

PUBLIC

Code Assessment

of the Default Rewards

Smart Contracts

April 07, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Open Findings 11

6 Resolved Findings 12

7 Informational 16

8 Notes 17

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Symbiotic with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Default Rewards according
to Scope to support you in forming an opinion on their security risks.

Symbiotic provides default contracts for standardizing the distribution of rewards to operators and
stakers.

The most critical subjects covered in our audit are asset solvency, function correctness and access
control. The general subjects covered are specification and trustworthiness.

The most notable issue uncovered is the possibility of Stealing Operator Rewards. The finding has been
addressed through code correction.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 3

• Code Corrected 2

• Risk Accepted 1

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Default Rewards repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 15 Jul
2024

35072e1ba48451e99a2e990c3acddc4b50463857 Initial Version

2 01 Aug
2024

d44b600ec423f8ba86347325fa32fd3d56738097 After Intermediate Report

3 15 Aug
2024

03e5d612926bc13297e350b6d455daabcdeb7fb9 Final Version

4 07 Apr
2025

4bff49b6cc5933f681f6cbd5b1a689125aef3b0e Staker Rewards v2

For the solidity smart contracts, the compiler version 0.8.25 was chosen.

The contracts listed below are in scope:

contracts:
 defaultOperatorRewards:
 DefaultOperatorRewards.sol
 DefaultOperatorRewardsFactory.sol
 defaultStakerRewards:
 DefaultStakerRewards.sol
 DefaultStakerRewardsFactory.sol
interfaces:
 defaultOperatorRewards:
 IDefaultOperatorRewards.sol
 IDefaultOperatorRewardsFactory.sol
 defaultStakerRewards:
 IDefaultStakerRewards.sol
 IDefaultStakerRewardsFactory.sol
 stakerRewards:
 IStakerRewards.sol

2.1.1 Excluded from scope
Generally, all contracts not listed above are out of scope. Further,

• all interacted-with external systems (e.g. security of tokens),

• the correctness of the core system,

• rebasing tokens and very obscure tokens,

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 5

https://github.com/symbioticfi/rewards/tree/35072e1ba48451e99a2e990c3acddc4b50463857
https://github.com/symbioticfi/rewards/tree/d44b600ec423f8ba86347325fa32fd3d56738097
https://github.com/symbioticfi/rewards/tree/03e5d612926bc13297e350b6d455daabcdeb7fb9
https://github.com/symbioticfi/rewards/tree/4bff49b6cc5933f681f6cbd5b1a689125aef3b0e
https://chainsecurity.com

• and off-chain computations

are out of scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Symbiotic implements contracts for distributing rewards to stakers and operators. Note that the usage of
these contracts is optional and may differ if other contracts are deployed. For details regarding the core,
please refer to our core audit.

2.2.1 Default Operator Reward
The DefaultOperatorRewards allow the networks' corresponding middleware to distribute rewards by
publishing a root of a Merkle tree with distributeRewards. That will pull the specified amount and
update the root. Then, operators may claim their rewards with claimRewards by specifying the amount
in the tree that is encoded with their address along with the proof. As a result, funds are transferred out.
Further, note that the recipient is the address receiving funds but not the eligible address. Note that a
leaf in the tree is encoded as the hash of a user eligible to claim encoded with the claimable amount.
Note that the claimable amount should be the sum of all rewards received so far. Also, see Root update
considerations.

The DefaultOperatorRewardsFactory allows deploying a minimal proxy pointing to the
DefaultOperatorRewards implementation in a standardized way. Note that the factory acts as a
Registry (see core audit) which allows querying for entities.

2.2.2 Default Staker Rewards
The DefaultStakerRewards are vault-specific. Namely, the networks' corresponding middleware can
distribute rewards to stakers of a vault with distributeRewards. Note that the distribution is based on
timestamps. More specifically, the middleware must provide the timestamp encoded in data. Then, the
amounts will be claimable according to the distribution of the shares at the given time.

Note that

• only whitelisted networks may distribute rewards (networks trusted by the vault owner)

• rewards can only be distributed retrospectively (due to the accounting)

• rewards can only be distributed if and only if shares and stake in the vault existed in the vault (due to
DoS vectors and meaningfulness)

All distributions are tracked per token in a list of distributions. The rewards can be claimed by stakers with
claimRewards which iterates through the list of reward distributions for a given token, starting from the
earliest (by push time) reward distribution and iterating up to the last reward. Note that a user can encode
a maximum number of iterations as part of data (maxRewards in code). Also, note that when a user
claims rewards, the activeSharesOfHints (hints provided for more efficient checkpointing queries)
should optimally be the size of maxRewards and that maxRewards should be less than or equal to the
number of rewards available to the user when sending the transaction (otherwise the transaction may
revert unnecessarily). Further, the recipient is the address receiving funds but not the eligible
address.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

The rewards are distributed based on the checkpointed active-shares accounting at a given timestamp.
Namely, they are distributed as follows (simplified version not considering precision):

rewardAmount * sharesuser, ti

totalSharesti

Note that admin fees, which can be set to up to 100% by ADMIN_FEE_SET_ROLE with setAdminFee,
are set aside for the staker rewards when rewards are distributed, and can be claimed by
ADMIN_FEE_CLAIM_ROLE with claimAdminFee. Further, networks can be whitelisted with
setNetworkWhitelistStatus by NETWORK_WHITELIST_ROLE.

Notably, the staker rewards include a version to standardize different implementation interfaces with
versions. The version of the implemented contract is 1.

The DefaultStakerRewardsFactory allows to permissionlessly deploy a minimal proxy pointing to
the DefaultStakerRewards implementation. Note that all roles are initially given to the specified
vault's owner.

See also Staker reward distribution considerations

2.2.3 Changelog
Notable changes in version 2 are:

• The reward distributions are now tracked per network-token pair.

• The whitelisting of networks has been removed as the accounting is done per network now (and not
aggregated in a shared array).

• The data parameter now encodes more data for distributeRewards and claimRewards
(additional hints and fee slippage protection for the first one, and the target network for the second
one).

As of version 4, the following DefaultStakerRewards version 2 is introduced. The main difference lies
within the data emitted in events.

2.3 Trust Model
The default operator rewards and its factory have the following roles defined:

• Middleware: The middleware is the address distributing the rewards. Generally, it is untrusted - no
middleware should affect other networks' distributions. However, given these boundaries, it is
trusted to behave as expected. Otherwise, funds may be unclaimable (or special tokens might
purposefully be designed to revert (or similar). However, with the constraint that other tokens should
not be affected). Thus, this relates also to the off-chain computations done.

• Middleware service: Trusted to honestly return the middleware of a given network.

• Users: Users are untrusted.

• Tokens: The contract will only work with normal tokens. Very exotic tokens might lead to reverts but
should not affect executions with other tokens. Note that blacklistable tokens may block the
interaction of users with the token contract (or the contract itself). Note that rebasing tokens are not
supported.

The default staker rewards and its factory have the following roles defined:

• Middleware: The middleware is the address distributing the rewards. Generally, it is untrusted - no
middleware should affect other networks' distributions. However, given these boundaries, it is
trusted to behave as expected. Otherwise, funds may be unclaimable (or special tokens might
purposefully be designed to revert (or similar). However, with the constraint that other tokens should
not be affected).

• Middleware service: Trusted to honestly return the middleware of a given network.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• Users: Users are untrusted.

• Vault: Expected to work correctly and honestly. Namely, the checkpointed accounting is assumed to
be correct and expected to not be modifiable.

• DEFAULT_ADMIN_ROLE: Trusted to assign the fee setter and claimer roles.

• ADMIN_FEE_SET_ROLE: Trusted to set reasonable fees.

• ADMIN_FEE_CLAIM_ROLE: Trusted to specify a proper recipient. However, claiming admin fees
should have no impact on the system.

• Tokens: The contract will only work with normal tokens. Very exotic (e.g. token that always reverts)
tokens might lead to reverts but should not affect executions with other tokens. Note that
blacklistable tokens may block the interaction of users with the token contract (or the contract itself).
Note that rebasing tokens are not supported.

Please also see Notes for further consideration.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Risk AcceptedUnskippable Rewards

5.1 Unskippable Rewards
Design Low Version 1 Risk Accepted

CS-SYMB-REW-004

While typically the networks integrating with a default staker contract are trusted, the networks might
collectively (but unintentionally) DoS a user from claiming a reward (or technically would make it
bothersome to claim rewards).

Consider the following scenario:

1. Rewards are published for a token 10000 times.

2. A staker joins the system.

3. A staker is eligible for a reward distribution.

4. The last claimable index is 0. However, his first interaction with the system has been just recently.
For most rewards, the staker is not eligible.

5. Nevertheless, the staker must iterate over all items in the array for the to-be-claimed token which
may inflict unnecessary gas costs.

Ultimately, users cannot skip large sets of reward distributions for which they might be ineligible for. That
might disincentivize users from claiming certain rewards.

Risk accepted:

Symbiotic accepts the risk. However, note that impact of the issue has been reduced by separating the
accounting of networks. Nevertheless, the scenario above can occur for regular networks.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedStealing Operator Rewards

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedPotential Reverts Due to Strict Inequality

• Code CorrectedReentrant Tokens

Informational Findings 4

• Code CorrectedIncomplete Sanity Check in Initializer

• Code CorrectedIncomplete and Inaccurate NatSpec

• Code CorrectedMerkle Tree Leaf Best Practices

• Code CorrectedDefaultOperatorRewards Contract Inherits From Initializable

6.1 Stealing Operator Rewards
Security Critical Version 1 Code Corrected

CS-SYMB-REW-001

Operator rewards can be stolen by malicious parties. Namely, there is no enforcement that the sum of
tokens transferred in by a network is greater than or equal to the sum of claims (see Root update
considerations for further additional considerations). Thus, it is possible to publish a root where one user
can claim all of the contract's balances.

Consider the following example:

1. Regular rewards are deposited into the contract (e.g. 1M USD in WETH).

2. An attacker fully registers a network.

3. The malicious network's middleware calls distributeRewards with amount=0 and
token=WETH.

4. The tree has only one leaf which is the leaf encoding of 1M USD in WETH with the attacker's
address.

5. The attacker claims rewards with the corresponding amount.

6. The rewards contract is drained.

Ultimately, the operator rewards can be stolen.

Code corrected:

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Deposited balances are now tracked and it is enforced that claims for a network can not exceed its
"deposits".

6.2 Potential Reverts Due to Strict Inequality
Design Low Version 1 Code Corrected

CS-SYMB-REW-002

When rewards are claimed, the size of the hints must be equal to rewardsToClaim. However,
rewardsToClaim may depend on the length of rewards[token]. Ultimately, the dynamic nature of
the array length might lead to unnecessary reverts. Consider the following example:

1. User A sees that rewards[token] == 1 and thus provides hints of length 1 (assume
maxRewards is higher). A transaction is sent.

2. Right after, a transaction arrives that pushes to the array increasing its size to 2.

3. User A's transaction arrives and reverts due to only one hint being provided.

Ultimately, executions might unnecessarily revert.

Code correct:

While reverts can still occur, there is now also the possibility to specify empty hints which can also
mitigate the issue.

6.3 Reentrant Tokens
Design Low Version 1 Code Corrected

CS-SYMB-REW-003

Reentrant tokens are expected to integrate with the system. However, reentrant tokens paired with
slightly exotic middleware may lead to fewer tokens being distributed than intended.

Consider the following scenario and setup:

1. Assume the middleware supports the ERC777 before-transfer-hook which pulls funds from a pool
and pays a keeper with a small amount.

2. The middleware is used by a malicious keeper, DefaultStakerRewards.distributeRewards
is called and, ultimately, the keeper gains control over the execution. The intended amount by the
middleware would be X.

3. Then, the keeper calls claimRewards (not reentrancy protected) to claim X-1 rewards.

4. Ultimately, the balance difference to be distributed will be 1 instead of X.

Note that in very exotic setups such scenarios could occur. However, typically, such occurrences should
not be expected.

Code corrected:

Reentrancy protection has been introduced for other relevant functions.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.4 Incomplete Sanity Check in Initializer
Informational Version 2 Code Corrected

CS-SYMB-REW-010

The initializer of DefaultStakerRewards reverts as below

if (
 params.defaultAdminRoleHolder == address(0) && params.adminFee != 0
 && params.adminFeeClaimRoleHolder == address(0)
) {
 revert MissingRoles();
}

However, note that this does not cover the scenarios where

• adminFee is zero and there is no fee claimer but there is a fee setter. Ultimately, fees could be set
but never could be claimed.

• adminFee is zero and there is no fee setter but there is a claimer. Ultimately, the claimer role would
be meaningless.

Code corrected:

The code has been adjusted to revert in the scenarios mentioned above. Further, note that with
renounceRole it could be possible to get into the unwanted scenarios. However, that is expected to be
the responsibility of the roles.

6.5 Incomplete and Inaccurate NatSpec
Informational Version 1 Code Corrected

CS-SYMB-REW-005

The NatSpec is incomplete or potentially inaccurate in some cases. Below is a (potentially incomplete)
list of examples:

1. The @dev of the event DistributeRewards describes that leaves of the Merkle tree must
represent an amount, a token and a claimable amount. However, leaves do not represent tokens.
Instead, each network-token pair has its own tree.

2. IDefaultOperatorRewards.root lacks a @return.

3. IDefaultOperatorRewards.claimed lacks a @return.

4. IDefaultStakerRewards.isNetworkWhitelisted lacks a @return.

5. IDefaultStakerRewards.ADMIN_FEE_CLAIM_ROLE lacks a @return.

6. IDefaultStakerRewards.NETWORK_WHITELIST_ROLE lacks a @return.

7. IDefaultStakerRewards.ADMIN_FEE_SET_ROLE lacks a @return.

Code correct:

The NatSpec has been adjusted.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.6 Merkle Tree Leaf Best Practices
Informational Version 1 Code Corrected

CS-SYMB-REW-006

Note that best practices exist for defining Merkle trees. Namely, that is due to second preimage attack
possibilities if the attacker can control all of the 64 bytes of a 64-byte sized leaf. While that is not the case
for the tree used, it is nevertheless considered best practice to implement protective mechanism. For
further details, consider the following post.

Code corrected:

Now, a double-keccak256 is done.

6.7 DefaultOperatorRewards Contract Inherits
From Initializable
Informational Version 1 Code Corrected

CS-SYMB-REW-008

DefaultOperatorRewards does not implement an initializer, thus modifiers from the
Initializable contract are never used. The call to _disableInitializers() in the constructor
brings overhead that could be avoided.

Code corrected:

The contract implements reentrancy locks as of version 2. Thus, Initializable is now inherited
through the reentrancy guard library. However, it is required.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 15

https://www.rareskills.io/post/merkle-tree-second-preimage-attack
https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Event Emission When Setting adminFee
Informational Version 2 Acknowledged

CS-SYMB-REW-009

In the DefaultStakerReward contract, the event SetAdminFee is emitted in the public function
setAdminFee after the admin fee has been set via the private function _setAdminFee. This does not
allow tracking the first time the admin fee is set in initialize via the respective event.

Acknowledged:

Symbiotic stated that other initializers similarly do not emit (intentional) events. Thus, there is no event
emission for consistency reasons.

7.2 Reward Distribution Is Not Dustless
Informational Version 1 Risk Accepted

CS-SYMB-REW-007

The reward distribution distributes rewards as follows

uint256 claimedAmount = IVault(VAULT).activeSharesOfAt(msg.sender, reward.timestamp, activeSharesOfHints[i])
.mulDiv(reward.amount, _activeSharesCache[reward.timestamp]);

Note that the computation is not dustless. Consider the following scenario:

1. There are two users with Alice having 10**18 and Bob having 1 active shares at the given
timestamp.

2. The reward at the given timestamp is 10**18.

3. The computation for Alice would return 99...999.

4. The computation for Bob would return 0. Ultimately, dust could remain locked in the contract.

Risk Accepted:

Symbiotic accepted the risk.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Root Update Considerations
Note Version 1

The DefaultOperatorRewards receive a Merkle Tree root. To ensure correctness, the following
considerations should be made off-chain when updating the root.

1. A root update should imply that reward@root_i <= reward@root_{i+1} since the leafs
encode the total rewards accrued which should never decrease. Otherwise, the computation
totalClaimable - claimed_ may revert due to an underflow.

2. The sum of leafs should equal the sum of overall deposits. If the sum of amounts encoded in leafs
is less than the sum of overall deposits for a given network-token pair, some of the rewards
transferred in may remain unused. The opposite case, we described as part of issue Stealing
Operator Rewards.

3. The tree encoding should consider special tokens (e.g. fees on transfer) to ensure that the
encoding for a token is accurate.

8.2 Staker Reward Distribution Considerations
Note Version 1

The staker rewards are tracked on a per token basis in an ever-growing array which users have to iterate
over. The middleware is trusted to not be malicious. However, given that it is undefined, we define some
properties that should hold for the middleware below:

1. The middleware should be permissioned. Namely, the middleware could spam many 1 wei rewards
for a token to discourage users from claiming real rewards. The vault owner should carefully
consider which networks to whitelist. Otherwise, rewards may be lost.

2. The middleware should not allow for unintentional spamming.

Version 2As of , a networks middleware cannot affect the reward distribution of other networks. Thus,
another network cannot spam another one. Nevertheless, networks should ensure that the middleware
does not allow spamming rewards for their reward tokens.

Symbiotic - Default Rewards - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Default Operator Reward
	2.2.2 Default Staker Rewards
	2.2.3 Changelog

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Unskippable Rewards

	6 Resolved Findings
	6.1 Stealing Operator Rewards
	6.2 Potential Reverts Due to Strict Inequality
	6.3 Reentrant Tokens
	6.4 Incomplete Sanity Check in Initializer
	6.5 Incomplete and Inaccurate NatSpec
	6.6 Merkle Tree Leaf Best Practices
	6.7 DefaultOperatorRewards Contract Inherits From Initializable

	7 Informational
	7.1 Event Emission When Setting adminFee
	7.2 Reward Distribution Is Not Dustless

	8 Notes
	8.1 Root Update Considerations
	8.2 Staker Reward Distribution Considerations

