PUBLIC

Code Assessment

of the Default Rewards

Smart Contracts

April 07, 2025

Produced for

by
(s: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG

10
11
12
16
17

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Symbiotic with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Default Rewards according
to Scope to support you in forming an opinion on their security risks.

Symbiotic provides default contracts for standardizing the distribution of rewards to operators and
stakers.

The most critical subjects covered in our audit are asset solvency, function correctness and access
control. The general subjects covered are specification and trustworthiness.

The most notable issue uncovered is the possibility of Stealing Operator Rewards. The finding has been
addressed through code correction.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

¥ Code Corrected

(CL:0)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

¥ Risk Accepted

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code

commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Default Rewards repository based on
the documentation files. The table below indicates the code versions relevant to this report and when

they were received.

V | Date Commit Hash Note
1 | 15 Jul 35072e1ba48451e99a2e990c3acddc4b50463857 | Initial Version
2024
2 | 01 Aug d44b600ec423f8ba86347325fa32fd3d56738097 After Intermediate Report
2024
3 | 15 Aug 03e5d612926bc13297e350b6d455daabecdeb7fb9 | Final Version
2024
4 | 07 Apr 4bff49b6cc5933f681f6cbd5h1a689125aef3b0e Staker Rewards v2
2025

For the solidity smart contracts, the compiler version 0. 8. 25 was chosen.

The contracts listed below are in scope:

contracts:
def aul t Oper at or Rewar ds:
Def aul t Oper at or Rewar ds. sol
Def aul t Oper at or Rewar dsFact ory. sol
def aul t St aker Rewar ds:
Def aul t St aker Rewar ds. sol
Def aul t St aker Rewar dsFact ory. sol
i nterfaces:
def aul t Oper at or Rewar ds:
| Def aul t Oper at or Rewar ds. sol
| Def aul t Oper at or Rewar dsFact ory. sol
def aul t St aker Rewar ds:
| Def aul t St aker Rewar ds. sol
| Def aul t St aker Rewar dsFact ory. sol
st aker Rewar ds:
| St aker Rewar ds. sol

2.1.1 Excluded from scope

Generally, all contracts not listed above are out of scope. Further,
« all interacted-with external systems (e.g. security of tokens),
« the correctness of the core system,

« rebasing tokens and very obscure tokens,

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG

https://github.com/symbioticfi/rewards/tree/35072e1ba48451e99a2e990c3acddc4b50463857
https://github.com/symbioticfi/rewards/tree/d44b600ec423f8ba86347325fa32fd3d56738097
https://github.com/symbioticfi/rewards/tree/03e5d612926bc13297e350b6d455daabcdeb7fb9
https://github.com/symbioticfi/rewards/tree/4bff49b6cc5933f681f6cbd5b1a689125aef3b0e
https://chainsecurity.com

« and off-chain computations

are out of scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Symbiotic implements contracts for distributing rewards to stakers and operators. Note that the usage of
these contracts is optional and may differ if other contracts are deployed. For details regarding the core,
please refer to our core audit.

2.2.1 Default Operator Reward

The Def aul t Oper at or Rewar ds allow the networks' corresponding middleware to distribute rewards by
publishing a root of a Merkle tree with di st ri but eRewar ds. That will pull the specified amount and
update the root. Then, operators may claim their rewards with cl ai mRewar ds by specifying the amount
in the tree that is encoded with their address along with the proof. As a result, funds are transferred out.
Further, note that the r eci pi ent is the address receiving funds but not the eligible address. Note that a
leaf in the tree is encoded as the hash of a user eligible to claim encoded with the claimable amount.
Note that the claimable amount should be the sum of all rewards received so far. Also, see Root update
considerations.

The Def aul t Qper at or Rewar dsFactory allows deploying a minimal proxy pointing to the
Def aul t Oper at or Rewar ds implementation in a standardized way. Note that the factory acts as a
Regi st ry (see core audit) which allows querying for entities.

2.2.2 Default Staker Rewards

The Def aul t St aker Rewar ds are vault-specific. Namely, the networks' corresponding middleware can
distribute rewards to stakers of a vault with di st ri but eRewar ds. Note that the distribution is based on
timestamps. More specifically, the middleware must provide the timestamp encoded in dat a. Then, the
amounts will be claimable according to the distribution of the shares at the given time.

Note that
« only whitelisted networks may distribute rewards (networks trusted by the vault owner)
 rewards can only be distributed retrospectively (due to the accounting)

 rewards can only be distributed if and only if shares and stake in the vault existed in the vault (due to
DoS vectors and meaningfulness)

All distributions are tracked per token in a list of distributions. The rewards can be claimed by stakers with
cl ai mRewar ds which iterates through the list of reward distributions for a given token, starting from the
earliest (by push time) reward distribution and iterating up to the last reward. Note that a user can encode
a maximum number of iterations as part of dat a (maxRewar ds in code). Also, note that when a user
claims rewards, the acti veSharesO Hi nt's (hints provided for more efficient checkpointing queries)
should optimally be the size of maxRewar ds and that maxRewar ds should be less than or equal to the
number of rewards available to the user when sending the transaction (otherwise the transaction may
revert unnecessarily). Further, the reci pi ent is the address receiving funds but not the eligible
address.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The rewards are distributed based on the checkpointed active-shares accounting at a given timestamp.
Namely, they are distributed as follows (simplified version not considering precision):

rewardAmount * sharesser, t,
totalShares;,

Note that admin fees, which can be set to up to 100% by ADM N_FEE_SET_ ROLE with set Adni nFee,
are set aside for the staker rewards when rewards are distributed, and can be claimed by
ADM N _FEE CLAI M ROLE with cl ai mAdm nFee. Further, networks can be whitelisted with
set Net wor kWhi t el i st St at us by NETWORK_VHI TELI ST_RCLE.

Notably, the staker rewards include a ver si on to standardize different implementation interfaces with
versions. The version of the implemented contract is 1.

The Def aul t St aker Rewar dsFact ory allows to permissionlessly deploy a minimal proxy pointing to
the Def aul t St aker Rewar ds implementation. Note that all roles are initially given to the specified
vault's owner.

See also Staker reward distribution considerations

2.2.3 Changelog

Notable changes in version 2 are:
» The reward distributions are now tracked per network-token pair.

» The whitelisting of networks has been removed as the accounting is done per network now (and not
aggregated in a shared array).

* The dat a parameter now encodes more data for di stri but eRewards and cl ai nRewar ds
(additional hints and fee slippage protection for the first one, and the target network for the second
one).

As of version 4, the following Def aul t St aker Rewar ds version 2 is introduced. The main difference lies
within the data emitted in events.

2.3 Trust Model

The default operator rewards and its factory have the following roles defined:

» Middleware: The middleware is the address distributing the rewards. Generally, it is untrusted - no
middleware should affect other networks' distributions. However, given these boundaries, it is
trusted to behave as expected. Otherwise, funds may be unclaimable (or special tokens might
purposefully be designed to revert (or similar). However, with the constraint that other tokens should
not be affected). Thus, this relates also to the off-chain computations done.

» Middleware service: Trusted to honestly return the middleware of a given network.
* Users: Users are untrusted.

» Tokens: The contract will only work with normal tokens. Very exotic tokens might lead to reverts but
should not affect executions with other tokens. Note that blacklistable tokens may block the
interaction of users with the token contract (or the contract itself). Note that rebasing tokens are not
supported.

The default staker rewards and its factory have the following roles defined:

» Middleware: The middleware is the address distributing the rewards. Generally, it is untrusted - no
middleware should affect other networks' distributions. However, given these boundaries, it is
trusted to behave as expected. Otherwise, funds may be unclaimable (or special tokens might
purposefully be designed to revert (or similar). However, with the constraint that other tokens should
not be affected).

» Middleware service: Trusted to honestly return the middleware of a given network.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

» Users: Users are untrusted.

« Vault: Expected to work correctly and honestly. Namely, the checkpointed accounting is assumed to
be correct and expected to not be modifiable.

« DEFAULT_ADM N_ROLE: Trusted to assign the fee setter and claimer roles.
« ADM N_FEE SET ROLE: Trusted to set reasonable fees.

« ADM N_FEE CLAI M ROLE: Trusted to specify a proper recipient. However, claiming admin fees
should have no impact on the system.

» Tokens: The contract will only work with normal tokens. Very exotic (e.g. token that always reverts)
tokens might lead to reverts but should not affect executions with other tokens. Note that
blacklistable tokens may block the interaction of users with the token contract (or the contract itself).
Note that rebasing tokens are not supported.

Please also see Notes for further consideration.

(S: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors

o CEEED): Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0

ty g

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
ty g

» Unskippable Rewards

5.1 Unskippable Rewards
(Design [(CTY VLTI Risk Accepted)

While typically the networks integrating with a default staker contract are trusted, the networks might
collectively (but unintentionally) DoS a user from claiming a reward (or technically would make it
bothersome to claim rewards).

CS-SYMB-REW-004

Consider the following scenario:
1. Rewards are published for a t oken 10000 times.
2. A staker joins the system.
3. A staker is eligible for a reward distribution.

4. The last claimable index is 0. However, his first interaction with the system has been just recently.
For most rewards, the staker is not eligible.

5. Nevertheless, the staker must iterate over all items in the array for the to-be-claimed token which
may inflict unnecessary gas costs.

Ultimately, users cannot skip large sets of reward distributions for which they might be ineligible for. That
might disincentivize users from claiming certain rewards.

Risk accepted:

Symbiotic accepts the risk. However, note that impact of the issue has been reduced by separating the
accounting of networks. Nevertheless, the scenario above can occur for regular networks.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E=)-Severity Findings 1
y g
» Stealing Operator Rewards
(CI)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 2
ty g

» Potential Reverts Due to Strict Inequality

* Reentrant Tokens (SlE el iTe =N

Informational Findings 4

* Incomplete Sanity Check in Initializer

» Incomplete and Inaccurate NatSpec

* Merkle Tree Leaf Best Practices

« DefaultOperatorRewards Contract Inherits From Initializable

6.1 Stealing Operator Rewards

Operator rewards can be stolen by malicious parties. Namely, there is no enforcement that the sum of
tokens transferred in by a network is greater than or equal to the sum of claims (see Root update
considerations for further additional considerations). Thus, it is possible to publish a root where one user
can claim all of the contract's balances.

CS-SYMB-REW-001

Consider the following example:
1. Regular rewards are deposited into the contract (e.g. 1M USD in WETH).
2. An attacker fully registers a network.

3. The malicious network's middleware calls di stri buteRewards with anpunt=0 and
t oken=WETH.

4. The tree has only one leaf which is the leaf encoding of 1M USD in WETH with the attacker's
address.

5. The attacker claims rewards with the corresponding amount.

6. The rewards contract is drained.

Ultimately, the operator rewards can be stolen.

Code corrected:

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Deposited balances are now tracked and it is enforced that claims for a network can not exceed its
"deposits".

6.2 Potential Reverts Due to Strict Inequality

(Design {(EOZZTRY] Code Corrected

When rewards are claimed, the size of the hints must be equal to rewar dsToC ai m However,
rewar dsToCl ai mmay depend on the length of r ewar ds[t oken] . Ultimately, the dynamic nature of
the array length might lead to unnecessary reverts. Consider the following example:

CS-SYMB-REW-002

1. User A sees that rewards[token] == 1 and thus provides hints of length 1 (assume
maxRewar ds is higher). A transaction is sent.

2. Right after, a transaction arrives that pushes to the array increasing its size to 2.

3. User A's transaction arrives and reverts due to only one hint being provided.

Ultimately, executions might unnecessarily revert.

Code correct:

While reverts can still occur, there is now also the possibility to specify empty hints which can also
mitigate the issue.

6.3 Reentrant Tokens

(D (Low) (Version 1) SR

Reentrant tokens are expected to integrate with the system. However, reentrant tokens paired with
slightly exotic middleware may lead to fewer tokens being distributed than intended.

CS-SYMB-REW-003

Consider the following scenario and setup:

1. Assume the middleware supports the ERC777 before-transfer-hook which pulls funds from a pool
and pays a keeper with a small amount.

2. The middleware is used by a malicious keeper, Def aul t St aker Rewar ds. di stri but eRewar ds
is called and, ultimately, the keeper gains control over the execution. The intended amount by the
middleware would be X.

3. Then, the keeper calls cl ai mRewar ds (not reentrancy protected) to claim X- 1 rewards.

4. Ultimately, the balance difference to be distributed will be 1 instead of X.

Note that in very exotic setups such scenarios could occur. However, typically, such occurrences should
not be expected.

Code corrected:

Reentrancy protection has been introduced for other relevant functions.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.4 Incomplete Sanity Check in Initializer

[Informational] [Version 2]

The initializer of Def aul t St aker Rewar ds reverts as below

CS-SYMB-REW-010

if(

par ans. def aul t Adm nRol eHol der addr ess(0) par anms. adm nFee 0
par ans. adm nFeed ai nRol eHol der addr ess(0)
) A
revert M ssingRol es();
}

However, note that this does not cover the scenarios where

e adm nFee is zero and there is no fee claimer but there is a fee setter. Ultimately, fees could be set
but never could be claimed.

e adm nFee is zero and there is no fee setter but there is a claimer. Ultimately, the claimer role would
be meaningless.

Code corrected:

The code has been adjusted to revert in the scenarios mentioned above. Further, note that with
r enounceRol e it could be possible to get into the unwanted scenarios. However, that is expected to be
the responsibility of the roles.

6.5 Incomplete and Inaccurate NatSpec

(Informational] [Version 1]

The NatSpec is incomplete or potentially inaccurate in some cases. Below is a (potentially incomplete)
list of examples:

CS-SYMB-REW-005

1. The @lev of the event Di stri but eRewar ds describes that leaves of the Merkle tree must
represent an amount, a token and a claimable amount. However, leaves do not represent tokens.
Instead, each network-token pair has its own tree.

2.1 Def aul t Oper at or Rewar ds. r oot lacks a @ et ur n.

3. |1 Def aul t Oper at or Rewar ds. cl ai med lacks a @ et ur n.

4. | Def aul t St aker Rewar ds. i sNet wor kWi t el i st ed lacks a @ et ur n.
5.1 Def aul t St aker Rewar ds. ADM N_FEE_CLAI M ROLE lacks a @ et ur n.

6. 1 Def aul t St aker Rewar ds. NETWORK_VHI TELI ST_ROLE lacks a @ et ur n.
7.1 Def aul t St aker Rewar ds. ADM N _FEE SET ROLElacks a @ et ur n.

Code correct:

The NatSpec has been adjusted.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.6 Merkle Tree Leaf Best Practices

[Informational] [Version 1]

Note that best practices exist for defining Merkle trees. Namely, that is due to second preimage attack
possibilities if the attacker can control all of the 64 bytes of a 64-byte sized leaf. While that is not the case
for the tree used, it is nevertheless considered best practice to implement protective mechanism. For
further details, consider the following post.

CS-SYMB-REW-006

Code corrected:
Now, a double-keccak256 is done.

6.7 Defaul t Oper at or Rewar ds Contract Inherits
FromlInitializable

[Informational] [Version 1]

Def aul t Oper at or Rewards does not implement an initializer, thus modifiers from the
Initializabl e contract are never used. The call to _di sabl el nitializers() in the constructor
brings overhead that could be avoided.

CS-SYMB-REW-008

Code corrected:

The contract implements reentrancy locks as of version 2. Thus, I nitializabl e is now inherited
through the reentrancy guard library. However, it is required.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 15

https://www.rareskills.io/post/merkle-tree-second-preimage-attack
https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Event Emission When Setting adminFee
[Informational] [Version 2][]

CS-SYMB-REW-009

In the Def aul t St aker Rewar d contract, the event Set Adm nFee is emitted in the public function
set Adm nFee after the admin fee has been set via the private function _set Adm nFee. This does not
allow tracking the first time the admin fee is setini ni ti al i ze via the respective event.

Acknowledged:

Symbiotic stated that other initializers similarly do not emit (intentional) events. Thus, there is no event
emission for consistency reasons.

7.2 Reward Distribution Is Not Dustless

[Informational] [Version 1]

The reward distribution distributes rewards as follows

CS-SYMB-REW-007

ui nt 256 cl ai mredAnount I Vaul t (VAULT) . acti veSharesOf At (nsg. sender, reward.tinmestanp, activeSharesOFH nts[i])
.mul Di v(reward. anount, _activeSharesCache[reward.tinestanp]);

Note that the computation is not dustless. Consider the following scenario:

1. There are two users with Alice having 10**18 and Bob having 1 active shares at the given
timestamp.

2. The reward at the given timestamp is 10** 18.
3. The computation for Alice would return 99. . . 999.

4. The computation for Bob would return 0. Ultimately, dust could remain locked in the contract.

Risk Accepted:

Symbiotic accepted the risk.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Root Update Considerations

The Def aul t Oper at or Rewar ds receive a Merkle Tree root. To ensure correctness, the following
considerations should be made off-chain when updating the root.

1. A root update should imply that reward@oot _i <= reward@ oot _{i +1} since the leafs
encode the total rewards accrued which should never decrease. Otherwise, the computation
total C ai nabl e - cl ai ned_ may revert due to an underflow.

2. The sum of leafs should equal the sum of overall deposits. If the sum of amounts encoded in leafs
is less than the sum of overall deposits for a given network-token pair, some of the rewards
transferred in may remain unused. The opposite case, we described as part of issue Stealing
Operator Rewards.

3. The tree encoding should consider special tokens (e.g. fees on transfer) to ensure that the
encoding for a token is accurate.

8.2 Staker Reward Distribution Considerations

(D) (Version T

The staker rewards are tracked on a per token basis in an ever-growing array which users have to iterate
over. The middleware is trusted to not be malicious. However, given that it is undefined, we define some
properties that should hold for the middleware below:

1. The middleware should be permissioned. Namely, the middleware could spam many 1 wei rewards
for a token to discourage users from claiming real rewards. The vault owner should carefully
consider which networks to whitelist. Otherwise, rewards may be lost.

2. The middleware should not allow for unintentional spamming.

As of (Version 2) a networks middleware cannot affect the reward distribution of other networks. Thus,
another network cannot spam another one. Nevertheless, networks should ensure that the middleware
does not allow spamming rewards for their reward tokens.

I:$: Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Default Operator Reward
	2.2.2 Default Staker Rewards
	2.2.3 Changelog

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Unskippable Rewards

	6 Resolved Findings
	6.1 Stealing Operator Rewards
	6.2 Potential Reverts Due to Strict Inequality
	6.3 Reentrant Tokens
	6.4 Incomplete Sanity Check in Initializer
	6.5 Incomplete and Inaccurate NatSpec
	6.6 Merkle Tree Leaf Best Practices
	6.7 DefaultOperatorRewards Contract Inherits From Initializable

	7 Informational
	7.1 Event Emission When Setting adminFee
	7.2 Reward Distribution Is Not Dustless

	8 Notes
	8.1 Root Update Considerations
	8.2 Staker Reward Distribution Considerations

