

PUBLIC

Code Assessment

of the Symbiotic-Aera Adapter

Smart Contracts

September 6, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Informational 15

8 Notes 17

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Swell team,

Thank you for trusting us to help Swell with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Symbiotic-Aera Adapter
according to Scope to support you in forming an opinion on their security risks.

Swell implements Symbiotic-Aera Adapter, an adapter smart contract that allows the Aera treasury
management protocol to deposit funds in the Symbiotic restaking protocol. Swell intends to use this
within the scope of the swBTC project, to allocate WBTC to Symbiotic through a managed Aera vault.

The most critical subjects covered in our audit are frontrunning, effect of withdrawal delays, and jumps in
value because of slashings. Security regarding all the aforementioned subjects is high.

The general subjects covered are accounting of assets, and correct integration. Security regarding all the
aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Symbiotic-Aera Adapter repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 26 August 2024 0f35ead494e5549a9a6290811484f1971b67ac2b Initial Version

2 6 September 2024 f833241654d9f98d6d42c4b7c58f3134852473dc Second Version

For the solidity smart contracts, the compiler version 0.8.25 was chosen.

2.1.1 Included in scope
This report covers Swell Symbiotic-Aera Adapter, the following file is in scope:

• src/adapters/SymbioticAdapter.sol

The correctness of integrations with the Aera, Swell, and Symbiotic protocols has been evaluated
according to their specification, which was inferred from documentation and code.

2.1.2 Excluded from scope
External systems and libraries that Symbiotic-Aera Adapter interacts with are assumed to behave
correctly according to the specification.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Swell offers SymbioticAdapter, a smart contract that allows the Aera vault where Swell funds are
allocated to deposit and interact with the Symbiotic restaking protocol.

Swell implements a BTC liquid restaking token, that allows user to deposit WBTC (Wrapped Bitcoin), and
receive swBTC tokens whose value accrues through the allocation of the underlying WBTC in restaking
protocols for the purpose of securing third party networks. Depositors of WBTC into restaking protocols
earn the network rewards, and are liable to slashing in case operators misbehave. Swell manages the
allocation of user funds into several restaking vaults to maximize returns.

Users interact with the Swell protocol by depositing their funds (WBTC) into a tokenized vault, and they
become owners of shares of the vault. They can redeem their shares to get the initial amount back plus a
gain or loss, depending on the performance of the underlying restaking vaults. User funds are therefore
pooled together, and managed by Swell. Swell deposits user funds in an Aera vault. Aera is a "wealth

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

management" protocol, which implements managed vault, where whitelisted operators have capabilities
to manage the funds according to configurable strategies. One of these strategies consists in taking
funds from the Aera vault, and depositing them in a vault of the Symbiotic restaking protocol.

2.2.1 Symbiotic Vaults
The purpose of the SymbioticAdapter is to deposit staking tokens from an Aera vault to a Symbiotic vault,
and viceversa withdraw them. Symbiotic vault allows stakers to deposit tokens, which are used as
economic guarantee to secure arbitrary distributed networks. The staked tokens can be slashed, in case
the network operators misbehave. Slashing means that some of the balance of the Symbiotic vault is
sent to a Burner contract to be destroyed. In this way, depositors of Symbiotic can suffer some losses on
their position. The networks however also reward the token stakers. The rewards can be claimed in a
separate smart contract, the Symbiotic stakerRewards contract, where the depositor of Symbiotic can
claim to receive tokens to a specified address. In particular, rewards to not accrue automatically in the
Symbiotic vault, meaning that the Symbiotic vault share value can only decrease, as consequence of
slashings.

2.2.1.1 Deposits and Withdrawals
Deposits to the Symbiotic vault are requested through the deposit() function. The amount of shares
minted is returned as a value to the user. These shares are however non-transferable. Withdrawals from
the Symbiotic vault are more complex, as they require the user to wait a time delay. The essential
purpose of the time delay on withdrawal of restaking protocols is to ensure that slashings, which might be
processed with a delay with respect to the offending action that triggered them, cannot be evaded by
withdrawing before the slashing take effects. For this purpose Symbiotic uses the concept of epochs.
Epochs are consecutive time windows of equal length, which start at the initialization time of the vault.
During epoch T, a user wishing to deallocate their funds can request a withdrawal through function
withdraw() of the Symbiotic Vault. The withdrawal is added to the set of withdrawals of epoch T + 1,
and becomes claimable during epoch T + 2. If a user schedules multiple withdraws for the same epoch,
the withdrawals accumulate together as a single one. While withdrawals are scheduled but not claimable,
the amounts requested are still slashable. This means that when the user finally claims the withdraw after
epoch T + 1 with function claim(), the amount received could be less than the withdraw() amount
because of slashings. The claim() function takes as argument the epoch at which the withdrawal was
scheduled. The claiming user needs therefore to keep track of the epochs in which their withdrawals
have been scheduled. The time required for a withdrawal to become claimable is between 1 epoch
duration (if the withdrawal is requested at the end of an epoch), and 2 epoch durations (if the withdrawal
is requested right at the start of an epoch).

2.2.1.2 User balances in Symbiotic
Symbiotic Vaults expose the functions balanceOf(), activeBalanceOf(), and withdrawalsOf()
to query different concepts of balances of users. activeBalanceOf() returns the amount currently
staked by a user, that is the amount that has been deposited by a user, which has not been yet
requested for withdrawal, minus slashing penalties. withdrawalsOf() takes as arguments the user
address and a given epoch index, and returns the amount requested for withdrawal by that user for that
epoch (reminder that at epoch T, users can request withdrawals indexed with epoch T + 1, which
become claimable at T + 2). balanceOf() returns the slashable balance of a Symbiotic staker, which
means the current active balance (stake), plus the unclaimable withdrawals, that is withdrawals with
indexes T and T + 1. Claimable withdrawals, which are not affected by new slashings, can be queried
manually by knowing their epoch index, through function withdrawalsOf(). To calculate the full
balance of a user within a Symbiotic vault, the active balance (activeBalanceOf()) must be added to
all the unclaimed withdrawals (claimable and unclaimable). Symbiotic does not expose a method to
perform this calculation. The main purpose of the Swell Symbiotic - Aera adapter is to allow the
calculation of this value, for the purpose of correct accounting of the value under management in the
Aera vault.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2.2 Swell shares pricing
For the purpose of minting shares to depositing users of Swell, the Swell vault (Yearn v3 fork) has to
estimate the total value of the assets it controls. The Aera vault is queried by the Swell vault regarding
the value it is currently managing. The Aera vault calculates the value as the sum over whitelisted assets
of asset.balanceOf(vault) * asset.price (not verbatim). In the case of a Symbiotic vault, as
we mentioned, balanceOf() returns only the slashable balance, while the claimable withdrawals are
not accounted. The purpose of SymbioticAdapter is to wrap around the Symbiotic Vault so that claimable
rewards are also accounted for.

2.2.3 SymbioticAdapter
Swell introduces SymbioticAdapter as an adapter through which an Aera vault can interact with a
Symbiotic vault. An instance of SymbioticAdapter is controlled by a single Aera vault, which can call its
methods deposit(), withdraw(), and claim(). The main purpose of the adapter is to implement the
method balanceOf(), such that it accounts for the whole value that the Aera vault holds in the
Symbiotic vault, and not only its active stake. For this purpose, SymbioticAdapter keeps track of all
currently open withdrawal requests, in an array, and computes its own balance as the sum of the active
balance it holds in the Symbiotic vault (activeBalanceOf()), and the sum of the amounts it holds in
unclaimed withdrawal requests in the Symbiotic vaults (withdrawalsOf()).

The deposit() function of SymbioticAdapter simply forwards a deposit from Aera to Symbiotic. The
function withdraw() does some extra work, which consists in recording the withdrawal epoch in the
withdrawalEpochs list (if it is not already present). Up to MAX_WITHDRAWAL elements can be added to
the withdrawalEpochs list, or the call to withdraw() will revert. In case the list is full, the Aera vault
operator has to claim some withdrawals to free space in the list.

The withdrawals list withdrawalEpochs is used again in the claim() function, which accepts as
parameter an epoch number. The claim() function forwards the claim to Symbiotic, and then removes
the epoch number from the withdrawalEpochs list. By removing it from the list, its amount is no longer
used when calculating SymbioticAdapter.balanceOf(). Methods claimBatch() and
claimAll() allow to respectively claim withdrawals for multiple epochs in a single call, or claiming all
the withdrawals for the claimable epochs recorded in withdrawalEpochs, by forwarding the calls to
Symbiotic's claimBatch(). Like for claim(), the epochs which have been claimed are removed from
the withdrawalEpochs list.

Rewards can be claimed by the Aera vault by calling the claimRewards() function of
SymbioticAdapter, which forwards the request to the specified stakerRewards contract. The contract to
which the request is forwarded has to be whitelisted through function
toggleStakerRewardWhitelist().

Some other administrative functions are present in the contract:

• setAeraVault() allows the Aera vault of the adapter to renounce its role and set a new vault
Aera that will be capable of administrating the adapter.

• setMaxWithdrawal() allows the Aera vault to set the maximum size of the
withdrawalEpochs array.

• execute() allows the adapter owner (distinct from the Aera vault) to perform arbitrary external
calls.

2.2.4 Trust model and roles
Symbiotic-Aera Adapter uses OpenZeppelin's AccessControl module to implement roles, which grant
access to privileged functions through the onlyRole() modifier. Two roles are defined in
Symbiotic-Aera Adapter: OWNER and VAULT_ROLE.

The collateral token can be a token with fees or a token implementing callbacks to the sender or the
receiver, rebasing tokens however are not supported.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

VAULT_ROLE has access to the deposit(), withdraw(), and claim*() functions. VAULT_ROLE is
fully trusted and expected to behave correctly. A single address with VAULT_ROLE is ever present at any
time. This address is the same as the value of the aeraVault state variable.

OWNER has access to the execute() function. OWNER is fully trusted and expected to behave correctly.
OWNER can specify another OWNER through the grantRole() function. There can be multiple `OWNER at
a time.

The SymbioticAdapter contract is expected to be deployed as an upgradeable proxy. The owner of the
proxy is fully trusted.

Version 2 fixes issues and allows claim() to claim for an epoch that is not in the memorized
withdrawalEpochs list, allowing for donations to the vault.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedSlashing Penalties Avoidance

Informational Findings 2

• Code CorrectedMissing Events

• Code CorrectedZero Address Will Lead to a Self DoS

6.1 Slashing Penalties Avoidance
Design Low Version 1 Code Corrected

CS-SWELL-SAA-001

A user can try to avoid slashing penalties by withdrawing just before the penalty is applied and
redepositing afterwards.

This is possible for a user if the withdrawal delay enforced on the Swell's vault is less than the time it
takes for the slashing penalty to be applied. In this case a user just needs to start the withdrawal process
from the Swell vault as soon as they anticipate a slashing, and then redeposit after the penalty is applied.
The configuration of Swell's withdrawal delay needs therefore to be adapted to the duration of a
Symbiotic epoch.

Another possibility for a malicious user that wishes to avoid a slashing penalty is to constantly keep an
open withdrawal request. The current configuration of swBTC is 3 days for withdrawal delay and 3000
days for completion delay. A user can choose to start a withdrawal, and then wait before claiming the
withdrawal. If a slashing happens during the 3000 days of the completion delay, the user can just
withdraw before the slashing event is applied (frontrun it) and redeposit afterwards. This gives
probabilistically a high () chance of avoiding serious slashings. This is described in the schema
below. Since a user is always getting the worst price between the price at the time the withdrawal is
started and the time of completion when withdrawing, he will withdraw at the price when the withdrawals
request was made, missing the reward for time between the withdrawal is initiated and claimed. The
claiming price is the green-dotted line on the schema. During that time the share price (in blue) will slowly
increase thanks to rewards. Now if a slashing event happens during the completion window, the user will
be able to withdraw at the price of the green dot line and not suffer from the difference between the green
dot line and price after the slashing event. The user can then redeposit at a lower share price after the
slashing event, get more shares than before, and restart the process. If no substantial slashing occurs,
the user can simply cancel the withdrawal reward, and initiate a new one with a share price that includes
the rewards.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

Code corrected:

The issue was fixed by changing the mechanism of DelayedWithdraw. In the new version, a user
cannot modify or cancel a withdrawal request and the time to complete this withdrawal is unlimited.
Thanks to this change, a user cannot use the previously described strategy to avoid slashing penalties.
This file is out of scope for this report, please find the corresponding report here.

6.2 Missing Events
Informational Version 1 Code Corrected

CS-SWELL-SAA-003

SymbioticAdapter.initialize is not emitting an AeraVaultSet event. The initial aeraVault
value therefore cannot be deduced by events only. Note that this event could be improved by also
including the old area vault.

The same remark applies also to MaxWithdrawalUpdated.

Code corrected:

The two events have been added to SymbioticAdapter.initialize.

6.3 Zero Address Will Lead to a Self DoS
Informational Version 1 Code Corrected

CS-SWELL-SAA-007

SymbioticAdapter.initialize does not sanitize the _aeraVault address, which can be set to
zero. This will lead to a self DoS, as the contract has no way to set the address to a valid value without
upgrading the contract. Without a valid address the purpose of the contract is not fulfilled.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 13

https://www.chainsecurity.com/security-audit/swbtc-smart-contracts
https://chainsecurity.com

Code corrected:

A check has been added to ensure that the address is not zero.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Natspec Issues
Informational Version 1 Code Partially Corrected

CS-SWELL-SAA-004

Some issues that have been identified in the natspec specification of SymbioticAdapter:

name and symbol are under the Mutable state variables natspec category, but they are not
mutable.

MAX_WITHDRAWAL is under Constants natspec category but has a setter. The naming style in all caps
is also unsuited for a mutable variable. Also note that the variable name is misleading as it doesn't
represent the maximal withdrawal amount but the number of ongoing withdrawals (plural).

The natspec of getWithdrawalEpochs suffers from a typo.

Code partially corrected:

• name and symbol are now under the correct natspec category.

• MAX_WITHDRAWAL has also been moved but still has the same naming issue.

• The typo in getWithdrawalEpochs has been fixed.

7.2 Optimizations
Informational Version 1

CS-SWELL-SAA-005

Some possible gas and fee optimizations have been identified in the code. The following list provides an
overview of the optimizations that could be implemented:

1. SymbioticAdapter._findEpochIndex could be optimized by removing the curEpoch
variable.

2. SymbioticAdapter.deposit is not fee efficient to use if the token has a transfer fee because
two transfers are performed, each one deducting the fee. In general, it also cost more gas than a
direct transfer.

3. In SymbioticAdapter, the role VAULT_ROLE can be removed and the
onlyRole(VAULT_ROLE) can be simplified, since only address with VAULT_ROLE is guaranteed
to be value of the aeraVault variable.

4. SymbioticAdapter.claim always need to iterate over the array. This can be avoided by letting
the user select an index instead of an epoch.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7.3 The Minimal Value of MAX_WITHDRAWAL Is Too
Restrictive
Informational Version 1

CS-SWELL-SAA-006

The minimal value of MAX_WITHDRAWAL is enforced to be 1, but this can be too restrictive for an effective
use of the adapter.

Indeed, if MAX_WITHDRAWAL is set to 1, it will only allow to vault to have one withdrawal at a time
forbidding the vault to request withdrawals at each epoch, because once every two epochs, the
withdrawalEpochs list will be full, but the withdrawal will not yet be claimable. MAX_WITHDRAWL == 1
only allows one claim every two epochs at most.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Privileged Roles Capabilities
Note Version 1

Privileged roles of the system, namely the OWNER and the VAULT_ROLE roles can perform actions that
can harm the system.

More specifically, the OWNER role has access to the execute() function of Symbiotic-Aera Adapter,
which allows them to perform any action on the Symbiotic vault. In particular, beside malicious actions,
they should be aware that interacting directly with the Symbiotic vault withdraw() and claim() can
invalidate the correctness of the withdrawalEpochs list, and the adapter will report an incorrect
balanceOf() as consequence.

8.2 Unfair Rewards
Note Version 1

Users and administrators of the system should be aware that the distribution of the rewards might be
unfair. In fact, a depositor that enters the Swell vault just before Symbiotic rewards are claimed, will
receive a part of the rewards of users that have been providing liquidity for the entire rewarded period.
The unfairness is reduced when the rewards are claimed frequently and consecutive claims have similar
value.

Swell - Symbiotic-Aera Adapter - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Included in scope
	2.1.2 Excluded from scope

	2.2 System Overview
	2.2.1 Symbiotic Vaults
	2.2.1.1 Deposits and Withdrawals
	2.2.1.2 User balances in Symbiotic

	2.2.2 Swell shares pricing
	2.2.3 SymbioticAdapter
	2.2.4 Trust model and roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Slashing Penalties Avoidance
	6.2 Missing Events
	6.3 Zero Address Will Lead to a Self DoS

	7 Informational
	7.1 Natspec Issues
	7.2 Optimizations
	7.3 The Minimal Value of MAX_WITHDRAWAL Is Too Restrictive

	8 Notes
	8.1 Privileged Roles Capabilities
	8.2 Unfair Rewards

