(DEFAULT_ADM N_ROLE) {
requi re(newM nt er address(0), AddressCantBeZero());
revokeRol e(M NTER ROLE, minter);
m nt er newM nt er ;
_grant Rol e(M NTER_ROLE, newM nter);

Note how the function indicates that there should only be one minter. However, due to
AccessControl multiple are possible (e.g. grant Rol e()). Additionally, note that all such
occurrences are: M nter.set Qperator(), M nt er. set Pauser (),
M nter. set Custodi an(), Hi | BTC. set M nter() and St aki ngvVault.setDi stributor().

Note that it is advised that access control wrappers (e.g. set M nt er () which wraps gr ant Rol e())
are used. Later computations expect the storage variables to be set appropriately.

Further, this design has lead to the below more objective problems:

M nter.constructor():distributor isnot set but the role is assigned.

M nt er: There is no explicit function to set di stri butor (e.g. setDi stributor())
while there are equivalent functions for other roles (e.g. set Qper at or ()).

*M nter: The role CUSTODI AN_ROLE can be assigned but is never used for access
control.

« St aki ngVaul t. constructor():distributor is set butthe role is not assigned.

1. Mixup of AccessControl and Omabl e (inherited through Bl ackl i st abl e) in Hi | BTC and
St aki ngVaul t contracts. Note that this unnecessarily increases code size and complexity. More
specifically, it creates the following confusion regarding the differences between
DEFAULT_ADM N _ROLE and owner (both hold significant power):

« owner can call updateBlacklister(), setCooldownDuration() and
set M nAsset sArmount () while DEFAULT_ADM N_ROLE cannot.

« DEFAULT ADM N ROLE can call setD stributor(), setEarlyExitEnabled(),
set MaxEar | yExi t FeeBps(), set Earl yEXxi t FeeReci pi ent () and manage other roles
while owner cannot.

Ultimately, the access control is mixed up which increases the complexity.

To summarize, access control is not implemented consistently which has led to problems. Optimally,
either only AccessCont r ol or only Ownabl e with custom storage variables should be used.

Risk accepted:
Syntetika is aware of the design and potential problems.
However, Syntetika corrected the following immediate resulting problems:

» Corrected : The address of the di stri butor is now set inthe initialize() function of the
M nt er contract.

 Corrected: The DI STRI BUTOR_ROLE is setintheinitialize() function of the St aki ngVvaul t .

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

* Fundamentally Broken Loss Realization Process (SNl
* Incorrect Early Exit Fees (SRS

(Medium)-Severity Findings 5
» Loss Realization Function Cannot Be Called
» Users Can Escape Losses
» Blacklisted Addresses Can Still Interact

* Missing Permit Feature (SR eIl

« Proxied Contracts Cannot Set State in Constructor

(Low)-Severity Findings 4
» Inconsistent Storage Locations
* Arbitrary Challenging Problems
» Incorrect Event Emissions
* Incorrect DEAD_SHARES Logic

Informational Findings 1

» StakingVault Has No Initial Blacklister

6.1 Fundamentally Broken Loss Realization
Process

(Correctness JHEN\EZZTI0)] Code Corrected)

The loss realization process introduced to protect against frontrunning attacks fundamentally breaks
various properties for the loss realization.

CS-HBTC-031

More specifically, the process is now defined as follows:
1. Losses are recognized (e.g. off-chain strategy).
2. Losses are realized on-chain by burning from the vault. Thus, the vault is immediately penalized.

3. Users with unclaimed withdrawals are penalized by taking the minimum value of the shares burned
and the amount withdrawn.

4. The remaining amount is donated to the vault.

Several problems arise:

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

1. Incorrect Conversion of Burned Shares at Current Time.

In St aki ngVaul t. cl ai MA/ t hdr aw(), an amount of shares is passed to pr evi ewW t hdr aw() ,
which expects amount of assets. As a result, the asset sAf t er Cool down value will be too small if
the share price increased and users will loose tokens when claiming their withdrawal. On the other
hand, if a loss was incurred, asset sAf t er Cool down will be too high and asset s will not be
capped, so users will not be affected by the loss.

. Incorrect Donation to Vault.

In St aki ngVaul t. cl ai MW t hdraw() , the unclaimed withdrawal from a user (created by the
slashing), is donated to the vault. This creates a scenario where the vault profits from slashed
amounts. However, slashed amounts should be burned. Otherwise, the slash is improperly
realized.

. Loss Realization Unreasonable or Inaccurate.

Assuming both of the above points were resolved, the loss realization is either completely
unreasonable or it could be possible that an accurate loss realization is impossible to achieve.

1. Loss Realization Unreasonable. If a loss of 10 hBTC occurs and 10 hBTC are burned from
the vault, then the penalization will exceed the intended amount. Consider the following
example.

1. Assume that both Alice and Bob hold 100 shBTC each at an exchange rate of 1 (i.e.
200 hBTC total assets).

2. Now, Bob withdraws everything.
3. Next, a loss of 10 is realized by burning 10 from the vault.
4. Finally, when Bob claims the withdrawal, he will only receive 90 hBTC.

5. Ultimately, 20 hBTC would have been slashed for a loss of 10.

Note that more example can be constructed more extremely.

2. Loss Realization is Inaccurate. As illustrated above, not 10 hBTC can be burned from the
vault. Rather, it should be proportional according to the split of funds (ratio of total assets in
vault and total assets in total (vault and tokens holder)). In the given example, burning 5
hBTC from the vault would have implied that Alice would have paid the remaining 5 (50% of
assets in vault).

However, that approach is inaccurate and unsuitable. Consider the adjusted example below:
1. The same setup is expected with Bob and Alice as in the previous example.

2. Syntetika recognizes the loss and computes the proportion to be 50% so that it should
publish 5 hBTC to be burned from the vault.

3. However, in the time between the on-chain burning and the computation of the amount,
funds arrived in the vault (e.g. Charlie deposited 100 assets).

4. Now, the loss is realized and the vault loses 5 hBTC.
5. Finally, when Bob claims the withdrawal, he will receive 97.5 hBTC.

6. Ultimately, the total burned amount is only 7.5 instead of 10 hBTC.

To summarize, it is impossible to create accurate amounts to burn without the corresponding
on-chain logic.

4. Yield Generated for Tokens Holder.

Yield is still generated for users in the tokens holder. This fundamentally violates accounting and
breaks the system. Consider the following example:

Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

1. Assume that both Alice holds 10 and Bob holds 90 shBTC at an exchange rate of 1 (i.e. 100
hBTC total assets).

2. Assume that Bob withdraws everything.

3. Assume that an accurate and proportional slashing of 10 hBTC would occur (assuming all of
the above done correctly). Meaning Bob could claim 81 hBTC and Alice would 9 hBTC
underlying.

4. However, note that the slash is not realized yet. Now, assume that 1 hBTC yield is generated.

5. Ultimately, Alice is eligible for 10 hBTC again. Note that the exchange rate is 1 again. When
Bob finally claims, he receives 90 hBTC due to that.

6. Finally, only a slashing of 1 hBTC occured.

To summarize, yield is generated for funds in tokens holder (if they were slashed), which is
incorrect.

Summary: Various problems exist with the current approach, breaking the loss realization process in its
entirety.

Code corrected:

The issue has been resolved. Now, the tokens holder implements shares logic.
1. The amount of shares withdrawn during the withdrawal/redemption is now passed.
2. No self-donation is performed.
3. Losses are now more fairly and more accurately accounted for.

4. No yield is generated for users in cooldown.

6.2 Incorrect Early Exit Fees

(Correctness JHiE VTR Code Corrected)

St aki ngVvaul t. cl ai MmN t hdraw() allows users to finalize their withdrawal. When early exits are
enabled (ear| yExi t Enabl ed == true), the transfer of fees has been implemented incorrectly which
leads to a severe loss of unclaimed user funds.

CS-HBTC-001

More specifically, the fees and the amount for the user are computed as follows:
function getEarl yExi t Amount(...) public view returns (uint256 fee, uint256 w thdrawAmount) {

wi t hdr awAnount (assets f eePer cent) BPS,;
fee assets wi t hdr awAnount ;

}

When transferring, the transfers occur as follows:

} else if (earlyExitEnabled) {
(uint256 fee, uint256 w thdrawAnmount) get Earl yEXxi t Amount (.. .);
t okensHol der . wi t hdr aw(r ecei ver, wi t hdrawAnount) ;
t okensHol der . wi t hdr aw(ear | yEXi t FeeReci pi ent, assets fee);

Note that the second withdrawal does not transfer fee but assets - fee which is equal to
wi t hdr awAnount .

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

As a consequence, the following is possible:
* Revert due to a lack of funds in t okensHol der .

* Loss of funds held in t okensHol der if the contract holds sufficient funds. Note that if the recipient
is a governance-controlled address, the issue could be mitigated by manually transferring. However,
ear | yExi t FeeReci pi ent could be St aki ngVaul t (and is set as such in the constructor). In that
case, other St aki ngVaul t share holders would benefit and treat it as a donation.

Code corrected:

The amount transferred to ear | yEXxi t FeeReci pi ent has been setto f ee instead of assets - fee.

6.3 Loss Realization Function Cannot Be Called

[Medium] [Version 4] Code Corrected

The function M nter.realizeLosses() will fail everytime because the M nt er tries to burn hBTC
from the St aki ngVaul t but does not have the required allowance. As an effect, the dedicated loss
realization callpath is completely broken, but losses can still be realized by the owner of the Hi | BTC
contract, even though it is not the intended use.

CS-HBTC-030

Code corrected:

Now, the M nt er does not require any approval on Hi | BTC to bur nFr omany user:

i f (spender from spender owner () spender $.mnter) {
_spendAl | owance(from spender, anount);

}

While the issue is resolved, it further highlights the need for access control to be improved, see
Unnecessary Complexity in Access Control.

6.4 Users Can Escape Losses

(Design JLTTDICEERR Code Corrected)

In case they see an unrealized loss coming, users can escape it by redeeming their shares before the
loss is realized and buying back the shares at a lower price later. This increases the percentage loss of
the other vault share holders, as they now cover the escaped loss.

CS-HBTC-026

Consider the following scenario where there is an unrealized loss of 10%. User A holds 90% of all shares
in the vault:

1. User A redeems all their shares.
2. The loss is realized.

3. User A deposits again (after cooldown)

Now, user A has a 0% loss, while other users in the vault have suffered a 100% loss.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

This increased loss could lead to a situation similar to a bank run, as many users might try to redeem
their shares before the loss is realized, leaving the remaining users to take the loss, and making the vault
insolvent in the worst cases.

Code corrected:

The code has been corrected. Users cannot frontrun exits. More specifically, if the vault is penalized
users with funds held in the tokens holder will be penalized equally.

Note that the solution, however, introduced other problems described in other issues.

6.5 Blacklisted Addresses Can Still Interact
7D (Viedium) (Version 1) (XIS

Syntetika requires that a blacklisted address should not be able to move funds at all and that, optimally,
the interactions possible should be kept at a minimum. However, that is not fully enforced:

CS-HBTC-002

1. The overridden _updat e() in St aki ngVault and Hi | BTC function called upon transfers only
enforces that the f romand t o addresses are not blacklisted. By not checking that nsg. sender is
also not blacklisted, it allows a blacklisted address to use open allowances they might have,
violating the requirement above.

2. Similarly, that in the St aki ngVaul t contract for functions deposit () / mnt(). nmsg. sender
could be blacklisted but the operations would be successful as r ecei ver could not be blacklisted.

3. Additionally, the r ecei ver for cl ai MmN t hdr awal () could be blacklisted, but the operation could
succeed. However, typically it is expected that the blacklist in Hi | BTC prevents this from
happening.

Additionally, note that blacklisted addresses could still interact with the code. For example, they can give
approvals to other addresses, but transfers will be blocked. Additionally, note that in some cases the
blacklist will not be applied (e.g. Hi | BTC when owner () is nsg. sender). However, that is expected to
satisfy the requirements.

Code corrected:
The code was updated to ensure that nsg. sender is not blacklisted in the functions mentioned above.

Note that, in cl ai MW t hdrawal (), the recei ver could be blacklisted in shBTC but not in hBTC
(unsynchronized blacklist). Thus, the staking vault could transfer hBTCto a blacklisted address.

However, Syntetika confirmed that this is intended since a user could withdraw to self and transfer the
hBTC to the potentially blacklisted receiver (in shBTC).

6.6 Missing Permit Feature

(D (Wiedium) (Version 1) (CTEEIEE)

The NatSpec of H | BTC mentions that the token implements the "permit functionality" (EIP-2612), but
the contract does not implement the functionality.

CS-HBTC-004

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 25

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

Code corrected:

The Hi | BTC contract was updated to extend OpenZeppelin's ERC20Per m t Upgr adeabl e, which
implement EIP-2612.

6.7 Proxied Contracts Cannot Set State in
Constructor

[Medium] [Version 1] Code Corrected

Syntetika specified that the contracts will be deployed behind proxies. But all the contracts have a
constructor that sets some state (e.g., roles, addresses, ...), this is incompatible with the use of proxies
as the state will be set on the implementation contract, but the proxy storage will be untouched. As a
consequence, the system is unusable from the proxies.

CS-HBTC-005

Code corrected:

The Hi | BTC, M nter and St aki ngVault contracts have been updted to extend OpenZeppelin's
UUPSUpgr adeabl e. Their constructors have been replaced with initializer functions and they override
the _aut hori zeUpgrade() function. The Bl acklistable contract was renamed
Bl ackl i st abl eUpgr adeabl e and updated to inherit from the upgradeable version of its
dependencies. The Conpl i anceChecker Upgr adeabl e contract has been added, it clones the core
logic of the Conpl i anceChecker while being abstract and upgradeable.

6.8 Inconsistent Storage Locations

(D (Low) (Version 2) (SRR

The contracts StakingVault, Mnter, HIBTC, ConplianceCheckerUpgradeable, and
Bl ackl i st abl eUpgr adeabl e currently define their storage variables in a linear layout, without using
the ERC-7201 storage slot standard. On the other hand, some of their parent contracts (e.g.,
AccessCont r ol Upgr adeabl e) uses ERC-7201.

This inconsistency in storage layout approaches may introduce potential upgradeability risks.
Specifically, future upgrades may inadvertently overwrite storage variables or cause storage collisions.

CS-HBTC-027

Code corrected:

All the upgradeable contracts use EIP-7201 now.

6.9 Arbitrary Challenging Problems
D (Low) (Version 1) (YD)

Conpl i ant Deposi t Regi stry. chal | engeLat est Bat ch should allow the canceller to drop the latest
batch of addresses. While chal | engelLat est Bat ch() ensure that,
chal | engelLat est Bat ch(ui nt 256 | engt h) does not consider the number of finalized addresses.

CS-HBTC-007

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

This leads to multiple problems:

1. Partial Dropping: It is possible to drop the unfinalized addresses partially. However, the
implementation does not give sufficient flexibility.

2. Dropping Finalized Addresses: There is no enforcement that only unfinalized addresses can be
dropped. Thus, an investor might have already claimed an address. As a consequence, a user
might have his deposit address changed (or deleted). Additionally, this can lead to reverts and
other problems.

3. Dropping Initial Address: The initial address might be dropped which should not occur.

Ultimately, several problems regarding the dropping of arbitrary entries exist.

Code corrected:

Partial dropping has been removed, only the full pending batch
(deposi t Addresses. |l ength - finalizedAddressesLengt h) can be challenged and dropped.

6.10 Incorrect Event Emissions

(Correctness JICTAZEETBY Code Corrected)

St aki ngvaul t. _redeenio() emits the
Unst aked(address i ndexed user, uint256 assets) eventas follows:

CS-HBTC-011

emt Unstaked(nsg. sender, shares);

Note that shar es is emitted instead of asset s.

Code corrected:

The code has been updated to emit the asset s.

6.11 Incorrect DEAD SHARES Logic
D (Low) (Version 1) YD)

The St aki ngVaul t. deposi t () function burns shares for the first deposit as follows:

CS-HBTC-012

it (total Supply() 0) {
_checkOwner () ;
super . deposi t (DEAD_SHARES, BURN) ;

}

However, note that super. deposit () takes assets as an argument. That leads to the following
amount of shares being created (and in this case "burned"):

shares DEAD_SHARES. nmul Di v(t ot al Suppl y() 10 _decimal sOffset (), total Assets() 1, Mat h. Roundi ng. Fl oor)
1000. mul Di v(0+1, total Assets() 1, Mat h. Roundi ng. Fl oor)
1000 1 (total Assets() 1)

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Note that this not imply directly that shares is DEAD SHARES since total Assets() can be
manipulated through donations.

Consequently, consider the following:
edi stributeYield(): The checktotal Suppl y() > DEAD_SHARES is inaccurate.
e _w thdraw(): The checkt ot al Suppl y() - shares == DEAD_SHARES is inaccurate.

While it is unlikely for the scenarios to occur they might still lead to incorrect executions and unexpected
results.

Code corrected:

Now deposi t () invokes super. mi nt () to mint the exact amount of dead shares. While this resolves
the problem, the solution still leads to an ERC-4626 violation, see ERC-4626 Violations.

6.12 StakingVault Has No Initial Blacklister
(Informational] [Version 1]

St aki ngVaul t does not set the initial blacklister while Hi | BTC does.

CS-HBTC-023

Code corrected:

An initial blacklister is now set in the St aki ngVaul t'sinitiali ze() function.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Events Emitted Even When State Is Not
Updated

(Informational) (Version 1)()

CS-HBTC-014

Events should be emitted on each important storage update of a smart contract in order to allow external
observers to track important events in the contract's life. Emitting an event when a value is replaced by
itself or when no other important update was made can be avoided as no new information is gained, and
also incurs an unnecessary gas cost. Below is a non-exhaustive list functions emitting such events:

« Bl ackl i st abl e. updat eBl ackl i ster ()
« Bl ackl i st abl e. bl ackl i st()

* Bl ackl i st abl e. unbl ackl i st ()
*Wiitelist. whitelistAddress()
*\VWitelist._setConplianceChecker()
e allthe M nt er. set XYZ()

*H | BTC. setM nter()

« all the St aki ngVaul t . set XYZ()

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.2 Gas Optimizations

(Informational) (Version 1)()
CS-HBTC-015
Below is a non-exhaustive list of potential gas optimizations:
1.In Compl i ant Deposi t Regi stry. regi st er Deposi t Address(), the

Compl i anceChecker . requi reConpliant () is called twice when the investor receives a
deposit address. Note that one such call is in get Deposi t Addr ess() .

2.Often access control is checked twice. For example, in the execution of
Compl i ant Deposi t Regi stry. chal | engeLat est Bat ch() the role checks are executed
twice. Similarly, that is the case in Mnter.setOperator(), Mnter.setPauser(),
M nter. set Custodi an(), Hi | BTC. set M nter() and St aki ngVaul t. set Di stri but or ()
(hidden check in r evokeRol e()).

3. M nter. staki ngVaul t could be immutable.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

Acknowledged:
Syntetika is aware of this and chose to not modify the code.

7.3 Inconsistent Revert Statements
[Informational] [Version 1][]

CS-HBTC-016

Throughout the codebase, reverts and error raising are done in two different manners:
i f(l'cond) {

revert Custontrror();
}

and
require(cond, CustonError());

For the sake of code clarity and maintainability, it is recommended to use only one of the ways.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.4 Inconsistent Transfer in TokenHolder
(Informational] [Version 1](]

CS-HBTC-017
TokenHol der . wi t hdraw() allows the staking vault to withdraw from the escrowed funds.

Note that Saf eERC20. saf eTr ansf er () is not used. While for HBTC this is not relevant, it contradicts
the St aki ngVaul t which consistently uses Saf eERC20 for the same asset.

Ultimately, St aki ngVaul t suggests that the contract that the system is designed with some flexibility in
mind. However, the TokenHol der contract is not consistent with that.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.5 Interfaces Problems
(Informational] [Version 1][]

CS-HBTC-018

Below is a non-exhaustive list of functions missing in their respective interfaces:

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

1. Conpl i ant Deposi t Regi stry: chal | engelLat est Bat ch(ui nt 256 | engt h) is missing the
interface definition.

2. Wi telist:isAddressWitelisted() and nanual Wi telist() are missing in the interface
definition.

3. TokensHol der: wi t hdraw() is missing in the interface definition.

4. Hi | BTC/ St aki ngvaul t /M nt er : Various functions are missing in the respective interfaces.

Additionally, the | M nt er defines event Deposi t which is never used.

Code partially corrected:
1. Corrected: the function was removed.
2. Not corrected.
3. Not corrected.
4. Not corrected.

The Deposi t event was removed from the | M nt er interface.

7.6 Lack of Events

(Informational] [Version 1] []
CS-HBTC-019
Note that various constructors are missing event emissions. That includes:
1.Mnter
2. Hi | BTC

3. St aki ngVaul t

Additionally, one could argue that Conpl i ant Deposi t Regi stry lacks an event for the invalid initial
item.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.7 NatSpec Problems
(Informational] [Version 1][]

CS-HBTC-021
Below is a non-exhaustive list of functions missing NatSpec:

1. Conpl i ant Deposi t Regi stry. chal | engelLat est Bat ch(ui nt 256 |l ength) is missing
NatSpec documentations.

2.1 Conpl i ant Deposi t Regi stry does not annotate the getter functions with full NatSpec (e.g.
DEPCS| T_ADDRESS_CREATOR_ROLE())

3. NatSpec is missing for various constructors. Similarly, that is the case for events and custom
errors.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

4. While it generally it is fine not to provide NatSpec for internal and private functions, the NatSpec is
inconsistent in that regard.

5.Mnter.constructor():_distributor and _staki ngVaul t are undocumented.

6.Mnter.distributeYield() / Mnter.pause() / Mnter.unpause(): No NatSpec
provided.

7.M nter.redeen(): The NatSpec mentions redemption for "a specified address", but the function
only accepts one anount parameter and the redemption is always done for nsg. sender .

8. St aki ngVaul t. di stributeYield():tinmestanp isundocumented.
9. St aki ngVaul t. get Ear | yExi t Arount () : No NatSpec provided.

Further, note that @ nheritdoc could be used to not need to copy-paste NatSpec from interface
definitions.

Code partially corrected:
1. Corrected. The function has been removed.
. Not Corrected. NatSpec is inconsistently implemented for external/public getter functions.
. Not Corrected. NatSpec is inconsistently implemented for contrustor/initializer, errors and events.
. Not Corrected. NatSpec is inconsistently implemented for internal/private functions.
. Corrected. NatSpec updated.
. Corrected. NatSpec added.
. Corrected. NatSpec updated.
. Corrected. NatSpec updated.

© 00 N o 0o A w DN

. Corrected. NatSpec added.

7.8 Sanity Checks

(Informational) (Version 1)()

CS-HBTC-022

The codebase performs sanity checks on various occasions. Thus, the lack of some checks implies an
inconstency:

1. No checks against 0x0:

1. Conpl i ant Deposi t Regi stry. constructor()

2. Compl i anceChecker . constructor()

3. TokensHol der . constructor ()

4. St aki ngVaul t. constructor () (_distributor)

2. TokensHol der . construct or () could retrieve H LBTC from STAKI NG_VAULT. asset ().

3.No OxO0 checks for the SBTs in the compliance options when they are added in
Conpl i anceChecker . set Conpl i anceOpti ons() .

Note that ultimately, the sanity checks could be more consistent.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

7.9 StakingVault Has No Initial Early Exit Fee
[Informational] [Version 1][]

CS-HBTC-024

The maxEar | yEXi t FeeBps storage variable in the St aki ngVaul t is not set in the constructor and the
set Ear | yExi t Enabl ed() function does not check that it is non-zero. While a 0-value fee is a valid
configuration, Syntetika needs to check and update the configuration of the contract prior to enabling
early exits if they want to charge a fee.

Acknowledged:
Syntetika is aware of this and chose to not modify the code.

7.10 Unbound Array in Compliance Checker
[Informational] [Version 1][]

CS-HBTC-025

Compl i anceChecker. _conpl i anceOptions is a two-dimensional array that is unbound in both
dimensions. Note that operations could revert or become inefficient if the array is sufficiently large.

Acknowledged:

Syntetika is aware of this and chose to not modify the code.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Cooldown Increases for All Pending
Withdrawals

Users should be aware that the cooldown end increases for all pending withdrawals. Consider the
following scenario:

1. Alice withdraws 10 assets. The cooldown is 10 days.
2. After 5 days, she withdraws 10 assets again. The cooldown is still 10 days.

3. Only after a total of 15 days can she withdraw her 20 assets. Note that the first withdrawal is hence
additionally delayed.

8.2 Losses Can Be Front-Run When Cooldown Is

Small
(D (Version 3)

When the cooldown period is small or even 0O, it is possible for users to observe the mempool, or the
on-chain state of the strategy if any, in order to front-run an incoming loss and escape it. Syntetika is
expected to set a cooldown period that reflects the risk of the strategy to ensure fair operations in the
vault.

8.3 Owner Special Cases

(D) (Version T

The owner has special powers for token related operations in Hi | BTC. More specifically, they can call
bur nFr om() without needing allowance and even transfer from and to blacklisted addresses. Note that
this is intended to be used for seizing funds and covering strategy loss scenarios.

Note that St aki ngVaul t does not implement such functionality intentionally due to weaker legal
requirements.

8.4 Partial EIP-165 Support
(D) (Version 2

The contract AccessCont rol [Upgr adeabl €] implements the EIP-165
(https://eips.ethereum.org/EIPS/eip-165) for interface detection. However, the contracts extending
AccessControl [Upgr adeabl e] (Compl i anceChecker, Conpl i anceChecker Upgr adeabl e,
Mnter, HIBTC, StakingVault) do not extend the support by overriding the
supportslnterface() function, limiting the interface detection to AccessCont r ol [Upgr adeabl e] .

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 34

https://eips.ethereum.org/EIPS/eip-165
https://chainsecurity.com

8.5 Redeeming HIIBTC
(D) (Version 1)

Consider the following scenario:
1. Alice deposits by calling M nt er . m nt () . Note that this increases t ot al Deposi ts.

2.In a separate mechanism, Bob deposits to his deposit address. The owner initiates
Mnter.owerMnt() to mint the respective amount accordingly. That increases
t ot al Deposits.

3. After some time Bob decides to withdraw. However, he does so by calling M nt er . r edeen() .

4. Alice can now not r edeent() her HIIBTC as they are backed by BTC on Bob's deposit address.

Users should be aware that:
» The above is intended.
 Syntetika owns and controls the deposit addresses.
« Off-chain rebalancing will be performed to ensure that funds can be accessed.

« If an address wants to receive BTC on Bitcoin, they will call bur n() .

However, note that this mechanism is not described nor specified in detail and that it is expected to work
correctly and that sufficient data is present for the mechanism to work properly.

8.6 Temporary DoS and Griefing of Deposit
Registry
(D) (Version 1

Investors can claim deposit addresses with
Conpl i ant Deposi t Regi stry. regi st er Deposi t Addr ess() . However, Syntetika should be aware
that there might be temporary DoS and griefing possibilities.

More specifically, the set of deposit addresses is limited and needs to be pushed by a privileged role. The
addresses can be claimed by addresses that satisfy the compliance requirements. However, these
addresses could still be malicious with the intent to disturb operations. Hence, they could claim all
unclaimed deposit addresses which leads to:

* Temporary DoS: To publish new addresses the time delay needs to be satisfied. Hence, a waiting
time might be enforced.

* Griefing: Syntetika must pay for gas fees to publish the addresses. Thus, claiming addresses
unnecessarily might lead to higher operating cost.

Nonetheless, such scenarios are unexpected since:
 The set of compliant addresses is expected to be small.

« Each compliant address can claim one deposit address at most.

To summarize, while unlikely it could still be possible to disturb the operations in the deposit registry.

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

8.7 User DoSed by Minima
(D) (Version 1

Note that users can be DoSed by the minimum m nAsset sAnmount . Below is a non-exhaustive list of
example scenarios:

* A user has shares that have a value of 100 tokens. Then, the minimum is increased to 150 tokens.
The user cannot withdraw.

* A user has shares worth 100 tokens and transfers 60 to another user. If the minimum is 50 tokens,
the user cannot withdraw.

* A user sees a minimum of 10 tokens and wants to deposit 20. However, another pending transaction
increasing the minimum to 30 is executed before. The user is griefed. Note that this scenario
typically is not problematic as the user can always re-execute. However, integrators should not rely
on being able to deposit any amount.

8.8 Vault Integration Considerations

Syntetika, users and integrators should be aware that classical manipulation attacks are possible for
St aki ngVaul t . However, these are limited by the underlying vault contract used (i.e. ERC4626) and the
dead shares mechanism.

More specifically, all relevant parties should be aware that:
1. Share price manipulations are possible (e.g. donations to the contract).
2. Consequently, inflation attacks are possible.

3. Therefore, second depositor attacks are possible.

To summarize, all related parties should do their due diligence and ensure the safety of using the
St aki ngVaul t .

I:$: Syntetika - HIIBTC - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Compliance Checker
	2.2.2 Compliant Deposit Registry
	2.2.3 HilBTC
	2.2.4 Minter
	2.2.5 Staking Vault
	2.2.6 Changes in V2
	2.2.7 Changes in V3
	2.2.8 Changes in V4-V5

	2.3 Trust Model
	2.3.1 Changes in V2
	2.3.2 Changes in V5

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 totalAssets() Can Revert and Loss Realization Process
	5.2 Inaccurate Loss Realization
	5.3 Loss Realization Can Be DoSed
	5.4 Users Outside of Cooldown Penalized
	5.5 Inconsistent Upgrader
	5.6 Initializer Problems
	5.7 Challenge Timing Problems
	5.8 Cooldown and Fee User Agreement Unclear and Unfair
	5.9 ERC-4626 Violations
	5.10 Unnecessary Complexity in Access Control

	6 Resolved Findings
	6.1 Fundamentally Broken Loss Realization Process
	6.2 Incorrect Early Exit Fees
	6.3 Loss Realization Function Cannot Be Called
	6.4 Users Can Escape Losses
	6.5 Blacklisted Addresses Can Still Interact
	6.6 Missing Permit Feature
	6.7 Proxied Contracts Cannot Set State in Constructor
	6.8 Inconsistent Storage Locations
	6.9 Arbitrary Challenging Problems
	6.10 Incorrect Event Emissions
	6.11 Incorrect DEAD_SHARES Logic
	6.12 StakingVault Has No Initial Blacklister

	7 Informational
	7.1 Events Emitted Even When State Is Not Updated
	7.2 Gas Optimizations
	7.3 Inconsistent Revert Statements
	7.4 Inconsistent Transfer in TokenHolder
	7.5 Interfaces Problems
	7.6 Lack of Events
	7.7 NatSpec Problems
	7.8 Sanity Checks
	7.9 StakingVault Has No Initial Early Exit Fee
	7.10 Unbound Array in Compliance Checker

	8 Notes
	8.1 Cooldown Increases for All Pending Withdrawals
	8.2 Losses Can Be Front-Run When Cooldown Is Small
	8.3 Owner Special Cases
	8.4 Partial EIP-165 Support
	8.5 Redeeming HilBTC
	8.6 Temporary DoS and Griefing of Deposit Registry
	8.7 User DoSed by Minima
	8.8 Vault Integration Considerations

