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1 Executive Summary

Dear Sway Team,

Thank you for trusting us to help you with this limited code review. Our executive summary provides an
overview of subjects covered in our review of the latest version of Sway Optimizations according to the
Scope.

Limited code reviews are best-effort checks and do not provide assurance comparable to a non-limited
code assessment. This review was not conducted as an exhaustive search for bugs, but rather as a best
effort sanity check. Given the large scope and codebase and the limited time, the findings are not
exhaustive.

Fuel implements various optimization passes for the IR. These aim to facilitate the bytecode generation
that follows in the later steps of the compilation, as well as to improve the overall efficiency of the
compiled program, both in terms of size and execution cost.

During the review we were able to uncover a medium severity issue regarding function deduplication.
More specifically, functions that are not functionally identical could be assumed as such. As a result, calls
to some of them would be replaced with calls to another one.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity
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1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

i Acknowledged
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2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The review consisted of a non-exhaustive general review of the following IR optimizations under
sway-ir/src/optinizel:

seconstants.rs

edce.rs

einline.rs

ofn_dedup.rs

esinmplify_cfg.rs

earg _denotion.rs

eret_denotion.rs

econst _denotion.rs

*menkreg.rs

This review was not conducted as an exhaustive search for bugs, but rather as a best-effort sanity check.

The table below indicates the code versions relevant to this report and when they were received.

V | Date Commit Hash Note

1 | 6 May 2024 8d50370814h62cff5412c6ca896efb731da49193 Initial Version

2 | 13 May 2024 | 8c999fa2520a7ee49e270d6469647d814ebcl1347 | Print IR optimizations
3 | 24 June 2024 | e77855811978811ca3a74839a6798a62bdfadd82 | Division by O fix

4 | 24 June 2024 | 36b6b010eb2ab2318c5d4d17ffc3df3e593fe60b Fndedup fix

2.1.1 Excluded from scope

All other files and imports that were not mentioned in Scope. Moreover, bugs related to the Rust compiler
itself are considered out-of-scope.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Fuel offers the optimizations on Sway's intermediate representation (IR). Sway is a programming
language that targets the FuelVM. The compilation process can be split into the following steps:
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1. Source Code: A set of scripts/predicates/libraries/contracts written in Sway and organized in
modules.

2. Lexical Analysis: The source code is split into tokens.

3. Syntax Analysis: The tokens are assembled in a concrete syntax tree which is then converted
to an abstract syntax tree (AST).

4. Semantic Analysis: Various checks on the AST for semantic errors e.g., type checking.
5. Intermediate Representation: The syntax tree is compiled into IR.

6. IR Optimizations: The IR is transformed in various ways to facilitate code generation and
improve the efficiency of the final bytecode.

7. Code generation: FuelVM bytecode is produced.

8. Deployment & Execution

2.2.1 The Sway IR

The Sway IR is a representation of the source code in a single static assignment form (SSA), meaning
that every variable is assigned at most once. The Sway IR defines a number of functions. Each function
accepts a set of arguments, defines a set of local variables, and consists of multiple blocks. Each block
accepts a set of arguments and defines a set of instructions which are executed sequentially. At the end
of each block, there's a terminator instruction which guides the execution to the next block. A terminator
can be a simple branch instruction (unconditional jump), a conditional jump, a return instruction, a revert
instruction, or a memory jump (used for FuelVM's equivalent for delegate calls). Data can flow through
different blocks via the block arguments (see example later). Most instructions produce a typed value that
is assigned to an intermediate variable, exceptions are the terminators and the storage operations.

Here, we present a very simple script example of a Sway source code and its IR representation. The
script consists of two functions. The mai n function accepts two arguments and the max function returns
the maximum of its two arguments.

A Sway script example:
script;

fn main(a: u64, b: u64)({
let c max(a, b);

}
fn max(l: u64, r: u6d) -> u6b4d {
if I r{
I
} else {
r
}
}

An example of the produced IR:

fn main(a: u64, b: u64) -> () {
| ocal u64 c

entry(a: u64, b: u6d):
vO call max(a, b)

vl get local ptr u64, c
store vO to vl
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V2 const unit ()
ret () v2

fn max(l: u64, r: u64) -> ub4d {
entry(l: u64, r: u64):
vO cmp gt | r
cbr vO, blockO(), blockl()

bl ockO():
br bl ock2(l)

bl ock1():
br bl ock2(r)

bl ock2(v1l: u64):
ret ue4 vi

}

Examining the max function in the IR of the script, we note that the execution begins from the entry()
block. The arguments | and r are compared and the result is assigned to vO. If vO == true then the
execution continues in bl ock0() from where we simply jump to bl ock2 passing | as the argument.
Then the argument of the block is returned.

mai n defines a local variable c. c is assigned the result of max() which is stored in vO intermediate
variable. To do so we first get a pointer to ¢ via get _| ocal instruction which is stored in v1 and then
store the content of vO to v1 by callingstore vO to vl1.

The IR goes through multiple passes. Each optimization transforms the IR and passes it on to the next
one. In the following section, we describe the algorithm of each optimization in scope.

2.2.2 Inline

The i nl i ne pass replaces function calls with the bodies of the functions being called. In the current
implementation of the algorithm, a function is inlined if either of the following criteria holds:

1. The size of a function is less than 4 instructions.

2. The function is called only once.

During inlining the block containing the function call is split into two blocks at the point of the call. In the
first block, the call is replaced by instructions of the first block of the inlined function. Each return
instruction of the function is replaced by an unconditional jump to the second block. Since caller and
callee might define local variables with the same name, these should be renamed to avoid conflicts.

2.2.3 Function Deduplication

The f n- dedup pass aims to detect functions that are functionally identical. To do so, it calculates the
hash of all the functions. For the hashing to be meaningful, the globally-unique ids of values and blocks
are replaced with localised ones, so that equality detection is not hindered by, say, two identical
instructions having a different global id. The types of the various values are also hashed.

Functions are divided into equivalence classes based on their hash. All the calls to a (duplicated) function
are then replaced with calls to a chosen representative for its equivalence class, so that the others can
later be pruned out.
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2.2.4 Dead Code Elimination (DCE)

The dce pass removes the instructions and the local variables that are never used. An instruction that is
never used can be eliminated in either of the two cases:

1. The instruction is not a terminator and it has no side effects (e.g., changes the state of the
blockchain or writes to memory)

2. The instruction is a removable store i.e., a store to a local variable or an argument that's never
used. The algorithm is very conservative in determining what symbols are never used. For that,
it takes into account the escaped symbols analysis e.g., symbols that could be used in function
calls or whether raw pointers and referencing are used.

Note that as soon as we delete an instruction, its operands are likely to not be used somewhere else
therefore they should be eliminated as well. The algorithm loops until a fixed point is reached.

2.2.5 Function Dead Code Elimination (FN-DCE)

During the f n- dce pass, internal functions that are never called are removed. Note that no other change
is needed for the remaining code. The called functions are determined by a DFS starting from the
possible entry functions of the module.

2.2.6 Simplify-CFG

The simplification of the control flow graph (CFG) consists of multiple different steps:

1. First dead block removal: The blocks of each function are traversed in a DFS fashion starting
from the entry block. The blocks that were never accessed are removed. The successors of the
removed blocks update their predecessors list.

2. Block merging: If the terminator of a block is an unconditional branch and its successor has
only one predecessor then the two blocks are merged into one. The successors of the latter
block are updated.

3. Empty block unlinking: an empty block that accepts no arguments and has an unconditional
branch terminator is unlinked from the CFG.

4. Second dead block removal: repeat of the first step

2.2.7 Constant demotion

Some IR types are classified as "demotable”, based on the target underlying platform: for the Fuel VM
target, these are all the elementary types that are too wide to fit in the 64-bit registers (e.g U256), plus all
the complex types (e.g. structs) regardless of their size.

The const - denot i on pass takes every constant of a demotable type, and replaces every occurrence
of it with a new, unique, and immutable local variable, initialized to that constant.

2.2.8 Argument demotion

The ar g- denot i on pass acts on function parameters of demotable types: it modifies the function so
that the parameter is passed by reference, rather than by value.

To achieve this, the function signature needs to be modified, so that the parameter in question becomes
of pointer type (arg: T becomes arg: &T).

Then, in the function body, a | oad(arg) instruction is prepended at the beginning, and its result
replaces every usage of the old by-value argument. In high-level language terms, this corresponds to
substituting ar g with *ar g.
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Lastly, every caller needs to be updated. At every call site, the concrete argument value is stored in a
new, ad-hoc local variable. Then, the pointer to that variable is passed to the function, instead of the
original argument.

Notice that this optimization does not reduce the overall memory footprint: the argument value is still
copied onto memory once per call (in the callee's stack frame, before the pass, in the caller's local
variable, after the pass). Instead, the purpose is to exclusively have function parameters that fit in a
register, so as to ease the work of the code-generation algorithms further down the line (e.g. register
allocation).

2.2.9 Return-value demotion

The r et - denot i on pass complements the previous one by demoting the return value of a function if
the type allows it.

The function signature is modified so as to accept an additional parameter, whose type is a pointer to the
return type. The return type is likewise modified to become a pointer. The storage for the return value is
provided by a new ad-hoc local variable in the caller: the additional parameter is a pointer to that variable
and is returned as-is by the function.

The function body is updated to simply st or e the final return value (at every return site) into the provided
pointer argument, and to return the same pointer.

At every call site, the ad-hoc local variable is created, and a pointer to it is passed to the function. After
the call, al oad(ret _val) instruction is appended, and its result replaces every usage of the old return
value. In high-level language terms, this corresponds to substituting r et _val with*ret val .

Again, this optimization is not aimed at slimming down the total memory requirements, but at making
function signatures deal exclusively with register types.

2.2.10 Constant Folding

The const - f ol di ng pass eliminates operations whose result can be determined during compilation
time. The optimization consists of a loop that terminates when a fixed point is reached. The loop consists
of the following steps:

1. redundant comparison substitution e.g., the comparison cnp gt 1 O is replaced with the
constantt r ue.

2. redundant condition-branching substitution e.g., cbr true bl ockl() bl ock2() is replace
with the br bl ock1().

3. redundant binary operation substitution e.g., add 1 0 is replaced with the constant 1.

4. redundant unary operation substitution e.g., not tr ue is replaced with the constant f al se.

2.2.11 Memory to SSA Registers

This pass acts on functions' local variables that are of a type that fits in FuelVM's 64-bit registers, and
that are only read and written directly, without any pointer arithmetic (that is, only used in | oad and
st or e instructions). The men2r eg pass "promotes" these variables to SSA registers: this concretely
means that every time some value is stored to the variable, this value replaces every subsequent | oad
of the variable, until the next st or e. The purpose of this optimisation is to let the register allocation
algorithm, used in the following steps of the compilation, better decide when the variable should be held
in memory and when in the machine registers.
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3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.
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4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.
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5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

« Instruction Side Effects Not Thoroughly Considered ()

5.1 Instruction Side Effects Not Thoroughly
Considered

D (Low) (Version 1) )

The dce pass relies on the function may_have_si de_effects() to detect whether an unused
instruction can be pruned out. However, the function does not consider that instructions like arithmetic
operations may set some reserved registers (like $of for overflow), that may later be used, even though
the result of the instruction itself is not. This can result in incorrectly pruning out instructions.

CS-FVS0-001

Acknowledged:
Fuel replied:

We do consider that arithmetic operations do not have side effects and that overflows will cause
reverts. It is not the case for u64 so still some work to do here. We consider all invalid arithmetic
operations Undefined Behavior at this time.
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6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 1

* FuelVM Instruction Variant Not Hashed

(Low)-Severity Findings 1
ty g
+ Modulo Zero Uncaught in Constant Folding

6.1 FuelVM Instruction Variant Not Hashed
I (Miedium) (Version 1) (XY

The f n- dedup optimisation pass does not accumulate the instruction variant into the current hash, when
it encounters a FuelVM instruction. This means, for example, that if two functions are identical except for
one instruction (being st at e_| oad_quad_wor d in one function, and st at e_st or e_quad_wor d in the
other), they will be incorrectly de-duplicated by this optimisation, and one of the two will be eventually
eliminated altogether by dead code elimination.

CS-FVS0-004

Code corrected:

A discriminant has been added before the hashing of each instruction and each particular FuelVM
instruction.

6.2 Modulo Zero Uncaught in Constant Folding
D (Low) (Version 1) CIIITIETD)

The const - f ol di ng optimisation pass aims at simplifying some instructions whose operands are all
constants, by replacing them with the constant result.

When a modulo instruction is encountered that can be "folded" in this way, the expression is directly
evaluated, without checking for the RHS to be non-zero. This causes a panic in the compiler, if a Sway
program contains code like the following:

CS-FVS0-003

et a 3 0;

Note that in the current version of the compiler, the optimization will only be triggered when the
--rel ease flag is used.
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Code corrected:

A check on the denominator has been added to prevent divisions by 0.
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7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Constant Demotion Generates Duplicate

Variables
(Informational] [Version 1]

CS-FVS0-002

The const - denoti on pass generates a new local variable for each usage of each constant (of a
demotable type). This creates several duplicates of the same variable, if the same constant is used
several times.

However, only the last of these duplicates ends up replacing all the usages of the constant. This is due to
the source code line

repl ace nmap.insert(c_val, |oad val);

which repeatedly overwrites the same entry c_val with always-different | oad_val Values.
Therefore, the extra variables are effectively unused, and will be pruned by a subsequent DCE pass.
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8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Impact of ABI Encoding V1

Compiling a simple smart contract with ABI encoding v1, seems to lead to a large overhead, in terms of
bytecode size and execution gas cost, compared to vO, around 5x-8Xx.

8.2 Insufficient Domain Separation in the Hashing
Algorithm

The function-hashing algorithm used in the f n- dedup pass does not properly separate the different
components that make up the function to be hashed (e.g. blocks, variables, instructions); instead, every
component is represented as a sequence of integers and then sequentially accumulated into a "global”
hash.

This approach has a high likelihood of producing unintended collisions, in case the "second half" of a
component's serialization can be equivalently interpreted as the "first half" of the serialization of the
following component, or if two different components have the same serialization.

This latter case applies, for example, to localized block ids and value ids, both being progressive and
independent integer identifiers: a given integer, accumulated into the hash, could therefore be either a
block id or a value id. Another id, that is implicitly progressive and independent of the previous two, and
therefore suffers from the same potential collision risk, is Rust's discriminant of an enum value: when
encountering a FuelVM-type instruction, its discriminant is added to the global hash, so as to distinguish
between the possible variants.
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