PUBLIC

Code Assessment

of the Swaap Core V1

Smart Contracts

May 10, 2022

Produced for

by

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

o N o o~ W N PP

Notes

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG

10
11
12
13
21

https://chainsecurity.com

1 Executive Summary

Dear Swaap.finance,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Swaap Core V1 according to
Scope to support you in forming an opinion on their security risks.

Swaap Labs implements an automated market maker protocol, with the intention to eliminate the losses
of the liquidity providers, while enabling them to collect the fees from trades. This is achieved by dynamic
weighting of the underlying tokens and stochastic spread mechanism.

During the review, no critical issues were uncovered. All the uncovered issues have been mitigated or
fixed.

The most critical subjects covered in our audit are resistance to assets siphon attacks, stochastic process
simulation precision and integration with external systems. Security regarding all the aforementioned
subjects is high.

The general subjects covered are trust model, functional correctness and specification quality. All the
aforementioned subjects were of sufficient quality.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

(¥ Specification Changed

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the following source code files inside the Swaap Core V1 repository:
based on the documentation files.

einterfaces/| Aggregat or V3. sol
einterfaces/| ERC20. sol

estructs/ Struct. sol

e Const . sol

e Factory. sol

e Geonet ri cBrowni anMot i onOr acl e. sol
e LogExpMat h. sol (comes from Balancer v2)
e Mat h. sol

*M grations. sol

*Num sol (only "bdivint256" function)

* Pool . sol

* Pool Token. sol

The table below indicates the code versions relevant to this report and when they were received.

Date Commit Hash Note
\%
1 | February 7 2022 72bb2elcae7710db7f29660ec4a0b20abd5c02c5 Initial Version
2 | April 21 2022 270d192flad51baeaadf503d91f55f94a682af52 Version with fixes
3 | April 27 2022 al19172410188513f588c48bff4055bf777ed11e2 Version with fixes
4 | May 10 2022 ee3c5e8bb0efffeb14af38183a395cae3ba022fc Version with fixes

For the solidity smart contracts, the compiler version 0. 8. 12 was chosen.

2.1.1 Excluded from scope

All functions from the Num sol file are excluded from the scope, except the bdi vl nt 256 function.

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The Swaap Core V1 is an automated market maker, that functions as a self-balancing weighted portfolio,
based on Balancer Pool implementation. The novelty of the Swaap Core V1 is a way it dynamically
mitigates the impermanent loss of the liquidity providers. First, the weight of the tokens in the pool can be
changed dynamically, based on the performance of the asset. Secondly, the geometric Brownian motion
(GBM) method is used to simulate the asset prices at a certain time horizon during each trade, and the
trade price might be adjusted to cover the potential losses of the liquidity providers. These 2 solutions are
intended to provide low fee exchanges, while preventing the LPs losses.

3.1 Contracts
3.1.1 Pool . sol

This is the contract, where the main functionality of the system lives. It allows LPs to join and exit pools,
by providing the assets for the pool. By utilizing the provided liquidity, users can perform swaps via
swapExact Anount | nMvMfunction. The Controller is a privileged role inside this contract. The holder of
this role can:

» Set swap fees

« Bind and unbind tokens from the pool

» Set GBM horizon and lookback (rounds and seconds) parameters
» Make the Pool public

» Make the pool final

* Assign new Controller

Once pool is final, the fees and lookback params cannot be changed. Tokens cannot be added or
removed. The LPs can join and exit pool only if pool is final.

The Exit fee of the pool is constant, and cannot be changed.

3.1.1.1 Detailed Pool overview

Main roles in the pool contract are: controller, traders and liquidity providers (LPs). The role holders can
perform certain actions on the pool:

« controller:

* set SwapFee: update the swapFee within the [0. 0001% 10% range. Its default value is
0. 025% The pool must not be fi nal i zed.

eset Controll er: current control | er can give the control to another address. The new
control | er cannot be addr ess(0) .

* set Publ i cSwap: allow/disallow token swaps before the pool is fi nal i zed. The pool must
not be final i zed.

finalize:set finalized totrue and allow token swaps. The pool must not be fi nal i zed.

* set Dynam cCover ageFeesZ: set the coverage value z for the computation of the spread
factor within the [0, 4] range, which correspondsto [0.5, > 0.99998) in the cumulative
range for a normally distributed random variable. Its default value is 0. 6 (around 0. 8 in the
cumulative). The pool must not be fi nal i zed. User should be aware that z represents only
the inverse of erf (2p-1) and not the inverse of PHI (p), the sqrt(2) factor is already
included in the implemented formula.

* set Dynam cCover ageFeesHor i zon: set the time horizon for the price prediction within the
[1*BONE, 86400* BONE (24h)] range. Its default value is 300* BONE (5mi n). The pool
must not be fi nal i zed.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

esetPriceStatisticsLookbackl nRound: set | ookbackl nRound parameter within the [1,
100] range. The pool must not be fi nal i zed.

esetPriceStatisticsLookbackl nSec: set | ookbackl nSec parameter within the [1,
86400 (24h)] range. The pool must not be fi nal i zed.

e r ebi ndMW update the denormalized weight and balance of an already bounded token. If the
bal ance parameter is greater than the actual token balance, the difference is pulled from the
control |l er. If the bal ance is lower than the actual balance, the difference is transferred to
the controller The denormalized weight of the token must be within the
[BONE, BONE * 50] range. The token must be bounded to the pool and the pool must not be
finalized.

* bi ndMWM bind a new token to the pool, the cont r ol | er must provide at least 10* * 6 tokens
to the pool. The denormalized weight of the token must be within the [BONE, BONE * 50]
range. The token must not be bounded to the pool and the pool must not be f i nal i zed.

e unbi ndMW remove a bounded token from the pool. The amount of remaining tokens, is
transferred to the cont r ol | er. The token must be bounded to the pool and the pool must not
befinalized.

« traders:

e swapExact Anount | nMVM traders have to specify the input token and its input amount, the
output token and its minimum output amount, as well as the maximum spot price (without
shortage penalty) they are willing to pay. The system will retrieve the last price from a Chainlink
price feed for both tokens to adjust the weight of each token, relative to their performance since
the pool's inception. The formula for the weight update is: w 0 * price t [/ price_O,
where w_0 and pri ce_0 are the weight and price of the token at pool's inception and pri ce_t
is the last queried price. The weight update is made to account for relative price changes, so
each weight corresponds to its true share of value in the pool.

The equilibrium quantity will be computed, it represents the amount of input tokens there should be
in the pool to achieve the oracle price. If the current balance of input token is > (resp. <) equilibrium
guantity it means that the input token is in abundance (resp. in shortage) and thus the output token
is in shortage (resp. in abundance). The pool will then compute how many tokens it can swap, based
on the equilibrium quantity, it will consider three cases:

1. output token is already in shortage: penalty on the whole amount

2. output token is in abundance, but will be in shortage after the trade: penalty on the amount
taking the balance past the equilibrium quantity

3. output token is in abundance before and after the trade: no penalty

The penalty is applied to the output token's weight in order to increase its swap price to cope for
impermanent loss. The penalty is the maximum between 1 and a pessimistic sample of a random
variable following a lognormal distribution of parameters ((nmu - s*2 / 2) * h, h * s”2),the
drift (mu) and volatility (s”2) are provided by the Geonetri cBr owni anMti onOracl e. The
penalty multiplies the updated output token's weight as to predict the price at time horizon h, starting
from the current spot price. If not enough or no historical data at all is available, no penalty is given
and there is a risk of impermanent loss.

In order to mitigate the risk of oracle price update sandwich attack, two mechanisms work together:
1. the increase of the ratio of price of the output token in the pool compared to oracle price is
capped to limit the output token price increase

2. the swap fee is computed such that the pool does not lose value in terms of output token
after the swap

This special swap fee is added under the conditions that the input token is in shortage and
experienced a relatively increasing oracle price update within the current block.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

« liquidity providers:

*j oi nPool : LP can specify the amount of LP tokens they want to get, as well as the maximum
amount of each token they want to provide. The amount of LP tokens represents the shares in
the pool. The LP tokens are minted and transferred to the LP The maxAnount sl n ordering
must match the _tokens array ordering. The pool must be finalized. To mitigate
just-in-time liquidity provision, once a LP has joined the pool, they must wait
BLOCK _WAI TI NG_TI ME blocks to be able to move (exit or transfer) their LP tokens.

*j 0i nPool For TxOri gi n: like j oi nPool but the LP tokens will be senttot x. ori gi n instead
of neg. sender.

e exi t Pool : LP can specify the amount of LP tokens they want to give back in exchange for
their share in bounded tokens, as well as the minimum amount of each token they want back.
The LP tokens are transferred from the LP to the pool and burned. The m nAnmpunt sCQut
ordering must match the _t okens array ordering. The pool must be fi nal i zed.

* users:

* gul p: for a given bound token, sync the pool's accounting with its token balance

Each pool can support up to 8 assets, minimum is 2. The tokens must not take fees upon transfer,
otherwise the pool's accounting will be wrong.

3.1.2 GeonetricBrowni anMbti onO acl e. sol

The GeonetricBrowni anMotion library can provide historical prices statistics, mainly via its
get Par anet er sesti mat i on. This function will estimate the drift and volatility of Geometric Brownian
Motion process, based on the lookback window data. Then the swap price will be adjusted, based on the
estimated price at horizon. The historical prices and associated timestamps are provided by a Chainlink
price aggregator. When tokens are bind to the pool, the controller need to provide an address of the
Chainlink oracle, that will be used for price estimations. The estimations sequence will contain data
coming from at most | ookbackl nRound Chainlink rounds and from at most the | ookbackl nSec last
seconds, the most restrictive condition is applied.

3.1.3 Pool Token. sol

The Pool Token is an ERC20 token that will act as an LP share, that is minted and burned when assets
are added/removed from the pool.

3.1.4 Factory. sol

The Factory contract allows user to deploy new Pool contracts. After the pool is deployed and
registered, the nsg. sender of Fact ory. newPool function gains the Controller role inside the pool.
The Fact ory is also responsible for receiving the exi t Fee of the different pools.

3.2 Trust model

The Controller role holder is considered as trusted party. It is assumed that lookback parameters and
fees setup is assumed to be correct and well tested. The oracle addresses and pool tokens are assumed
to be not malicious.

3.3 Assumptions

The tokens that the pool will work with is assumed to be a regular ERC20 contract, for example, without
missing return values, fees and balance changed without transfers.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

The Chainlink provides the prices in different base currencies, for example USD, ETH. It is assumed that
all tokens bound to the pool have properly set Chainlink price feeds addresses, with same base asset

type.

Since the impermanent loss protection has a probabilistic nature, it is assumed that this can happen. Due
to the impermanent loss protections of LPs, swap price and fees can vary in values. This behavior is
assumed to be normal.

3.4 Version 2 changes

To mitigate Dynamic Weights Changing Problem issue, Swaap Labs introduced two solutions that limit
the effectiveness of sandwich attacks.

1. The relative difference between pool price that swap operation can reach and oracle price is
capped: Af t er SwapPool Price/ Oracl ePrice <= 102% + fee

2. If during the swap the user sells token that is in shortage, and the token price experienced increase
in current block, extra fee is applied to compensate for a possible impermanent loss of the pool.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

« Chainlink Query May Revert
« Dynamic Weights Changing Problem

(Medium)-Severity Findings 4
+ Geometric Brownian Motion Parameter Estimation
» Inverted Token Performance
» View Functions Reentrancy
» Zero Exit Fee Allows Just-In-Time Liquidity Provision

(Low)-Severity Findings 7
« Num.abs Function Name
» getRoundData Function Duplication
« Compiler Version Not Fixed and Outdated
» Gas Inefficiency and Duplicated Checks
« Num Library Function Visibility
» Specification Mismatch

« Time Window of 1 Will Revert

7.1 Chainlink Query May Revert
(Design | High |LZEITB)] Code Corrected)

The Pool contract relies on ChainLink assumptions that do not hold. Chainlink's round IDs do not always
increase monotonically. Therefore, the get RoundDat a queries can revert. Relying on _roundl d- - in
Ceonet ri cBrowni anMbt i onOr acl e. get Hi st ori cal Pri ce is not correct, since querying an invalid
ID will make the swap revert.

Code corrected:

The call to the price feed's get RoundDat a function has been moved in a try/ cat ch block and the
function returns (0, 0) if the oracle call reverts.

7.2 Dynamic Weights Changing Problem
(Security JIHigh WCETTI Code Corrected

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Assume the pool has 10 X and 10 Y tokens that both have weight of 1. Initial invariant:
10)(* 10Y =100

Now assume attacker sees an update in oracle price, that will change the weight of X tokens to 2.
Attacker performs a trade: in 990 Y, out 9.9 X. New constant product:
0.1x*1000y =100

After ChainLink price update, the X tokens weight become 2. New invariant:
(0.1x)2*1000y =10

In 0.9 X, out 990 Y. The invariant holds:

New constant product:
(1)()2 * 10Y =10

With 2 these trades that surround the price update, attacker profited by 9 X tokens.

The sandwiching can be performed using the Flashbots service. This issue is similar to the one that was
discovered in Curve.

Code corrected:
Swaap Labs introduced 2 solutions:

1. The relative difference between oracle price and pool ©price is capped:
Aft er SwapPool Price/ Oracl ePrice <= 102% + fee

2. If the user sells token that is in shortage, and the token price experienced increase in the current
block, extra fee is applied to compensate for a possible impermanent loss of the pool.

Together these 2 solutions help with the weight change sandwich attack.

7.3 Geometric Brownian Motion Parameter
Estimation

(D) (Midium) (Version 1) CTEEIEED)

For a returns R over time window T, the code estimates Geometric Brownian Motion parameters using
these formulas:

N
2 R;
— =0
K==
N
2R (TN
o= T—1

According to specification, the second term in ¢ computation is responsible for times, when the sample is
missing and thus the return at that point is assumed to be 0.

Assuming dt is a regular sampling period, the N = T/ dt - number of samples. In that case, a common
way to estimate the GBM parameters using successive observations method is given by:

N
2R
i=0

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 14

https://medium.com/@peter_4205/curve-vulnerability-report-a1d7630140ec
https://chainsecurity.com

Comparing these estimations to code estimations, we can see following discrepancies:
1. Code p estimate lacks a 0. 5 * ¢”2 term, and thus will be underestimated.
2. Code o estimate lacks a dt scaling factor, and thus will be overestimated.

3. Code o estimate has a (T - N/ T * p*2 term, that also doesn't help with precision of the
estimate.

To summarize, the outputs of Geonet ri cBrowni anMoti onOracl e. get Stati stics can have big
errors, that might lead to impermanent losses of LPs as well as to overpriced swaps.

In addition, for Chainlink price oracles the sampling periods are not consistent and affected by Deviation
and Heartbeat Thresholds. Thus the code computed estimations in most cases will fail to accurately
estimate the price evolution process, even if it has the GBM nature.

Code modified:

The parameters estimation method has been modified to use the price ratios between two successive
period instead of the return. The new implementation uses the following formulas:

Si=price;
A;j=timestamp;-timestampi_;
p=1%log(z)

Iog(
2 __1 r_1 S5 1
0 =5=7 Iog Z

These formulas come from the maximum likelihood estlmatlon (MLE) for the GBM parameters. However
to be the true MLE, mu should have a correction factor of + 0.5 * si gna”2. This correction factor is
not needed here because Swaap Labs computes the z-percentile of the lognormal distribution, which
onlyneedsmu + 0.5 * sigma”2 - 0.5 * signma"2 = mnu. Thus, the computed nu and si gna are
consistent with their future usage.

7.4 Inverted Token Performance

[Medium] [Version 1] Code Corrected

The signature of the function is:

_get TokenPerformance(uint256 initial Price, uint256 |atestPrice)

and computes the performance ratio as | atestPrice / initialprice. However, the function is
always called with the arguments in the following order (latestPrice_param
initial Price_paran, the result of the «call wil vyield the inverted performance ratio
initial Price _param/ |atestPrice_param

Code corrected:

Natspec and _get TokenPer f or mance call input order was fixed.

7.5 View Functions Reentrancy

(Secuity W TDNEZZTEY Code Corrected)

Some view functions don't use the _vi ewl ock_ modifier. In case of reentrancy due to ERC20 token
calls (e.g. ERC777), these getters can return unreliable data. This may break the integration with other
contracts and systems that rely on these getters. Such getter functions are:

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

e get Anount Qut G venl nMW

Please note, this list might be incomplete. Any function of a contract that does external call need to be
| ock or vi ewl ock protected, if other external contract might rely on the data from this contract, such as
spot prices, weights, etc.

Code corrected:
View locks have been added to all view functions in the Pool . sol contract.

7.6 Zero Exit Fee Allows Just-In-Time Liquidity
Provision

(D (Wiedium) (Version 1) SRR

Since the system is not totally impermanent loss resistant, liquidity providers are still exposed to a risk.
To cope with the risk, malicious liquidity providers can sandwich large swaps transactions and collect
most of the swap fee without the risk of an impermanent loss.

Code corrected:

JIT liquidity provision is mitigated by the use of a cooldown timer of 2 blocks. A LP that provided liquidity
to a pool cannot exit the pool or transfer LP tokens (by either transfer or approval and
t ransf er Fr om) for a period of 2 blocks after the liquidity provision.

However, this may block proxy contracts to manage funds for users. To cope with this issue, Swaap Labs
added the j oi nPool For TxOri gi n, a function that pulls funds from nsg. sender, but deposits them to
the t x. ori gi n. Since it is not the authorization by the t x. ori gi n, this does not raise problems like
https://swcregistry.io/docs/SWC-115.

7.7 Num abs Function Name

(Coreectness J ORI Code Corrected)

The name of Num abs function does not match its functionality.

Code corrected:

The Num abs function has been renamed Num posi ti vePart.

7.8 get RoundDat a Function Duplication
T (Low) (Version 2) Y SIRTD)

The function getRoundData and its functionality is duplicated. It is implemented in
Geonet ri cBrowni anMot i on and in Chai nl i nkUt i | s. Functionality duplication should be avoided as
it increases the amount of code to deploy and deteriorates code maintainability.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 16

https://swcregistry.io/docs/SWC-115
https://chainsecurity.com

Code corrected:

The get RoundDat a function in Geonret r i ¢Br owni anMbt i on has been removed and its use has been
replaced by the get RoundDat a function from Chai nl i nkUti | s.

7.9 Compiler Version Not Fixed and Outdated
D) (Low) (Version 1) (XTI

The solidity compiler is not fixed in the contracts. The version, however, is defined in the
truffle-config.jstobeO.8.0.

In the Fact or y contract the following pragma directive is used:
pragma solidity ~0.8.0;

Known bugs in version 0. 8. 0 are:
https://github.com/ethereum/solidity/blob/develop/docs/bugs_by version.json#L1531
More information about these bugs can be found here:
https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0. 8. 12 which contains some bugfixes.

Code corrected:

The compiler was fixed to version 0. 8. 12.

7. 10 Gas Inefficiency and Duplicated Checks
(Design [(FTY|VEETTB] Code Corrected

1.In the Geonetri cBrowni anMbti onCracl e. get Hi storical Prices function, i dx is set to
hpPar anet er s. | ookbackl nRound + 1 and then directly to 1. The second first assignation has
no effect.

2. Mat h. get LogSpr eadFact or checks horizon and variance for >= 0, this check is useless since
both values are ui nt 256.

3. Mat h. get LogSpr eadFact or does division by two with5 * Const. BONE / 10, simply dividing
by 2 would save gas.

4.In Mat h. getl nAmount At price it is possible to pack computations to save calls to
LogExpMat h. pow.

5. Some state variables can fit in smaller types (e.g., with its current bounds,
dynam cCover ageFeesZ could fit in a ui nt 64). Saving storage slots might save gas.

6. TokenBase's _burn and _nove functions check that there is enough balance, the check for
underflow is by default since compiler version 0.8.0.

7. Pool Token. t ransf er Fr omcheck that there is enough allowance, the check for underflow is by
default since compiler version 0.8.0.

8. Pool Token's _nane, synbol and _deci mal can be constant and their respective getter
functions can be ext er nal . This will save gas.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 17

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1531
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

10.

11.
12.
13.

14.

. The overflow checks in numerous Numfunctions are not necessary anymaore since compiler version
0.8.0, which features automatic overflow check. The division by zero checks are not necessary,
solidity division will revert on a division by 0.

Elements of the Pool . Recor d struct can have a smaller type (e.g. i ndex, denorn) and be
reordered to save storage.

The Pool 's state variable _f act ory can be immutable.
Pool . j oi nPool , Pool . get Amount Qut G venl nMVW Pool . fi nal i ze can be ext er nal .

The check for _control | er address and finalization in Pool . bi ndMvW are redundant with the
ones in Pool . r ebi ndMvW

When resetting storage slots on mappings, e.g. in unbi ndMMW the use of delete is
recommended for lower gas usage.

15. The second require of _get Anount Qut G venl nMVUWWW t hTi mest anp is a less strict version of
the first requirement.
Version 2:
1. Const . MAX_| N_RATI Oand Const . MAX_QUT_RATI Oare never used in the code, they should be

2

removed.

. get MVMAéi ght is always called with shortage = true, removing the argument and code
related to short age = f al se will save gas.

Code corrected:

o N O 0o A WDN

10.
11.
12.

.1 dx is setto 1 at variable declaration.

. Both checks for >= 0 have been removed.

. The multiplication by 5 / 10 has been replaced by a division by 2.

. Thetermsunderw o / (w_o + w_i) have been grouped together.

. Acknowledged. Some state variables have been changed to use a smaller type.
. The checks for sufficient balance have been removed.

. The check for sufficient allowance has been removed.

. Pool Token's _nane, synbol and _deci mal have been changed to constant and their
respective getter function have ext er nal visibility.

. Unnecessary overflow checks in Numlibrary have been removed.
i ndex and denor mtypes have been reduced to ui nt 8 and ui nt 80 resp.
_fact ory state variable has been changed to immutable.

Pool . j oi nPool , Pool . get Amount Qut G venl nMVWM Pool . finalize visibilty has been
changed to ext er nal .

13. The checks have been moved to the common _r ebi ndMvMfunction.
14. del et e is now used to reset the storage fields in the mappings.
15. Both r equi r e have been removed. The check has been replaced by the oracle update sandwich
protection.
Version 2:
1. Unused constants have been removed.

2

S

. The shor t age parameter of function get MMMA&i ght has been removed.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.11 Num Library Function Visibility
D) (Low) (Version 1) (XL

The functions of Numlibrary have publ i ¢ visibility. This way, any contract that will need to deploy this
library, will use it as an external contract. It means that any call to the library functions will result in quite
expensive CALL opcode. If the visibility of those functions were i nt er nal , the function code would be
then inlined at the point of use. This way bytecode size of Pool will be smaller and gas cost for each
library call operation will be smaller as well. For more info see:
https://docs.soliditylang.org/en/latest/contracts.html#libraries

Code corrected:

The visibility of the functions in the Numlibrary has been changed to i nt er nal .

7. 12 Specification I\/Iismatch
(Design [EINEETTRY] Specification Changed

1. The formula provided in the documentation for get | nAnount At Pri ce multiplies the desired price
by wout / w.in which is wrong, however the implementation correctly multiplies by
w_in / w.out.

2. In the whitepaper, when the stochastic buy-sell spread is computed, the p-percentile of the random
variable is divided by the latest oracle price, this is not the case in the implementation.

3. The @lev natspec of get Next Sanpl e is incomplete

4. The @lev natspec of get RoundDat a makes a wrong assumption, the function will revert if no data
can be found as specified in https://docs.chain.link/docs/fag/#can-the-data-feed-read-revert.

5. The specification of some public and external functions, e.g. joinPool, finalize,
cal cSpot Pri ce, is missing.

6. The @ot i ce natspec of r ebi ndMWIis incomplete.

7. The natspec of Pool . _get TokenPer f or mance defines twice the first parameter and not the
second one

Version 2:

1. The @ev natspec of Geonet ri cBr owni anMbti onOracl e. get Hi stori cal Pri ces does not
reflect the implementation. If no historical data was found, the latest data and st art | ndex ==
will be returned. If round data is 0, the round will simply be skipped, the algorithm will not stop filling
prices/timestamps.

2. The _get Par anet er sesti mat i on doesn't describe all @ar am

Specification partially corrected:
1. The formula in the documentation has been corrected.
2. Specification changed.
3. The @lev natspec for get Next Sanpl e has been completed.

4. The implementation of get RoundDat a now matches the natspec.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 19

https://docs.soliditylang.org/en/latest/contracts.html#libraries
https://docs.chain.link/docs/faq/#can-the-data-feed-read-revert
https://chainsecurity.com

5. Comments or natspec have been added for some publ i ¢ and ext er nal functions.
6. The natspec for r ebi ndMvWhas been completed.

7. The second parameter is now described in the natspec.

Version 2:
1. The @lev natspec has been updated to reflect the implementation.
2. The missing parameters natspec has been added.

7.13 Time Window of 1 Will Revert
(Design [(FTYWEETTBY] Code Corrected

A time window of 1 second will make get Statistics revert due to a division by zero. The
Const. M N_LOOKBACK | N_SEC limit enforced on _priceStatisticsLookbackl nSec storage
variable in setPriceStatisticsLookbackl nSec function does not prevent this case from
happening.

Code corrected:

If time window = 1, the variance and mean are considered to be 0.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Compatibility Issues Duetotx. origin

The use of t x. ori gi n limits certain functionality of the contract. Such contracts can be not deployable
on chains that don't support ORI G N opcode, e.g. Optimism. In addition, usage of this contract by wallet
contracts like Gnosis wallet can also be limited.

8.2 ERC20 Compatibility

The _pul | / _pushUnder | yi ng functions of the Pool expectt ransfer Fromandtransfer to always
return a boolean. However, some tokens, for example USDT, do not follow this pattern and are thus
incompatible with the system. OpenZeppelin has a SafeERC20 library, which helps with such tokens.

In addition, the usage of ERC20 tokens with fees, rebalancing tokens, or tokens with reentrancies can be
problematic to integrate. Swaap Labs needs to carefully consider what tokens can be supported by the
Pool .

The pul I/ _pushUnder| yi ng functions have been modified to use the SafeERC20 library for token
transfer.

@ Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 21

https://github.com/d-xo/weird-erc20
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Contracts
	3.1.1 Pool.sol
	3.1.1.1 Detailed Pool overview

	3.1.2 GeometricBrownianMotionOracle.sol
	3.1.3 PoolToken.sol
	3.1.4 Factory.sol

	3.2 Trust model
	3.3 Assumptions
	3.4 Version 2 changes

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 Chainlink Query May Revert
	7.2 Dynamic Weights Changing Problem
	7.3 Geometric Brownian Motion Parameter Estimation
	7.4 Inverted Token Performance
	7.5 View Functions Reentrancy
	7.6 Zero Exit Fee Allows Just-In-Time Liquidity Provision
	7.7 Num.abs Function Name
	7.8 getRoundData Function Duplication
	7.9 Compiler Version Not Fixed and Outdated
	7.10 Gas Inefficiency and Duplicated Checks
	7.11 Num Library Function Visibility
	7.12 Specification Mismatch
	7.13 Time Window of 1 Will Revert

	8 Notes
	8.1 Compatibility Issues Due to tx.origin
	8.2 ERC20 Compatibility

