

PUBLIC

Code Assessment

of the Swaap Core V1

Smart Contracts

May 10, 2022

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 System Overview 5

4 Limitations and use of report 10

5 Terminology 11

6 Findings 12

7 Resolved Findings 13

8 Notes 21

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Swaap.finance,

Thank you for trusting us to help you with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Swaap Core V1 according to
Scope to support you in forming an opinion on their security risks.

Swaap Labs implements an automated market maker protocol, with the intention to eliminate the losses
of the liquidity providers, while enabling them to collect the fees from trades. This is achieved by dynamic
weighting of the underlying tokens and stochastic spread mechanism.

During the review, no critical issues were uncovered. All the uncovered issues have been mitigated or
fixed.

The most critical subjects covered in our audit are resistance to assets siphon attacks, stochastic process
simulation precision and integration with external systems. Security regarding all the aforementioned
subjects is high.

The general subjects covered are trust model, functional correctness and specification quality. All the
aforementioned subjects were of sufficient quality.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 2

Medium -Severity Findings 4

• Code Corrected 4

Low -Severity Findings 7

• Code Corrected 6

• Specification Changed 1

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the following source code files inside the Swaap Core V1 repository:
based on the documentation files.

• interfaces/IAggregatorV3.sol

• interfaces/IERC20.sol

• structs/Struct.sol

• Const.sol

• Factory.sol

• GeometricBrownianMotionOracle.sol

• LogExpMath.sol (comes from Balancer v2)

• Math.sol

• Migrations.sol

• Num.sol (only "bdivInt256" function)

• Pool.sol

• PoolToken.sol

The table below indicates the code versions relevant to this report and when they were received.

V
Date Commit Hash Note

1 February 7 2022 72bb2e1cae7710db7f29660ec4a0b20abd5c02c5 Initial Version

2 April 21 2022 270d192f1ad51baeaadf503d91f55f94a682af52 Version with fixes

3 April 27 2022 a19172410188513f588c48bff4055bf777ed11e2 Version with fixes

4 May 10 2022 ee3c5e8bb0efffeb14af38183a395cae3ba022fc Version with fixes

For the solidity smart contracts, the compiler version 0.8.12 was chosen.

2.1.1 Excluded from scope
All functions from the Num.sol file are excluded from the scope, except the bdivInt256 function.

3 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

The Swaap Core V1 is an automated market maker, that functions as a self-balancing weighted portfolio,
based on Balancer Pool implementation. The novelty of the Swaap Core V1 is a way it dynamically
mitigates the impermanent loss of the liquidity providers. First, the weight of the tokens in the pool can be
changed dynamically, based on the performance of the asset. Secondly, the geometric Brownian motion
(GBM) method is used to simulate the asset prices at a certain time horizon during each trade, and the
trade price might be adjusted to cover the potential losses of the liquidity providers. These 2 solutions are
intended to provide low fee exchanges, while preventing the LPs losses.

3.1 Contracts

3.1.1 Pool.sol
This is the contract, where the main functionality of the system lives. It allows LPs to join and exit pools,
by providing the assets for the pool. By utilizing the provided liquidity, users can perform swaps via
swapExactAmountInMMM function. The Controller is a privileged role inside this contract. The holder of
this role can:

• Set swap fees

• Bind and unbind tokens from the pool

• Set GBM horizon and lookback (rounds and seconds) parameters

• Make the Pool public

• Make the pool final

• Assign new Controller

Once pool is final, the fees and lookback params cannot be changed. Tokens cannot be added or
removed. The LPs can join and exit pool only if pool is final.

The Exit fee of the pool is constant, and cannot be changed.

3.1.1.1 Detailed Pool overview
Main roles in the pool contract are: controller, traders and liquidity providers (LPs). The role holders can
perform certain actions on the pool:

• controller:

• setSwapFee: update the swapFee within the [0.0001%, 10%] range. Its default value is
0.025%. The pool must not be finalized.

• setController: current controller can give the control to another address. The new
controller cannot be address(0).

• setPublicSwap: allow/disallow token swaps before the pool is finalized. The pool must
not be finalized.

• finalize: set _finalized to true and allow token swaps. The pool must not be finalized.

• setDynamicCoverageFeesZ: set the coverage value z for the computation of the spread
factor within the [0, 4] range, which corresponds to [0.5, > 0.99998) in the cumulative
range for a normally distributed random variable. Its default value is 0.6 (around 0.8 in the
cumulative). The pool must not be finalized. User should be aware that z represents only
the inverse of erf(2p-1) and not the inverse of PHI(p), the sqrt(2) factor is already
included in the implemented formula.

• setDynamicCoverageFeesHorizon: set the time horizon for the price prediction within the
[1*BONE, 86400*BONE (24h)] range. Its default value is 300*BONE (5min). The pool
must not be finalized.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• setPriceStatisticsLookbackInRound: set lookbackInRound parameter within the [1,
100] range. The pool must not be finalized.

• setPriceStatisticsLookbackInSec: set lookbackInSec parameter within the [1,
86400 (24h)] range. The pool must not be finalized.

• rebindMMM: update the denormalized weight and balance of an already bounded token. If the
balance parameter is greater than the actual token balance, the difference is pulled from the
controller. If the balance is lower than the actual balance, the difference is transferred to
the controller The denormalized weight of the token must be within the
[BONE, BONE * 50] range. The token must be bounded to the pool and the pool must not be
finalized.

• bindMMM: bind a new token to the pool, the controller must provide at least 10**6 tokens
to the pool. The denormalized weight of the token must be within the [BONE, BONE * 50]
range. The token must not be bounded to the pool and the pool must not be finalized.

• unbindMMM: remove a bounded token from the pool. The amount of remaining tokens, is
transferred to the controller. The token must be bounded to the pool and the pool must not
be finalized.

• traders:

• swapExactAmountInMMM: traders have to specify the input token and its input amount, the
output token and its minimum output amount, as well as the maximum spot price (without
shortage penalty) they are willing to pay. The system will retrieve the last price from a Chainlink
price feed for both tokens to adjust the weight of each token, relative to their performance since
the pool's inception. The formula for the weight update is: w_0 * price_t / price_0,
where w_0 and price_0 are the weight and price of the token at pool's inception and price_t
is the last queried price. The weight update is made to account for relative price changes, so
each weight corresponds to its true share of value in the pool.

The equilibrium quantity will be computed, it represents the amount of input tokens there should be
in the pool to achieve the oracle price. If the current balance of input token is > (resp. <) equilibrium
quantity it means that the input token is in abundance (resp. in shortage) and thus the output token
is in shortage (resp. in abundance). The pool will then compute how many tokens it can swap, based
on the equilibrium quantity, it will consider three cases:

1. output token is already in shortage: penalty on the whole amount

2. output token is in abundance, but will be in shortage after the trade: penalty on the amount
taking the balance past the equilibrium quantity

3. output token is in abundance before and after the trade: no penalty

The penalty is applied to the output token's weight in order to increase its swap price to cope for
impermanent loss. The penalty is the maximum between 1 and a pessimistic sample of a random
variable following a lognormal distribution of parameters ((mu - s^2 / 2) * h, h * s^2), the
drift (mu) and volatility (s^2) are provided by the GeometricBrownianMotionOracle. The
penalty multiplies the updated output token's weight as to predict the price at time horizon h, starting
from the current spot price. If not enough or no historical data at all is available, no penalty is given
and there is a risk of impermanent loss.

In order to mitigate the risk of oracle price update sandwich attack, two mechanisms work together:

1. the increase of the ratio of price of the output token in the pool compared to oracle price is
capped to limit the output token price increase

2. the swap fee is computed such that the pool does not lose value in terms of output token
after the swap

This special swap fee is added under the conditions that the input token is in shortage and
experienced a relatively increasing oracle price update within the current block.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

• liquidity providers:

• joinPool: LP can specify the amount of LP tokens they want to get, as well as the maximum
amount of each token they want to provide. The amount of LP tokens represents the shares in
the pool. The LP tokens are minted and transferred to the LP The maxAmountsIn ordering
must match the _tokens array ordering. The pool must be finalized. To mitigate
just-in-time liquidity provision, once a LP has joined the pool, they must wait
BLOCK_WAITING_TIME blocks to be able to move (exit or transfer) their LP tokens.

• joinPoolForTxOrigin: like joinPool but the LP tokens will be sent to tx.origin instead
of msg.sender.

• exitPool: LP can specify the amount of LP tokens they want to give back in exchange for
their share in bounded tokens, as well as the minimum amount of each token they want back.
The LP tokens are transferred from the LP to the pool and burned. The minAmountsOut
ordering must match the _tokens array ordering. The pool must be finalized.

• users:

• gulp: for a given bound token, sync the pool's accounting with its token balance

Each pool can support up to 8 assets, minimum is 2. The tokens must not take fees upon transfer,
otherwise the pool's accounting will be wrong.

3.1.2 GeometricBrownianMotionOracle.sol
The GeometricBrownianMotion library can provide historical prices statistics, mainly via its
getParametersEstimation. This function will estimate the drift and volatility of Geometric Brownian
Motion process, based on the lookback window data. Then the swap price will be adjusted, based on the
estimated price at horizon. The historical prices and associated timestamps are provided by a Chainlink
price aggregator. When tokens are bind to the pool, the controller need to provide an address of the
Chainlink oracle, that will be used for price estimations. The estimations sequence will contain data
coming from at most lookbackInRound Chainlink rounds and from at most the lookbackInSec last
seconds, the most restrictive condition is applied.

3.1.3 PoolToken.sol
The PoolToken is an ERC20 token that will act as an LP share, that is minted and burned when assets
are added/removed from the pool.

3.1.4 Factory.sol
The Factory contract allows user to deploy new Pool contracts. After the pool is deployed and
registered, the msg.sender of Factory.newPool function gains the Controller role inside the pool.
The Factory is also responsible for receiving the exitFee of the different pools.

3.2 Trust model
The Controller role holder is considered as trusted party. It is assumed that lookback parameters and
fees setup is assumed to be correct and well tested. The oracle addresses and pool tokens are assumed
to be not malicious.

3.3 Assumptions
The tokens that the pool will work with is assumed to be a regular ERC20 contract, for example, without
missing return values, fees and balance changed without transfers.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

The Chainlink provides the prices in different base currencies, for example USD, ETH. It is assumed that
all tokens bound to the pool have properly set Chainlink price feeds addresses, with same base asset
type.

Since the impermanent loss protection has a probabilistic nature, it is assumed that this can happen. Due
to the impermanent loss protections of LPs, swap price and fees can vary in values. This behavior is
assumed to be normal.

3.4 Version 2 changes
To mitigate Dynamic Weights Changing Problem issue, Swaap Labs introduced two solutions that limit
the effectiveness of sandwich attacks.

1. The relative difference between pool price that swap operation can reach and oracle price is
capped: AfterSwapPoolPrice/OraclePrice <= 102% + fee

2. If during the swap the user sells token that is in shortage, and the token price experienced increase
in current block, extra fee is applied to compensate for a possible impermanent loss of the pool.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 2

• Code CorrectedChainlink Query May Revert

• Code CorrectedDynamic Weights Changing Problem

Medium -Severity Findings 4

• Code CorrectedGeometric Brownian Motion Parameter Estimation

• Code CorrectedInverted Token Performance

• Code CorrectedView Functions Reentrancy

• Code CorrectedZero Exit Fee Allows Just-In-Time Liquidity Provision

Low -Severity Findings 7

• Code CorrectedNum.abs Function Name

• Code CorrectedgetRoundData Function Duplication

• Code CorrectedCompiler Version Not Fixed and Outdated

• Code CorrectedGas Inefficiency and Duplicated Checks

• Code CorrectedNum Library Function Visibility

• Specification ChangedSpecification Mismatch

• Code CorrectedTime Window of 1 Will Revert

7.1 Chainlink Query May Revert
Design High Version 1 Code Corrected

The Pool contract relies on ChainLink assumptions that do not hold. Chainlink's round IDs do not always
increase monotonically. Therefore, the getRoundData queries can revert. Relying on _roundId-- in
GeometricBrownianMotionOracle.getHistoricalPrice is not correct, since querying an invalid
ID will make the swap revert.

Code corrected:

The call to the price feed's getRoundData function has been moved in a try/catch block and the
function returns (0, 0) if the oracle call reverts.

7.2 Dynamic Weights Changing Problem
Security High Version 1 Code Corrected

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Assume the pool has 10 X and 10 Y tokens that both have weight of 1. Initial invariant:
10X * 10Y = 100

Now assume attacker sees an update in oracle price, that will change the weight of X tokens to 2.
Attacker performs a trade: in 990 Y, out 9.9 X. New constant product:

0.1X * 1000Y = 100
After ChainLink price update, the X tokens weight become 2. New invariant:

(0.1X)2 * 1000Y = 10
In 0.9 X, out 990 Y. The invariant holds:

New constant product:
(1X)2 * 10Y = 10

With 2 these trades that surround the price update, attacker profited by 9 X tokens.

The sandwiching can be performed using the Flashbots service. This issue is similar to the one that was
discovered in Curve.

Code corrected:

Swaap Labs introduced 2 solutions:

1. The relative difference between oracle price and pool price is capped:
AfterSwapPoolPrice/OraclePrice <= 102% + fee

2. If the user sells token that is in shortage, and the token price experienced increase in the current
block, extra fee is applied to compensate for a possible impermanent loss of the pool.

Together these 2 solutions help with the weight change sandwich attack.

7.3 Geometric Brownian Motion Parameter
Estimation
Design Medium Version 1 Code Corrected

For a returns R over time window T, the code estimates Geometric Brownian Motion parameters using
these formulas:

μ =

N
∑

i = 0
Ri

T

σ2 =

N
∑

i = 0
(Ri − μ)2 + (T − N) * μ2

T − 1
According to specification, the second term in σ computation is responsible for times, when the sample is
missing and thus the return at that point is assumed to be 0.

Assuming dt is a regular sampling period, the N = T/dt - number of samples. In that case, a common
way to estimate the GBM parameters using successive observations method is given by:

̂μ =

N
∑

i = 0
Ri

N

̂σ2 =

N
∑

i = 0
(Ri − ̂μ)2

T

σ2 = ̂σ2

dt =

N
∑

i = 0
(Ri − ̂μ)2

T * dt

μ =
̂μ

dt + σ2

2 =

N
∑

i = 0
Ri

T + σ2

2

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 14

https://medium.com/@peter_4205/curve-vulnerability-report-a1d7630140ec
https://chainsecurity.com

Comparing these estimations to code estimations, we can see following discrepancies:

1. Code µ estimate lacks a 0.5 * σ^2 term, and thus will be underestimated.

2. Code σ estimate lacks a dt scaling factor, and thus will be overestimated.

3. Code σ estimate has a (T − N)/T * µ^2 term, that also doesn't help with precision of the
estimate.

To summarize, the outputs of GeometricBrownianMotionOracle.getStatistics can have big
errors, that might lead to impermanent losses of LPs as well as to overpriced swaps.

In addition, for Chainlink price oracles the sampling periods are not consistent and affected by Deviation
and Heartbeat Thresholds. Thus the code computed estimations in most cases will fail to accurately
estimate the price evolution process, even if it has the GBM nature.

Code modified:

The parameters estimation method has been modified to use the price ratios between two successive
period instead of the return. The new implementation uses the following formulas:

Si = pricei
Δi = timestampi−timestampi−1

μ = 1
T log(Sn

S0
)

σ2 = 1
N − 1 [−1

T log(Sn
S0

)2 +
N
∑

i = 1

log(Si
Si − 1

)2

Δi
]

These formulas come from the maximum likelihood estimation (MLE) for the GBM parameters. However
to be the true MLE, mu should have a correction factor of + 0.5 * sigma^2. This correction factor is
not needed here because Swaap Labs computes the z-percentile of the lognormal distribution, which
only needs mu + 0.5 * sigma^2 - 0.5 * sigma^2 = mu. Thus, the computed mu and sigma are
consistent with their future usage.

7.4 Inverted Token Performance
Correctness Medium Version 1 Code Corrected

The signature of the function is:

_getTokenPerformance(uint256 initialPrice, uint256 latestPrice)

and computes the performance ratio as latestPrice / initialprice. However, the function is
always called with the arguments in the following order (latestPrice_param,
initialPrice_param), the result of the call will yield the inverted performance ratio
initialPrice_param / latestPrice_param.

Code corrected:

Natspec and _getTokenPerformance call input order was fixed.

7.5 View Functions Reentrancy
Security Medium Version 1 Code Corrected

Some view functions don't use the _viewlock_ modifier. In case of reentrancy due to ERC20 token
calls (e.g. ERC777), these getters can return unreliable data. This may break the integration with other
contracts and systems that rely on these getters. Such getter functions are:

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• getAmountOutGivenInMMM

Please note, this list might be incomplete. Any function of a contract that does external call need to be
lock or viewlock protected, if other external contract might rely on the data from this contract, such as
spot prices, weights, etc.

Code corrected:

View locks have been added to all view functions in the Pool.sol contract.

7.6 Zero Exit Fee Allows Just-In-Time Liquidity
Provision
Design Medium Version 1 Code Corrected

Since the system is not totally impermanent loss resistant, liquidity providers are still exposed to a risk.
To cope with the risk, malicious liquidity providers can sandwich large swaps transactions and collect
most of the swap fee without the risk of an impermanent loss.

Code corrected:

JIT liquidity provision is mitigated by the use of a cooldown timer of 2 blocks. A LP that provided liquidity
to a pool cannot exit the pool or transfer LP tokens (by either transfer or approval and
transferFrom) for a period of 2 blocks after the liquidity provision.

However, this may block proxy contracts to manage funds for users. To cope with this issue, Swaap Labs
added the joinPoolForTxOrigin, a function that pulls funds from msg.sender, but deposits them to
the tx.origin. Since it is not the authorization by the tx.origin, this does not raise problems like
https://swcregistry.io/docs/SWC-115.

7.7 Num.abs Function Name
Correctness Low Version 2 Code Corrected

The name of Num.abs function does not match its functionality.

Code corrected:

The Num.abs function has been renamed Num.positivePart.

7.8 getRoundData Function Duplication
Design Low Version 2 Code Corrected

The function getRoundData and its functionality is duplicated. It is implemented in
GeometricBrownianMotion and in ChainlinkUtils. Functionality duplication should be avoided as
it increases the amount of code to deploy and deteriorates code maintainability.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 16

https://swcregistry.io/docs/SWC-115
https://chainsecurity.com

Code corrected:

The getRoundData function in GeometricBrownianMotion has been removed and its use has been
replaced by the getRoundData function from ChainlinkUtils.

7.9 Compiler Version Not Fixed and Outdated
Design Low Version 1 Code Corrected

The solidity compiler is not fixed in the contracts. The version, however, is defined in the
truffle-config.js to be 0.8.0.

In the Factory contract the following pragma directive is used:

pragma solidity ^0.8.0;

Known bugs in version 0.8.0 are:

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1531

More information about these bugs can be found here:

https://docs.soliditylang.org/en/latest/bugs.html

At the time of writing the most recent Solidity release is version 0.8.12 which contains some bugfixes.

Code corrected:

The compiler was fixed to version 0.8.12.

7.10 Gas Inefficiency and Duplicated Checks
Design Low Version 1 Code Corrected

1. In the GeometricBrownianMotionOracle.getHistoricalPrices function, idx is set to
hpParameters.lookbackInRound + 1 and then directly to 1. The second first assignation has
no effect.

2. Math.getLogSpreadFactor checks horizon and variance for >= 0, this check is useless since
both values are uint256.

3. Math.getLogSpreadFactor does division by two with 5 * Const.BONE / 10, simply dividing
by 2 would save gas.

4. In Math.getInAmountAtprice it is possible to pack computations to save calls to
LogExpMath.pow.

5. Some state variables can fit in smaller types (e.g., with its current bounds,
dynamicCoverageFeesZ could fit in a uint64). Saving storage slots might save gas.

6. TokenBase's _burn and _move functions check that there is enough balance, the check for
underflow is by default since compiler version 0.8.0.

7. PoolToken.transferFrom check that there is enough allowance, the check for underflow is by
default since compiler version 0.8.0.

8. PoolToken's _name, _symbol and _decimal can be constant and their respective getter
functions can be external. This will save gas.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 17

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json#L1531
https://docs.soliditylang.org/en/latest/bugs.html
https://chainsecurity.com

9. The overflow checks in numerous Num functions are not necessary anymore since compiler version
0.8.0, which features automatic overflow check. The division by zero checks are not necessary,
solidity division will revert on a division by 0.

10. Elements of the Pool.Record struct can have a smaller type (e.g. index, denorm) and be
reordered to save storage.

11. The Pool's state variable _factory can be immutable.

12. Pool.joinPool, Pool.getAmountOutGivenInMMM, Pool.finalize can be external.

13. The check for _controller address and finalization in Pool.bindMMM are redundant with the
ones in Pool.rebindMMM.

14. When resetting storage slots on mappings, e.g. in unbindMMM, the use of delete is
recommended for lower gas usage.

15. The second require of _getAmountOutGivenInMMMWithTimestamp is a less strict version of
the first requirement.

Version 2:

1. Const.MAX_IN_RATIO and Const.MAX_OUT_RATIO are never used in the code, they should be
removed.

2. getMMMWeight is always called with shortage = true, removing the argument and code
related to shortage = false will save gas.

Code corrected:

1. idx is set to 1 at variable declaration.

2. Both checks for >= 0 have been removed.

3. The multiplication by 5 / 10 has been replaced by a division by 2.

4. The terms under w_o / (w_o + w_i) have been grouped together.

5. Acknowledged. Some state variables have been changed to use a smaller type.

6. The checks for sufficient balance have been removed.

7. The check for sufficient allowance has been removed.

8. PoolToken's _name, _symbol and _decimal have been changed to constant and their
respective getter function have external visibility.

9. Unnecessary overflow checks in Num library have been removed.

10. index and denorm types have been reduced to uint8 and uint80 resp.

11. _factory state variable has been changed to immutable.

12. Pool.joinPool, Pool.getAmountOutGivenInMMM, Pool.finalize visibility has been
changed to external.

13. The checks have been moved to the common _rebindMMM function.

14. delete is now used to reset the storage fields in the mappings.

15. Both require have been removed. The check has been replaced by the oracle update sandwich
protection.

Version 2:

1. Unused constants have been removed.

2. The shortage parameter of function getMMMWeight has been removed.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

7.11 Num Library Function Visibility
Design Low Version 1 Code Corrected

The functions of Num library have public visibility. This way, any contract that will need to deploy this
library, will use it as an external contract. It means that any call to the library functions will result in quite
expensive CALL opcode. If the visibility of those functions were internal, the function code would be
then inlined at the point of use. This way bytecode size of Pool will be smaller and gas cost for each
library call operation will be smaller as well. For more info see:
https://docs.soliditylang.org/en/latest/contracts.html#libraries

Code corrected:

The visibility of the functions in the Num library has been changed to internal.

7.12 Specification Mismatch
Design Low Version 1 Specification Changed

1. The formula provided in the documentation for getInAmountAtPrice multiplies the desired price
by w_out / w_in which is wrong, however the implementation correctly multiplies by
w_in / w_out.

2. In the whitepaper, when the stochastic buy-sell spread is computed, the p-percentile of the random
variable is divided by the latest oracle price, this is not the case in the implementation.

3. The @dev natspec of getNextSample is incomplete

4. The @dev natspec of getRoundData makes a wrong assumption, the function will revert if no data
can be found as specified in https://docs.chain.link/docs/faq/#can-the-data-feed-read-revert.

5. The specification of some public and external functions, e.g. joinPool, finalize,
calcSpotPrice, is missing.

6. The @notice natspec of rebindMMM is incomplete.

7. The natspec of Pool._getTokenPerformance defines twice the first parameter and not the
second one

Version 2:

1. The @dev natspec of GeometricBrownianMotionOracle.getHistoricalPrices does not
reflect the implementation. If no historical data was found, the latest data and startIndex == 0
will be returned. If round data is 0, the round will simply be skipped, the algorithm will not stop filling
prices/timestamps.

2. The _getParametersEstimation doesn't describe all @param.

Specification partially corrected:

1. The formula in the documentation has been corrected.

2. Specification changed.

3. The @dev natspec for getNextSample has been completed.

4. The implementation of getRoundData now matches the natspec.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 19

https://docs.soliditylang.org/en/latest/contracts.html#libraries
https://docs.chain.link/docs/faq/#can-the-data-feed-read-revert
https://chainsecurity.com

5. Comments or natspec have been added for some public and external functions.

6. The natspec for rebindMMM has been completed.

7. The second parameter is now described in the natspec.

Version 2:

1. The @dev natspec has been updated to reflect the implementation.

2. The missing parameters natspec has been added.

7.13 Time Window of 1 Will Revert
Design Low Version 1 Code Corrected

A time window of 1 second will make getStatistics revert due to a division by zero. The
Const.MIN_LOOKBACK_IN_SEC limit enforced on _priceStatisticsLookbackInSec storage
variable in setPriceStatisticsLookbackInSec function does not prevent this case from
happening.

Code corrected:

If time window = 1, the variance and mean are considered to be 0.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Compatibility Issues Due to tx.origin
Note Version 1

The use of tx.origin limits certain functionality of the contract. Such contracts can be not deployable
on chains that don't support ORIGIN opcode, e.g. Optimism. In addition, usage of this contract by wallet
contracts like Gnosis wallet can also be limited.

8.2 ERC20 Compatibility
Note Version 1

The _pull/_pushUnderlying functions of the Pool expect transferFrom and transfer to always
return a boolean. However, some tokens, for example USDT, do not follow this pattern and are thus
incompatible with the system. OpenZeppelin has a SafeERC20 library, which helps with such tokens.

In addition, the usage of ERC20 tokens with fees, rebalancing tokens, or tokens with reentrancies can be
problematic to integrate. Swaap Labs needs to carefully consider what tokens can be supported by the
Pool.

The _pull/_pushUnderlying functions have been modified to use the SafeERC20 library for token
transfer.

Swaap Labs - Swaap Core V1 - ChainSecurity - © Decentralized Security AG 21

https://github.com/d-xo/weird-erc20
https://docs.openzeppelin.com/contracts/2.x/api/token/erc20#SafeERC20
https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	3 System Overview
	3.1 Contracts
	3.1.1 Pool.sol
	3.1.1.1 Detailed Pool overview

	3.1.2 GeometricBrownianMotionOracle.sol
	3.1.3 PoolToken.sol
	3.1.4 Factory.sol

	3.2 Trust model
	3.3 Assumptions
	3.4 Version 2 changes

	4 Limitations and use of report
	5 Terminology
	6 Findings
	7 Resolved Findings
	7.1 Chainlink Query May Revert
	7.2 Dynamic Weights Changing Problem
	7.3 Geometric Brownian Motion Parameter Estimation
	7.4 Inverted Token Performance
	7.5 View Functions Reentrancy
	7.6 Zero Exit Fee Allows Just-In-Time Liquidity Provision
	7.7 Num.abs Function Name
	7.8 getRoundData Function Duplication
	7.9 Compiler Version Not Fixed and Outdated
	7.10 Gas Inefficiency and Duplicated Checks
	7.11 Num Library Function Visibility
	7.12 Specification Mismatch
	7.13 Time Window of 1 Will Revert

	8 Notes
	8.1 Compatibility Issues Due to tx.origin
	8.2 ERC20 Compatibility

