PUBLIC

Code Assessment

of the Summer Earn Protocol

Smart Contracts

January 14, 2025

Produced for

Sl er.fi

by
S CHAINSECURITY




Contents

Executive Summary
Assessment Overview
System Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

© 00 N o 0o B~ W DN B

Notes

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG

16
17
18
22
46
52


https://chainsecurity.com

1 Executive Summary

Dear Summer.fi Team,

Thank you for trusting us to help Summer.fi with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Summer Earn Protocol
according to Scope to support you in forming an opinion on their security risks.

Summer.fi primarily implements an investment protocol, where users can deposit their funds in a so
called "fleet" which is bound to an underlying asset. The liquidity of each fleet is then managed by some
trusted manager. The whole protocol is globally managed by a DAO controlled by the Summer token.
Summer.fi also implements dutch auctions and rewards distribution for Summer Earn, an ark for Pendle
PT token, a contract to batch user interactions with the system, and a contract to manage the vesting of
Summer token.

The most critical subjects covered in our audit are asset solvency, internal accounting, functional
correctness, and access control. Security regarding all the aforementioned subjects is good. Please note
that several issues have been marked as risk accepted.

Security regarding internal accounting has been improved after fixing the issue State Not Updated Before
Staking. Security regarding asset solvency has been improved after fixing the issue Disembarking
AaveV3Ark Can Fail. Security regarding functional correctness has been improved after fixing the issues
Tip Not Collected and Wrong Order Assumption in Withdrawable Arks Caching. The most critical issues
have been addressed after the first intermediate report but some issues were introduced with the fixes,
see Wrong Direction for Buffer Adjustment Checks.

The general subjects covered are gas efficiency, trustworthiness, specification, and code complexity.
Security and quality regarding all the aforementioned subjects is high. Gas efficiency is good but can be
enhanced further, see Gas Optimizations. See Power of AdmiralsQuarters role, Power of Governance
and How to choose auction parameters for findings regarding privileged actions. See BuyTokens Can
Revert From Frontrunning and Sequencer Downtime Can Influence Auction Price for findings regarding
MEV. See Misnaming of Quadratic Decay Function for findings on terminology.

We want to highlight the assumptions over the governor role, i.e. the governor role is unique and is
controlled only by the DAO, and its power over the system, see Roles and Trust Model and Power of
Governance. We also want to highlight the limited use cases of Pendl ePt Or acl eAr k, see System
Overview and Excluded from scope.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings e
(C)-Severity Findings 5
N Code Corrected 5
(Medium)-Severity Findings 13
j Code Corrected) 10
Y Risk Accepted) 3
(Low)-Severity Findings 28
j Code Corrected) 22
N specification Changed 2
of ) 1
Y Risk Accepted) 1
Y Acknowiedged 2
I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 4



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Summer Earn Protocol repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

Date Commit Hash Note
V

18 Nov | 44249522ab2b14a659d5e671b097 | Scope 1 - Initial Version
1| 2024 5fd80efla77a

02 Dec | 2650345771c8dcd1287eadfff1789f | Scope 2 - Initial Version
2| 2024 6010cb4351

02 Dec | 2650345771c8dcd1287eadfff1789f | Scope 3 - Initial Version
3| 2024 6010cb4351

11 Dec | 4d8695c9e€91e34830c5700d83c22 | Scope 1 - First fixes
4| 2024 b0f33a4479af

19 Dec | 8ca82a020b48b6cb2aaalc67f2a27 | Scope 2 - First fixes
5| 2024 723903a2df2

06 Jan | db0c88213ec745b2976debeae06e | Scope 1 - Second fixes
6| 2025 0035f4c91328

06 Jan | db0c88213ec745b2976debeaec06e | Scope 3 - First fixes
7| 2025 0035f4c91328

07 Jan | 8278334b5b0b8aba331fb2dc18ef6f | Scope 2 - Second fixes
8| 2025 5b162fe2e2

14 Jan | c64bcad3081377c64ac5663e10940 | Scope 3 - Second fixes and final version for all
9| 2025 6b50c6f2032 scopes

For the solidity smart contracts, the compiler version 0. 8. 28 was chosen.
The scope of the review is separated into the following subscopes:

Scope 1:

packages/ access-contracts/src/contracts/
Li mi t edAccessControl . sol
Pr ot ocol AccessManaged. sol
Pr ot ocol AccessManager . sol
packages/ core-contracts/src/contracts/
arks/
AaveV3Ar k. sol
Buf f er Ark. sol
libraries/
St or ageSl ot s. sol
Ark. sol

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 5


https://chainsecurity.com

Ar kAccessManaged. sol
Ar kConf i gProvi der. sol
Auct i onManager Base. sol
Confi gur ati onManaged. sol
FI eet Commander . sol
FI eet Commander Cache. sol
Fl eet Commander Conf i gPr ovi der . sol
FI eet Commander Pausabl e. sol
Raft . sol
Ti pJar. sol
Ti pper . sol
packages/ core-contracts/src/util s/ Cool downEnforcer/
Cool downEnf or cer . sol

Scope 2:

packages/ dut ch- aucti on/ src/
DecayFuncti ons. sol
Dut chAucti onLi brary. sol
Dut chAuct i onMat h. sol
packages/ core-contracts/src/contracts/
FI eet Commander Rewar dsManager . sol
packages/rewar ds-contracts/src/contracts/
St aki ngRewar dsManager Base. sol

Scope 3:

packages/ core-contracts/src/contracts/
ar ks/
Pendl ePt Or acl eAr k. sol
Adm ral sQuarters. sol
packages/ core-contracts/src/util s/ exchangeRat eProvi der/
Cur veExchangeRat ePr ovi der . sol
ExchangeRat ePr ovi der Base. sol
packages/ gov-contracts/src/contracts/
Sumrer Vest i ng\Wal | et . sol

2.1.1 Excluded from scope

All the files and contracts not explicitly listed are out of the scope of this review. Third-party contracts and
libraries are out of the scope of this review and are assumed to work as intended. In particular, the
PRBMath external library is out-of-scope. Integrated protocol, in particular Pendle, protocols used when
swapping on Pendle, and Curve, are out of the scope of this review and are assumed to work as
intended. The Pendl ePt Or acl eAr k is assumed to be only used with a USDe market on Arbitrum One
(which is not yet available), and the Curve pool is assumed to be the following:
https://arbiscan.io/address/0x1c34204fcfe5314dcf53be2671c02c35db58b4e3.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 6


https://arbiscan.io/address/0x1c34204fcfe5314dcf53be2671c02c35db58b4e3
https://chainsecurity.com

3 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

At the end of this report section, we have added subsections for each of the changes according to the
versions.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

3.1 Scopel

This scope focuses on the core of Summer Earn Protocol. Summer.fi offers an investment protocol,
where users can deposit their funds in a so called "fleet" which is bound to an underlying asset. Each
fleet is led by a Fl eet Cormander contract, which is the main entry point for users and liquidity
management. The keeper of a fleet is responsible for distributing the funds across multiple third-party
protocols to maximize the vyield. The protocol initially holds users' funds in a buffer to facilitate
withdrawals. Furthermore, accrued rewards from the third-party protocols are sold in a Dutch Auction.
The tokens used to buy these reward tokens are later reinvested into the protocol to accrue even further
yield and rewards. Keepers of the protocol can rebalance the funds distribution among third-party
protocols.

In what follows, we delve into different components of the system.

3.1.1 Access management system

Access management is accomplished through a Pr ot ocol AccessManaged contract. It queries a
Pr ot ocol AccessManager contract to fetch different roles in the system and through it enforce access
control. System roles can be divided into two categories:

1. Static roles: These roles are valid globally e.g., GOVERNOR ROLE, SUPER KEEPER RCLE,
GUARDI AN_RCOLE, and DECAY_CONTROLLER_RCLE.

2. Contract specific roles: These roles are authorized within a contract e.g., CURATOR_RCLE,
KEEPER_ROLE and COVWWANDER _ROLE.

GOVERNOR_ROLE is granted upon deployment of access management system and can grant or revoke a
set of well-specified static as well as contract specific roles during runtime. If an entity gets compromised,
it can renounce its roles.

3.1.2 Address oracle system

Confi gur ati onManaged keeps the address of the Confi gur ati onManager contract, which can be
queried to get some system-wide addresses e.g., treasury. GOVERNOR _ROLE has the authority to
modify these addresses.

3.1.3 Arks

Arks in the system can be categorized to two different types:

1. External Ark: when an Ar k is a wrapper for a third-party protocol. It should provide the following
main functionalities:

* sweep() to move arbitrary tokens to the Raf t (covered later) or to move the fleet's underlying asset
to the buffer ark.

*boar d() to receive the fleet's underlying tokens and deposit them into the underlying protocol.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com

« di senbar k() to withdraw from the underlying protocol and send the tokens back to the caller.
« har vest () to get the accrued rewards from the underlying protocol.

move() to withdraw from the underlying protocol and approve it for another ark and finally board it
into the destination ark.

Depending on the API of the underlying protocol the actual implementation of the aforementioned
functions can be different.

2. Buffer Ark: is unique for each fleet commander. All users' deposits and withdrawals go through this
entity. Which means that when users deposit in the system, their tokens are initially moved to the
buffer ark. The keeper will later decide to move them to other arks in order to actually invest in the
third-party protocols.

3.1.4 TipJar

Governance uses this contract to define the distribution of rewards from the active fleet commanders
among the receivers. Governance can:

* Add tip stream: a tip stream is valid and can be added if:

1. the recipient is not already registered

2. total allocation plus this allocation does not go beyond 100%.

* Remove tip stream: removal of a tip stream is possible if its locking period has passed.

« Update tip stream: an existing tip stream can be updated after its locking period has passed if total
allocation does not go beyond 100%. Upon updating a tip stream, governance can decide to shake
all the active fleet commanders:

By shaking a fleet commander, TipJar's shares of the fleet commander (explained in the next subsection)
are redeemed to receive the underlying tokens in return. The received tokens are then distributed with
respect to the allocation of tip streams among the receivers. If the total allocation is less than 100%, the
remaining amount gets transferred to the system's treasury.

Note that shaking a fleet commander can be done without governance intervention. However, shaking of
a specific fleet commander is possible only if it is active.

3.1.5 FleetCommander

This smart contract extends the functionality of an ERC4626 tokenized vault; it mediates the users'
interaction with the system (depositing, minting, redeeming, and withdrawing) as well as distributing
rewards. When a fleet commander gets deployed, one buffer ark gets automatically deployed for it as
well. This buffer ark is marked as withdrawable from the beginning.

The Fl eet Cormander contract exposes the following functionalities:

1. Accruing Tips: FleetCommander inherits the Tipper contract. It, exponentially with time, mints new
shares:

sharelncrease = currentSupply * (1 + SECONE”;?;_YE ) {currentTime ~lastTipTime) — cyrrentSupply
and increases the previous timestamp to the current time. The newly minted shares are sent to the

Ti pJar and as explained previously upon shaking the fleet commander, these shares get redeemed and
distributed among the tip stream receivers. It is important to notice that users are incentivized to
participate in the system if the tip rate and its growth are smaller than the weighted yields of the
integrated protocols and their growth.

All the operations of depositing or withdrawing from the fleet commander are preceded by accruing the
tips and we avoid mentioning them for each occurrence.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

2. Depositing/Minting: Users can deposit their assets (in form of the fleet underlying token) and
receive LP shares. The amount of assets a user can deposit is capped by the deposit cap of the
fleet commander. When depositing, the payment tokens of the user are first transferred to the fleet
commander, then the user receives their LP tokens, and finally the payment tokens get boarded
into the buffer ark.

3. Adjusting the buffer: Keepers can move funds from other arks to the buffer ark or vice versa. If
funds are moved from the ark, its balance should not drop below the configured minimum balance.
Through this operation, users' funds boarded in the buffer ark (upon depositing/minting) get
boarded to the third-party protocols.

4. Rebalancing: Keepers can perform rebalancing operations. When rebalancing, funds are moved
from a source ark to a destination ark through the following steps:

« assuring that both source and destination arks are active (destination's deposit cap is not
zero), and that in/outflow of the funds is below the defined thresholds.

« the buffer ark is not involved in the rebalancing (rebalancing the ark buffer is done by
adjusting it).

« disembarking from the source arks and boarding to the destination ark.

Rebalancing and adjusting the buffer ark cannot be done more frequently than once per cooldown time.
However, governance has the privilege to forcefully perform them. Rebalancing is also the only way to
disembark arks that are not marked as withdrawable.

5. Withdrawing/Redeeming: Withdrawal's call path depends on whether there are enough underlying
asset tokens present in the buffer Ark or not, given that the user possesses enough shares of the
vault. If the buffer ark has enough assets to cover this Withdrawal, the user's shares are burned,
and the respective amount of assets is transferred to the user. However, if what the user wants and
is allowed to withdraw is more than the buffer's assets, it iterates over the arks sorted according to
the value of their managed assets in an ascending order and tries to pay the assets back to the
user starting with the arks with the lowest amount of assets. An ark is considered to be
withdrawable if it does not require the keeper data. Otherwise, it would be skipped from the
withdrawal list.

Governance can extend the set of the arks orchestrated by a fleet commander. Each ark can be added to
only one fleet commander. If it does not require the keeper data, it gets marked as withdrawable and
would later be used when withdrawing from the system. Similarly, governance can remove an ark from a
fleet commander if the ark is active and does not hold any assets.

3.1.6 Raft

This contract manages auctions for arks orchestrated by its associated fleet commander. The
governance can sell ark tokens either by

1. sweeping the arbitrary ERC20 tokens in the ark

2. or by collecting the rewards of the underlying protocol

and sells them in a Dutch auction for some payment tokens. As the governance starts the auction, it
receives a portion of auction tokens as kicker reward. Note that the governance should be able to
manage its balance for arbitrary rewards token.

Users willing to buy these ERC20 tokens can call the buyTokens function on the Raft, which will
transfer the according amount of payment tokens to the Raf t contract. When the end time of the auction
comes, or when there are no more tokens to be sold in the auction, the auction gets settled. If the
underlying ark does not require keeper data, the Raft boards the received payment tokens back into the
ark.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 9


https://chainsecurity.com

3.1.7 Changes in Version 2

e anew role ADM RALS QUARTERS_ ROLE is defined in the Pr ot ocol AccessManager

e bearers of the GUARDI AN ROLE can have an expiration, this can be checked with the
i sActi veGuardi an() function from Pr ot ocol AccessManager . After expiry, they will still have
the role in the system, the expiry is enforced only through i sActi veGuar di an() .

« the Fl eet Commander Confi gProvi der does not store whether an ark is withdrawable or not
anymore, withdrawability is checked directly from the ark through the new
wi t hdr awabl eTot al Asset s() function

« the rebalance in- and outflows of arks are enforced over the whole rebalancing operations batch.
The limits for the flows are enforced over the absolute cumulative values for each direction
individually.

e sweeping and starting auctions from the Raft are permissionless. Sweepable tokens are
whitelisted, the set of sweepable tokens per ark is set by each ark's CURATOR_ROLE bearer. Each
(ark, rewardToken) has dedicated auction parameters, set by the ark's CURATOR _RCLE bearer.

« harvesting tokens on arks from the Raf t is permissioned
« the tipping formula has been updated to :

. (currentTime — lastTipTime) * tipRate
= —_ *
sharelncrease = (currentSupply — TipJarBalance) SECONDS_PER VEAR

3.1.8 Changes in Version 3

« only the registered commander, raft, or another active ark can board liquidity into an ark, not any
address with a commander role anymore

« the onl yConmmrander modifier has been updated to allow only the registered commander

3.2 Scope?2

This scope focuses on the Dutch Auction Library and the FleetCommanderRewardsManager, which are
used in the SummerFi Earn protocol.

3.2.1 Dutch Auction Library

The DutchAuctionLibrary implements logic for dutch auctions.

A dutch auction starts at the st art Pri ce and reduces the price over time, down to the endPri ce. The
auction ends when the endPr i ce is reached or when all tokens have been sold. Users can always buy
tokens at the current price. There are two price decay functions implemented: a linear decay function and
a quadratic decay function.

The contract exposes the following functions:

ecreat eAucti on() starts a new auction, given the auction parameters. A ki cker Rewar d is
given to the caller. The tokens to be auctioned should already be present in the calling contract.
The calling contract must implement access control or default values for the auction parameters.
Allowing arbitrary values for the auction parameters could lead to draining the contract, see How
to choose auction parameters

egetCurrent Price() computes the price for a given auction at the current point in time. It
uses bl ock. ti mest anp. The price decreases over time following the decay function selected
at the start of the auction.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

* buyTokens() allows any user to buy some of the auctioned tokens at the current price. The
user can specify an amount of tokens to buy. The contract takes the corresponding amount in
payment tokens and gives the user auction tokens. If there are still tokens left to sell, the auction
stays open, otherwise it is finalized.

efinalizeAuction() must be called after the auction is over. It will transfer any remaining
tokens to the unsol dTokensReci pi ent .

Note that these are internal functions acting on data in storage and memory that the derived contract
must call explicitly.

3.2.2 FleetCommanderRewardsManager

The FleetCommanderRewardsManager allows users to stake their FleetCommander tokens and earn
additional rewards. The rewards can be multiple different tokens. Reward amounts are decided by the
gover nor role. The tokens to be given as rewards must be present in the contract. The rewards are
distributed at a constant rate every second, proportionally to the amount of FleetCommander tokens
staked.

It exposes the following state-mutating functions:

* st ake() allows a user to deposit any amount of FleetCommander tokens into the contract and
start earning rewards.

e unst ake() allows a user to take back any amount of FleetCommander tokens. They will no
longer be earning rewards on these tokens.

e exi t() allows a user to take back all of their staked FleetCommander and claim their rewards
in one call.

* st akeOnBehal f O () allows anyone to stake FleetCommander tokens and give the resulting
stake to any receiver.

e unst akeOnBehal f O () allows anyone to unstake their own FleetCommander tokens and give
the unstaked tokens to any receiver. It also allows the AdmiralsQuarters contract to unstake any
user's tokens and direct the FleetCommander tokens to an arbitrary address (the current
implementation of AdmiralsQuarters unstakes the tokens to itself).

* get Rewar d() allows a user to claim their rewards in all of the distributed tokens.

e not i f yRewar dAnount () allows the governor to start distributing rewards. The tokens must
already be in the balance of the contract. If there is already a reward campaign running for the
same token, it is overriden but the duration of the new campaignh must be the same. If the token
has never been used as a reward token before, it is added to the reward token list.

* set Rewar dsDur ati on() allows the governor to change the reward duration for a given token.
This is not allowed if a campaign is still ongoing.

*renoveRewar dToken() allows the governor to remove a reward token from the contract and
delete the data in storage. This is not allowed if a campaign is still ongoing.

3.2.3 Changes in Version 2

* In FleetCommanderRewardsManager, the unst akeOnBehal f O function has been replaced
with unst akeAndW t hdr awOnBehal f OF . It takes a new parameter cl ai rRewar ds. When it
is settot r ue, the function claims the user's staking rewards in addition to unstaking for them.

» The FleetCommanderRewardsManager can no longer unstake funds to an arbitrary address. It
must always send the unstaked funds to the user address. This limits the trust requirements of
the AdmiralsQuartersRole. It can no longer drain all funds.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com

* In StakingRewardsManagerBase, r ewar dRat e is now internally stored scaled by WAD.

3.3 Scope3

This scope focuses on a new ark and two non-core contracts, and can be split into three subscopes,
where Summer.fi offers:

1. Pendl ePt Or acl eAr k: an ark to integrate with Pendle market by swapping the fleet's asset into
the market's Principal Token (PT)

2. Admi r al sQuart er s: a contract to batch user's interactions with Summer Earn Protocol

3. Summer Vest i ngWal | et : a vesting contract for the distribution of the Summer token with two
different vesting schedules

3.3.1 Pendl ePt O acl eAr k

This ark allows to enter a Pendle market by swapping the fleet's underlying asset into the market's PT
token. In Pendle, a market has an expiration date, when reached, the ark must "rollover” the liquidity to a
new market, set by governance, in order to continue collecting the yield. In addition to its asset (fleet's
underlying asset), the ark defines a mar ket Asset , which is the Pendle market's denomination asset.

erollover: rollover can be triggered by arbitrary addresses, or automatically when
boarding/disembarking liquidity. For a rollover to take place, the current market must be expired, the
new market must have been set. If not, rollover will revert. Furthermore, the new market's oracle for
Pendle LP pricing must be ready. If any of these conditions is not met, the rollover call will be a
no-op. Then, the rollover happens in three distinct steps:

1. the whole PT balance is first redeemed for the market's Standardized Yield (SY), and then
the SY are redeemed for mar ket Asset on the current market.

2. the market is updated on the ark. The SY, PT, and Yield Token (YT) are overwritten with
the tokens of the new market, the mar ket Asset is checked to be an input and an output
token on the new SY, and the new market's expiration date is recorded.

3. swap the mar ket Asset into the new market's PT with slippage protection with Pendle's
swapExact TokenFor Pt () action. The minimum amount out for slippage protection is
determined as follows:

amountmarketasset
PtToAssetRatependieTwaroracle

*(1 —slippagePercentage)

« boarding: performs rollover if needed. Boarding can only be done if the market expiration date is in
more than 20 days and the rate for asset/nar ket Asset is within some bounds in the
corresponding Curve pool. Swaps the boarded ark's asset into the market's PT with Pendle's
swapExact TokenFor Pt () action. The asset will first be swapped into mar ket Asset before
being used in Pendle. The keeper is trusted to set correct parameters for the swaps.

« disembarking: checks and does rollover if needed. Disembarking can only be done if the rate for
asset/ mar ket Asset is within some bounds in the corresponding Curve pool. If the rollover call
was a no-op, and the current market is expired, withdrawing from Pendle is also a no-op and
disembarking is likely to fail, as the anount will not be transferrable from the ark. In the case where
disembarking can be done, some of the ark's PT will be swapped for the amount of asset to be
disembarked with Pendle's swapExact Pt For Token() action. The PTs are first redeemed on
Pendle to some allowed output tokens on the market and then swapped into asset . The keeper is
trusted to set correct parameters for the swaps.

« withdrawal by governor: if the market is expired, the governance (GOVERNOR_ROLE) can redeem the
ark's PT for mar ket Asset in the same way as in point 1. of rollover, and transfer the nar ket Asset
to itself.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 12


https://chainsecurity.com

This ark is intended only for use with Pendle's USDe market on Arbitrum One as the ark requires an
exchange rate of 1: 1: 1 for mar ket Asset : SY: PT after market expiration to work properly.

3.3.2 Admral sQuarters

This contract is intended to be the entry point of Summer Earn Protocol for users, it allows to bundle
actions with the use of nul ti cal | . Users can do the following actions through the mul ti cal | function:

« deposit tokens to the contract
« withdraw tokens from the contract

« withdraw from their CompoundV3 position to the contract. Prior to this, the user must set the
Adm ral sQuarters as an allowed operator on CompoundV3.

« withdraw their AaveV3 position to the contract. Prior to this, the user must approve the aToken to
the Admi ral sQuarters.

e redeem their shares of an ERC4626 vault to the contract. Prior to this, the user must approve the
shares to the Admi ral sQuarters.

« swap tokens already present in the Admi r al sQuart er s through the linch router

« deposit tokens present in the Admi r al sQuart er s to an active Fl eet Commander . The shares are
minted to some r ecei ver address set by the user

» withdraw tokens from an active fleet. The withdrawn tokens are sent to the Adni ral sQuarters,
the user must include a token withdrawal multicall action to exit their tokens.

« stake their shares of a Fl eet Commander into the St aki ngRewar dsManager linked to that
FI eet Conmander

e unstake from a St aki ngRewar dsManager and withdraw their shares from the corresponding
FI eet Commander . The withdrawn tokens are sent directly to the user

The owner of the contract can rescue arbitrary tokens from the Admi ral sQuarters.

3.3.3 Summer Vest i ngWal | et

This vesting wallet extends the OpenZeppelin's Vesti ngWal | et by adding some protocol-specific
access management, especially a guardian role, granted to some arbitrary guardian address passed as
constructor parameter. It also redefines the vesting schedule with two separate modes:

e team vesting: after a cliff period of 180 days, releases the tokens after each new quarter over 2
years. On top of this, an address with the GUARDI AN_RCLE can set some goals with some token
amounts bound to the goals. An with the GUARDI AN_ROLE can the mark a goal as reached, this will
immediately release the token bound to that goal. The amounts related to the goals are not subject
to the vesting schedule.

e investor or ex-team vesting: after a cliff period of 180 days, releases the tokens after each new
quarter over 2 years.

An address with the GUARDI AN_ROLE can withdraw the amount of tokens bound to a goal that is not yet
reached. The contract is expected to be used to distribute one token only, the Summer token. The
contract is likely to not work for distributing tokens other than the main distributed token.

3.3.4 Changes in Version 2

e the Admi ral sQuart ers has been updated to allow users to claim their rewards at the same time
they unstake and withdraw their shares from a St aki ngRewar dsManager . This is done by adding
a new function unst akeAndW t hdr awOnBehal f Of () that calls the _unst ake() and optionally
_get Rewar d() functions in the St aki ngRewar dsManager in a single transaction.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 13


https://chainsecurity.com

3.4 Roles and Trust Model

Scope 1
 Users are fully untrusted

» Bearer of the GOVERNOR_ROLE is expected to be unique and be granted to a timelock contract
managed by a DAO (the governance), itself controlled by the Summer token holders. The
governance is generally trusted to act non-maliciously, but it is important to highlight that it can be
attacked or misused, see Power of Governance. This role is the most powerful of the system as it
can grant and revoke all the other roles, as well as taking critical actions in the protocol.

« Bearers of the SUPER_KEEPER_ROLE are expected to always act in the best interest of the protocol.
In particular, since they can act on every fleet, they are trusted to rebalance fleets' arks and adjust
buffers in order to maximize the return.

» Bearers of the GUARDI AN_RCLE are expected to always act in the best interest of the protocol. In
particular, they are trusted to pause and unpause Fl eet Conmmander s, and pause the Ti pJar
when necessatry.

» Bearers of the DECAY_CONTROLLER _ROLE. No contract makes use of this role in the scope of this
review. No assumption is made for this role.

* Bearers of the CURATOR_ROLE for a particular Fl eet Commander are expected to always act in the
best interest of the protocol. In particular, as they are responsible for assessing and managing risks,
they are trusted to set the risk management parameters of the fleet with the goal of maximizing the
yield and users' fund risk exposure in the different integrated protocols.

» Bearers of the KEEPER_ROLE for a particular Fl eet Cormander are expected to always act in the
best interest of the protocol. In particular, they are trusted to rebalance their fleet's arks and adjust
the buffer in order to maximize the return.

» Bearer of the COMMANDER ROLE for a particular Ar k is expected to be unique per ark, it is also
expected to be a Fl eet Cormander with a matching underlying asset.

Scope 2

In (Version 1), in the FleetCommanderRewardsManager contract, the AdmiralsQuartersRole had to be
given to a contract that returns any funds it unstakes using unst akeOnBehal f OF to the user it unstaked
for. See also Power of AdmiralsQuarters role. The role can be assigned by the accessManager role,
which is assumed to be governance. As a result, governance was trusted not to assign the role to a
malicious address, otherwise the staked funds can be drained. However, in the
FleetCommanderRewardsManager was refactored and can now no longer withdraw funds to an arbitrary
address. This limits the trust requirements of the AdmiralsQuartersRole. It can no longer drain all funds.
Governance can also assign the gover nor role. The gover nor should correctly assign rewards to be
distributed to stakers and should not add the staking token as a reward token. Aside from this, the
governor is untrusted.

The DutchAuctionLibrary is used by the Raft contract. The Raft contract is assumed to use good defaults
for auction creation and not allow arbitrary auction parameters. The defaults are set by the Raft's
gover nor role. If bad parameters are set, all funds in the Raft contract could be drained. As a result, the
gover nor (and roles that can assign the governor role) is fully trusted.

For the dutch auctions, it is assumed that there are at least two competitive bidders monitoring all
ongoing auctions.

Tokens used in the system are assumed to be compliant with the ERC20 standard, and not use a very
large (e.g. >24) number of deci nal s. The tokens should not implement special behaviors (e.g.,
rebasing, fees on transfer).

Scope 3

« Users are fully untrusted

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 14


https://chainsecurity.com

« Bearers of the CURATOR_ROLE for a particular FI eet Commander are expected to always act in the
best interest of the protocol. In particular, as they are responsible for assessing and managing risks,
they are trusted to set the risk management parameters of the fleet with the goal of maximizing the
yield and users' fund risk exposure in the different integrated protocols.

« Bearers of the GUARDI AN_RCLE in the vesting wallet are expected to always act in the best interest
of the recipients of the distributed token. In particular, they are trusted to manage the goals in a fair
manner.

 Bearers of the KEEPER_ROLE for a particular Fl eet Cormander are expected to always act in the
best interest of the protocol. In particular, they are trusted to rebalance their fleet's arks and adjust
the buffer in order to maximize the return.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 15


https://chainsecurity.com

4 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 16


https://chainsecurity.com

5 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 17


https://chainsecurity.com

6 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings 3

» Missing Token Transfer in SummerVestingWallet
» Pendle's totalAssets() Jumps Over Expiry
« Withdrawing From Expired Markets Can Drop the Shares Price

(Low)-Severity Findings &
« Boarding AaveV3Ark Can Fail(___ )
« Disembarking Can Only Take Place in Specific Market Conditions
« Rebalance Cooldown Can Be Circumvented ()

» Unremovable Reward Tokens ( )

6.1 Missing Token Transfer in

Sunmer Vest i ngWal | et
D (Viedium) (Version 1) (I

When setting a new goal, by calling Sunmrer Vest i ngWal | et . addNewGoal (), the goal Anobunt of the
vesting token gets transferred from the caller (with guardian role) to the vesting wallet.

CS-SMMRFI-EARN-001

Setting new goals can also be done during the deployment. However, in the constructor a transfer of the
vesting token with an amount equal to sum of all goal Anbunts is missing in comparison with
addNewGoal () logic.

Also, the contract has no guarantee that the ti neBaseVest i ngAnmount token amount will be in the
contract after deployment.

Risk accepted:

Summer.fi is aware of this behavior and answers:

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 18


https://chainsecurity.com

We rely on the fact that the tokens are transferred to the vesting wallet, after it's constructed
(tinme based and sum of goal anopunts) - in the SummerVestingWalletFactory. Additional change : there
is a new role -"FOUNDATI ON_ ROLE" managed centrally only this role is allowed to create new vesting
wal | ets.

6.2 Pendle'stotal Assets() Jumps Over Expiry
D) (Miedium) (Version 1) G

The function t ot al Asset s() returns the total asset held by the ark after expiry. However, if called
before expiry, a percentage of that is deducted. Therefore, when users deposit into the
Fl eet Commander will receive less shares after expiry. The extent to which it influences the shares
depends on all assets over all arks, the amount of assets in this Ark, and slippage percentage.

CS-SMMRFI-EARN-002

Risk accepted:

Summer.fi is aware of potential issues related to this and states:

Assuming a minor fraction of the fleet TVL allocated to Pendl e ark,
as well as keepers working in favor of the users ( regarding rollover
or funds withdrawal post expiry) we accept the risk.

6.3 Withdrawing From Expired Markets Can Drop
the Shares Price

(Design JCIT TN Risk Accepted

The governance is allowed to redeem the PT balance from an expired market via
Pendl ePt Or acl eAr k. wi t hdr awexpi r edMar ket (). If the redeemed tokens are not atomically
swapped and put back in the fleet without minting new shares, the price of the shares can significantly
drop, hurting users.

CS-SMMRFI-EARN-003

Risk accepted:

Summer.fi is aware of the potential issue and states:

For now no changes are applied, we trust governance woul d swap the tokens to
fleet asset and send to buffer ark. If that proves to be insufficient, we'll
i npl enent a generic swap nethod, allow ng for passing swap cal |l data and
transferring swap output tokens to the buffer ark.

6.4 Boarding AaveV3Ar k Can Falil
() (Low) (Version 1)( )

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 19


https://chainsecurity.com

CS-SMMRFI-EARN-004

When rebalancing the arks or adjusting the buffer, a strategy can be to board liquidity in the AaveV3Ar k.
But this can fail as Aave can implement a supply cap on its markets, or if the market is frozen or paused.

This can also affect the auction mechanism; as the auction is not able to board the AaveV3Ar k, no other
auction can be started for that (ar k, rewar dToken) pair.

Acknowledged:
Summer.fi is aware of this potential issue and states:

We push the responsibility of validating the protocol status on the keeper

6.5 Disembarking Can Only Take Place in Specific
Market Conditions

(D (Cow) (Version 1) (ETETED)

The function Pendl ePt Or acl eAr k. _swapPt For Fl eet Asset () succeeds only when the amount of
PT can be swapped into at least the amount _anount that should be disembarked. It is not guaranteed
that this condition is met when the keeper wishes to disembark liquidity and thus could have an effect on
the liquidity available at all time.

CS-SMMRFI-EARN-005

Risk accepted:

Summer.fi is aware of this potential issue and states:

Keeper should only try to disenbark at optinmal conditions.
Users cant directly withdraw fromthis ark, if liquidity is
required it's the keepers role to disenbark and rebal ance to buffer.

6.6 Rebalance Cooldown Can Be Circumvented
[Low] [Version 1][ ]

The functions rebal ance() and adjustBuffer() in Fl eet Coomander are protected by the
enf or ceCool down modifier to avoid being called too often by the keeper. This cooldown can be reset
by redeeming shares or withdrawing assets, even 0, effectively allowing the keeper to move funds
around -when funds allocation didn't or almost didn't change- before they should have been allowed to by
the cooldown period.

CS-SMMRFI-EARN-006

Acknowledged:

Summer.fi is aware of the issues and states:

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 20


https://chainsecurity.com

W leave it as is assuming KEEPER is not nmalicious and will not try to DOS the fleet. The nain
goal of this nechanic is to be able to rebalance a fleet that has been pushed out of bal ance
by ark w thdrawal .

6.7 Unremovable Reward Tokens
D (Low) (Version 1) )

The Fl eet Commander Rewar dsManager . r enoveRewar dToken() requires that the contract does not
hold any amount of the token to remove.

CS-SMMRFI-EARN-007

This is very unlikely to happen in practice since dust could be left in the contract due to rounding,
unclaimed rewards, or donations to the contract.

As a result, the governor will likely be unable to remove unused reward tokens, thus forcing users to
waste gas on them forever.

Code partially corrected:

r enoveRewar dToken() now allows removing a token if the balance is less than a dust threshold of
0.0001 token. This allows removing tokens with very small balances. However, it is likely that most
tokens will always have a larger balance than this.

It should be expected that most tokens can never be removed as rewards tokens. As a result, only a
small number of tokens should be added as rewards.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 21


https://chainsecurity.com

/ Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 5

» Setting Rewards Manager Stores a Different Address

» State Not Updated Before Staking

» Tip Not Collected

» Tipped Shares Not Taken Into Account

« Wrong Order Assumption in Withdrawable Arks Caching

(Medium)-Severity Findings 10
» Wrong Direction for Buffer Adjustment Checks
» Auctions Can Be Locked With Wrong Payment Token
+ Compounding Tip Model
» Default Auction Params May Not Include Fair Token Price
» Disembarking AaveV3Ark Can Fail
» Guardian Can Drain the Vesting Wallet
+ Max Rebalance Flows Can Be Circumvented
» Position Token Can Be Swept on Arks
» Unreached Goals Accounted After End of Vesting
» price_oracle Should Be Used to Read EMA Price

(Low)-Severity Findings 24
« Aave Can Be Withdrawn When Frozen
« Non Team Vesting Cannot Have Goals
« Positive Slippage in _swapPtForFleetAsset
» Calling sweep() on the BufferArk Moves All the Buffered Liquidity
« Code With No Effect
« FleetCommander Shares Can Be Locked in the Vault
» Inconsistent State of rewardTokensList
« Last Array Element Shortcut
* Misleading Function Name
* Misleading Variable Name
* Missing Events
* Missing Getter for Details
« Missing Input Sanitization

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 22



https://chainsecurity.com

+ Remove onlyCommander

» Revert Instead of Return

» Setting Duration of Vesting Wallet

« Simplify Redemption Post-Expiry

» Slippage Protection and Price Oracle in PendlePtOracleArk
» Staking Token Can Be a Reward Token

» Storage Not Properly Cleaned After Ark Removall

» Stronger Requirement for Commander Registration

» Tip Stream for address(0) Should Not Be Allowed

« Wrong Specifications

« AdmiralsQuarters Does Not Include a Callpath to getReward() on the StakingRewardsManager

Code Corrected
Informational Findings 12

 Code Consistency (SR SUCaE

» Arbitrary Harvest Data
» FleetCommander Address Could Be Immutable

« Incorrect Dust Threshold Calculation

+ Misnaming of Quadratic Decay Function
« Power of AdmiralsQuarters Role

+ Readability of Code

« Rewards Balance Check Counts Unclaimed Tokens
» Shares Left Behind When Shaking Fleet Commanders

» Unnecessary Casting
» UnstakeOnBehalfOf Does Not Claim Rewards

e Unused Code {ef): EReITzle =)

7.1 Setting Rewards Manager Stores a Different
Address
(Correctness | HEHWZZZTB] Code Corrected

In FI eet Commander Conf i gProvi der. set St aki ngRewar dsManager (), a
newSt aki ngRewar dsManager address is passed as a parameter, but another reward manager is
deployed and set as confi g. st aki ngRewar dsManager . This has the effect of storing an unexpected
address as the new staking reward manager.

CS-SMMRFI-EARN-038

Code corrected:

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 23


https://chainsecurity.com

The function has been renamed to updat eSt aki ngRewar dsManager () and does not take a
parameter. The updated address for the staking manager will be the one returned by
Fl eet Commander Rewar dsManager Fact ory. cr eat eRewar dsiManager () .

7.2 State Not Updated Before Staking
[ ][Version 1] Code Corrected
CS-SMMRFI-EARN-053

Fl eet Commander Rewar dsManager . st akeOnBehal f O (), and
Fl eet Commander Rewar dsManager . unst akeOnBehal f O () never call _updat eReward(), they
use the internal functions of StakingRewardsManagerBase, which do not have the updat eRewar d
modifier.

As a result, users can increase and decrease their balance without being checkpointed first, leading to
incorrect rewards calculations.

In particular, the user Rewar dPer TokenPai d of a new address will be zero when an address stakes for
the first time. If the stake function was correct, this value would be updated to the current
r ewar dPer TokenSt or ed before increasing the user’s balance. As a result, the user will be eligible for
staking rewards as if they had deposited at the creation time of the contract and never claimed their
rewards in the meantime.

This allows the following attack:

1. st akeOnBehal f O () using a new address
2. get Rewar d() to get rewards for the entire lifetime of the rewards contract

3. unst ake() to receive the stake back

This attack can be repeated an arbitrary number of times by using a new address each time. As a result,
it can be used to drain all rewards tokens held by the contract. In the special case where the staking
token is also registered as a rewards token, it could also be used to drain all staked tokens, see Staking
token can be a reward token.

Additionally, the r ewar dPer TokenSt or ed calculation will be incorrect, as it relies on updat eRewar d
being called before any change to the t ot al Suppl y value.

Code corrected:

The functions in FleetCommanderRewardsManager have been updated to call _updat eRewar d()
before changing the user balance. This solves the issue.

7.3 Tip Not Collected
(Correctness | High (ZIETI| Code Corrected)

The function Fl eet Commander . wi t hdr awFr onBuf f er () is missing the col | ect Ti p. This allows
users to withdraw their assets without diluting the shares and skip sending the tip to the Ti pJar,
effectively enabling them to withdraw more than what the system would expect and escape the fee.

CS-SMMRFI-EARN-051

Code corrected:

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 24


https://chainsecurity.com

The col | ect Ti p modifier was added to Fl eet Conmander . wi t hdr awFr onBuf fer ().

7.4 Tipped Shares Not Taken Into Account
(Correctness | HigH JNEETTI Code Corrected)

When computing assets or shares in the following functions of the Fl eet Conmander, the shares
corresponding to a potential tip to be collected are not taken into account:

CS-SMMRFI-EARN-025

* all the ERC4626 preview functions
e maxM nt (), maxBuf f er Wt hdraw( ), maxW t hdr aw( ) , maxRedeen( ), maxBuf f er Redeen()

This behavior could potentially break systems integrating with Summer Earn Protocol.

Code corrected:

The t ot al Suppl y() function has been overriden to add a virtual share amount, corresponding to the
tip, to the totalSupply when the tip in not collected previously in the callpath.

7.5 Wrong Order Assumption in Withdrawable
Arks Caching
(Correctness JHigh VXTI Code Corrected)

In the function FI eet Conmander Cache. _get Wt hdr awabl eAr ksDat a(), the _ar ksDat a coming
from get ArksDat a() are sorted by their total assets (ascending). In the following f or loop, the
conditioni == _arksData.length - 1 will make the last ark of the array wi t hdr awabl e, with the
assumption that the last ark will be the Buf f er Ar k. This assumption does not hold because of the arks
ordering mentioned above. This can have the effect that a non-withdrawable ark can be cached as
withdrawable if it is the last element of the array. In this case, the withdraw/redeem from arks process can
be temporarily blocked because the _di senbar k() call without disembarking data will fail for the
non-withdrawable ark.

CS-SMMRFI-EARN-032

Code corrected:

The sorting in _get Ar ksDat a() has been removed.

7.6 Wrong Direction for Buffer Adjustment
Checks
D (Viedium) (Version 2) (XTSI

The function FI eet Conmrander . _val i dat eAdj ust Buf f er () must ensure that enough liquidity stays
in the buffer after adjustment. In the loop, the direction of the adjustment is always read from
r ebal anceDat a[ 0], for all rebalancing operation touching the Buf f er Ar k. The code will consider the
direction of all buffer-related operations having the same direction as

CS-SMMRFI-EARN-036

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 25


https://chainsecurity.com

rebal anceDat a[ 0] .t oArk == _buffer ArkAddr ess, which could not even be a buffer-related
operation. The effect of this behavior is that _val i dat eAdj ust Buf f er () does not correctly track and
check the liquidity left in the buffer after the adjustment.

Code corrected:

The code has been corrected to ensure that the direction of the adjustment is correctly read from the
rebalance data at each iteration of the loop, i.e., reads from r ebal anceDat a[ i ] .

7.7 Auctions Can Be Locked With Wrong Payment
Token

(D (Widium) (Version 1) TSR

Auctions for an (ark, rewardToken) pair can be initiated with arbitrary payment tokens. If the
payment token for an ar k doesn't correspond to the ark's confi g. asset, the _board() will fail as
payrent Token will be approved but the ar k expects its confi g. asset .

CS-SMMRFI-EARN-027

This has an effect that the auction for the pair (ark, rewardToken) can never be settled and it
prevents any future auctions for that pair, locking the reward in the ark's position.

Code corrected:

The payment token is queried directly from the target ark.

7.8 Compounding Tip Model
7D (Viedium) (Version 1) (CXIYSRET)

The current model for the tip is a compounding exponential system applied to the number of shares of the
vault. If it gets used with systems that have a linear yield growth model, the shares may be losing value
faster than the farmed yield, leading to users losing money.

CS-SMMRFI-EARN-043

Code corrected:

Summer.fi has changed the tip model from a compounding exponential function to a linear function.

7.9 Default Auction Params May Not Include Fair
Token Price

(Design (T TONZRY] Code Corrected

The default auction start and end price are fixed and are applied regardless of the payment and reward
token. This can lead to two extreme cases:

CS-SMMRFI-EARN-026

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 26


https://chainsecurity.com

1. The starting price is too low for the reward token and the reward token will be sold for less than
what it should

2. The final price is still too high for the reward token and will not be bought

Code corrected:

Auctions parameters are now set by the curator of the target ark's commander. A new mapping stores
the auction parameters for each (ark, rewardToken) pairs. The curator is expected to correctly
update the parameters based on market conditions.

7.10 Disembarking AaveV3Ar k Can Fail
(Design LI ICLETIRY] Code Corrected)

If there is not enough liquidity in the target market or the market is paused by Aave, disembarking from
AaveV3Ark can fail and effectively DOS the redeem/withdraw from arks mechanism, as well as
preventing rebalancing from that ark. If this happens, users' funds will be locked until the liquidity crisis or
pausing is over, and the vault will be temporarily insolvent.

CS-SMMRFI-EARN-055

Code corrected:

The AaveV3Ar k has been updated with the _wi t hdr awabl eTot al Asset s() function. It returns O if
the market is not active, paused, or frozen, and otherwise returns the minimum between the ark's
aToken balance and the balance of underlying token in the aToken to determine the maximum amount
that can be withdrawn from the AaveV3 market.

7.11 Guardian Can Drain the Vesting Wallet
7D (Viedium) (Version 1) (CXIYSIRT)

A user holding GUARDI AN_RCLE can call recal | Unvest edTokens() to transfer the unreached goals
of the wvesting, if the wallet is in team vesting mode. The reason behind it, is that
recal | Unvest edTokens() calls _cal cul at eUnvest edPer f or nanceTokens(), which iterates
over the array goal amounts and sums up those for which the goal is not reached. However, during this
call path the corresponding goal Anbunts are not reset to 0. Hence, a second call to
recal | Unvest edTokens() can still accumulate the already claimed unvested amount.

CS-SMMRFI-EARN-062

Code corrected:

The code has been updated to reset the goal Anbunts to O during the callpath of
recal | Unvest edTokens().

7.12 Max Rebalance Flows Can Be Circumvented

(D (Miedium) (Version 1) CTEEIEE)

CS-SMMRFI-EARN-048

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 27


https://chainsecurity.com

The checks for maxRebal anceQut f | ow and maxRebal ancel nf | ow in
_val i dat eReal | ocat eAsset s() are done per rebalancing pair and not over the whole rebalancing
batch. This allows the keeper to split a rebalancing, overshooting the limits, in smaller parts to circumvent
the in/out flow checks.

Code corrected:

The codebase has been updated to keep track of the in- and outflows per ark with a caching mechanism.
The rebalancing fails as soon as one of the cumulative flow value for an ark exceeds the maximum
allowed.

7.13 Position Token Can Be Swept on Arks
7D (Viedium) (Version 1) (XIS

Nothing prevents the position tokens of an ark to be targeted by a sweep() (for example, Ark is the
owner of aToken in case of AaveV3Ar k). If this happens, the value of the vault's shares can significantly
drop, allowing users to buy cheap shares. The price of the shares can also jump if the token is sold in an
auction and the payment token is boarded. While the likelihood of this happening is limited since it would
need to be triggered by the governor, the impact of such an attack/mistake is significant.

CS-SMMRFI-EARN-063

Code corrected:

The sweepable tokens are now whitelisted for each ark. The whitelisting per ark is managed by the
curator of the target ark's commander.

7.14 Unreached Goals Accounted After End of

Vesting
(Correctness | ZTITWCETTRY Code Corrected)

In Summrer Vesti ng\Wal | et. _vestingSchedul e(), if end of the wvesting is reached,
total Al | ocati on is returned (which is all the vesting token held by this contract + the released vesting
tokens), although still some goals might be unreached after the end of vesting. The amounts related to
those goals are released after the end of the vesting period.

The contract does not simply release the total Al l ocati on if the end of the vesting is reached.
Instead, it uses the same logic as when the vesting is not ended yet, but this means t i neBasedVest ed
will be greater than t i neBasedVest i ngAnount and thus the missing amount will be taken from the
funds allocated for the performance goals.

CS-SMMRFI-EARN-034

Code corrected:

The _cal cul at eTi neBasedVesti ng function caps the time based vested amount to the
ti meBasedVest i ngAnount set during deployment.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 28


https://chainsecurity.com

7.15 price_oracl e Should Be Used to Read EMA
Price

(D (Widium) (Version 1) (CEIIEED)

The function erma_price() may return a stale value for the EMA price. To read the EMA price,
pri ce_oracl e() should be used instead.

CS-SMMRFI-EARN-033

Code corrected:
The code has been updated to use pri ce_or acl e() instead of ema_price().

7.16 Aave Can Be Withdrawn When Frozen
D) (Low) (Version 2) (AL

The AaveV3Ark returns 0 as withdrawable assets when the market is frozen, but it is possible to
withdraw from a frozen market.

CS-SMMRFI-EARN-047

Code corrected:

The code has been corrected to allow withdrawing from a frozen market by returning the withdrawable
amount instead of O.

7.17 Non Team Vesting Cannot Have Goals

(Coreectness YRR Code Corrected)

In the constructor of Summrer VestingWal |l et the code reverts if the vesting type is not
I nvest or ExTeanVest i ng and the goals array is not empty. However, there exist only two types of
vesting, so the i f - el se callpath will never be taken, as ! | nvest or ExTeanVest i ng is TeanVest i ng,
which is taken care of in the first i f branch. The code should revert if the vesting type is
I nvest or ExTeanVest i ng and some goals are set.

CS-SMMRFI-EARN-050

Code corrected:

The constructor has been updated to revert if the vesting type is | nvest or ExTeanmVest i ng and the
goals array is not empty.

7.18 Positive Slippage in

_swapPt For Fl eet Asset
7D (Low) (Version 2) Y SIRTD)

CS-SMMRFI-EARN-060

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 29


https://chainsecurity.com

In  _swapPt For Fl eet Asset, there is a positive slippage guard, that reverts if
exactPtIn < m nPt Anount .

It (exactPtln m nPt Anount exactPtln max Pt Anmount )
revert |nvalidAnount();

However, exchanging less PT tokens for the asset is desirable.

Code corrected:
Summer.fi has removed this check.

7.19 Calling sweep() on the Buf f er Ark Moves
All the Buffered Liquidity
D) (Low) (Version 1) (XL

When sweep() is called on the Buf f er Ar k, the first thing done by the function is boarding again the
whole liquidity of the ark. This incurs avoidable gas cost and a misleading Boar ded event indicating a
significant amount of asset entered the system.

CS-SMMRFI-EARN-035

Code corrected:

A condition has been added in Ark.sweep() to skip boarding the fleet asset if the ark is the
Buf f er Ar k.

7.20 Code With No Effect
7D (Low) (Version 1) CXNSIZET)

In Raft. _board(), acalltol Ark(ark).requiresKeeperData() is done but the returned value is
never read nor used, rendering this call useless and wasting gas.

CS-SMMRFI-EARN-030

Code corrected:

The callto | Ark(ark).requiresKeeper Dat a() was removed.

7.21 FleetCommander Shares Can Be Locked Iin
the Vault
7D (Low) (Version 1) Y SIRTD)

The Fl eet Cormander overrides the ERC20. t ransf er () function to block all transfers, except if the
caller is the rewards manager, or if the destination is the Fl eet Cormander itself. If shares are

CS-SMMRFI-EARN-039

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 30


https://chainsecurity.com

transferred to the vault (FI eet Conmmander ), they will be locked as there is no function to transfer them
out again.

Code corrected:
The special rule for the Fl eet Commander as a recipient has been removed.

7.22 Inconsistent State of rewardTokensList

D (Lo (Version 1) CIXTRTTD)

In StakingRewardsManagerBase, reward tokens should be added to the _rewardTokensLi st by
calling not i f yRewar dAmount () . This sets its reward duration from zero to a non-zero value.

CS-SMMRFI-EARN-056

However, Fl eet Commander Rewar dsManager . set Rewar dsDur ati on() can also be used on a
token that was not added as a rewards token, to set its rewardsDuration. If
not i f yRewar dAmount () is subsequently used, it will treat it as an already added reward token due the
check on r ewar dsDur at i on, but it will not be in _r ewar dTokensLi st, meaning that rewards cannot
be updated and claimed.

It should be possible to recover from this situation by waiting for the end of the reward period and
resetting r ewar dsDur at i on. Funds in the rewards manager can always be distributed as rewards
again.

Code corrected:

A check has been added in set Rewar dsDur at i on() . Now, only tokens that were properly added can
be passed.

7.23 Last Array Element Shortcut
7D (Low) (Version 1) (CXNSIZET)

In the Fleet Coomander Cache, the functions _withdrawabl eTot al Asset s() and
_get Wt hdrawabl eAr ksDat a() have a special condition in their loop for the last element of the array.
This check for the buffer ark is however redundant (as the buffer ark has withdrawable asset equal to its
total assets and will be considered as a withdrawable ark if there are any assets kept in it).

CS-SMMRFI-EARN-037

Code corrected:

In both of the above mentioned functions, the special check for the last element of the array has been
removed. Being withdrawable is checked only via the withdrawable assets of an ark being non-zero.

7.24 Misleading Function Name

(D (Low) (Version 1) IR

CS-SMMRFI-EARN-052

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 31


https://chainsecurity.com

For the sake of code readability and maintainability, variable names should mirror the meaning of the
value they hold.

1. the function Pendl ePt Or acl eAr k. _redeentl eet Asset Fr onPt Post Expi ry() is redeeming
market asset, not fleet asset

2. the function Cur veExchangeRat eProvi der. _appl yEmaRange() is used on EMA price, but
also on spot price

Code corrected:
1. FIX
2. FIX

7.25 Misleading Variable Name
D) (Low) (Version 1) (XL

For the sake of code readability and maintainability, variable names should mirror the meaning of the
value they hold.

CS-SMMRFI-EARN-058

*In Auct i onManager Base, the variable next Auct i onl d should hold the id of the next auction to
be started, but the actual id of the next auction is next Auct i onl d+1.

* In Fl eet Conmmander Conf i gPr ovi der, the constant MAX_REBALANCE_COPERATI ONS is used as
initial value for maxRebal anceQper at i ons, but then naxRebal anceCQper at i ons can be setto a
value greater than MAX_REBALANCE_OPERATI ONS.

Code corrected:
* FIX: The next Auct i onl d variable has been renamed to cur r ent Aucti onl d

* FIX: The MAX REBALANCE OPERATIONS is now used to sanitize the new value of
maxRebal anceQper ati ons

7.26 Missing Events
7D (Low) (Version 1) CXSIZRT)

Events should be emitted when an important state change happens on-chain. Ideally, an observer should
be able to reconstruct the state by observing the events. The following state changes should emit an
event:

CS-SMMRFI-EARN-042

Scope 1:

1. the constructor of Auct i onManager Base should emit the
Auct i onDef aul t Par anet er sUpdat ed() event

2. the constructor of Fl eet Commander Conf i gPr ovi der should emit the Ar kAdded() event for the
Buf f er Ar k

3. the constructor of Fl eet Commander Pausabl e should emit the M ni nunPauseTi neUpdat ed()
event

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 32


https://chainsecurity.com

Scope 3:

1. When adding new goal, through either addNewGoal or the constructor of
Sunmmer Vest i ngWal | et

2. When marking a goal as reached (via mar kGoal Reached())
3. When transferring vesting tokens for unreached goals inr ecal | Unvest edTokens()

4. In the constructor of ExchangeRat ePr ovi der () after setting the basePri ce the corresponding
event BasePr i ceUpdat ed does not get emitted

Code corrected:
Scope 1:
1. FIX: the default parameters have been removed
2. FIX: the constructor has been updated to emit the Ar kAdded() event for the Buf f er Ar k
3. FIX: the constructor has been updated to emit the M ni munmPauseTi neUpdat ed() event
Scope 3:
1. FIX
2. FIX
3. FIX
4. FIX

7.27 Missing Getter for Detalls
7D (Low) (Version 1) CXESIZET)

The contract Ar kConf i gPr ovi der implements getters for all the fields of the Ar kConf i g struct except
fordetai | s.

CS-SMMRFI-EARN-029

Code corrected:

A getter for det ai | s has been added.

7.28 Missing Input Sanitization
7D (Low) (Version 1) (XS

Scope 1.

CS-SMMRFI-EARN-059

1. In the constructor of ArkConfi gProvi der, parans. maxDeposit Per cent ageOf TVL is not
checked to be <= 100%

2.In ArkConfi gProvider. set MaxDeposi t Percent ageOf TVL(), the new value is never
checked to be <= 100%

3.In Cool downEnf or cer. updat eCool down(), the new value is never checked to be in a
reasonable range

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 33


https://chainsecurity.com

. In the constructor of Ti pper,initial Ti pRat e is never checked to be in a reasonable range

5.In Aucti onManager Base, the default auction parameters are never sanitized in the

10.

const ruct or and when updated with _updat eAuct i onDef aul t Par anet er s()

.In TipJar the value of | ockedUntil Epoch is never sanitized in addTi pStreanm() or

updat eTi pStream) .

.In Fl eet Commander Pausabl e, the _newM ni munPauseTi me is not checked to be in a

reasonable range when updating the minimum pause time.

. In FI eet Conmander Conf i gProvi der. _addAr k() , the new ark's asset is not enforced to match

the fleet's underlying asset.

. The Fl eet Commander allows users to mint, deposit, redeem and withdraw 0 values. This

consumes gas and emits unnecessary events. Disallowing 0 values can also protect the users
against redeeming their shares for 0 assets if the vault is manipulated for example.

In Fl eet Commander Confi gPr ovi der. set MaxRebal anceQper ati ons(), the input variable
newiVaxRebal anceQper at i ons is not enforced to be at most MAX_REBALANCE OPERATI ONS.

Scope 3:

1.

In the constructor of CurveExchangeRat eProvi der there is no sanity check enforcing
_curveSwap is not addr ess(0) .

. The function ExchangeRat eProvi der._set BasePrice() does not enforce the new

basePri ce to be non-zero

. The constructor of CurveExchangeRat eProvi der also does not enforce that baseToken

belongs to the cur veSwap.

4. In the constructor of Summrer Vest i ng\Wal | et, _t oken is not enforced to be non-zero.

5. In the constructor of Pendl ePt Or acl eAr k, the r out er, mar ket , and or acl e are missing a zero

10.

11.

address check

. In the constructor of Sumrer Vest i ng\Wal | et , it is possible to set goals even if the vesting type is

not Teanmvest i ng

. The function Sunmmer Vest i ng\al | et . addNewCGoal () allows the guardian to set goals even if

the vesting type is not TeamVest i ng

. In the function Pendl ePt Or acl eAr k. _swapFl eet Asset For Pt (), i nput . t okenl n should be

enforced to be equal to confi g. asset

.In the function Pendl ePt Oracl eArk. _swapFl eet Asset ForPt (), input.netTokenln

should be enforced to be equal to _anount . If not equal, the price of shares may drop because
some fleet asset will stay in the ark.

In the function Pendl ePt Or acl eAr k. _swapPt For Fl eet Asset (), out put .t okenCQut should
be enforced to be equal to confi g. asset

In Pendl ePt Or acl eAr k. set Or acl eDur ati on, the new or acl eDur at i on should be below a
certain threshold that makes sense for the system

Code corrected:

Scope 1:

1.
2.

FIX: the _par ans. maxDeposi t Per cent ageOf TVL is checked to be inthe [ 0% 1009 range

FIX: the new value for maxDeposi t Per cent ageOf TVL is checked to be in the [0% 100%
range

Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 34


https://chainsecurity.com

3. FIX: the cooldown value is checked to be between 1 minute and 1 day in the constructor and in the
update function

4. FIX: the initial tip rate is enforced to be at most 5% in the constructor and in the update function
5. FIX: the default auction parameters have been removed

6. FIX: the function has been updated to enforce a maximum locking time of 750 days in both
functions

7. FIX: the minimum pause time is enforced to be at least 2 days in the constructor and the update
function

8. FIX: the _addAr k() function has been updated to check that the ark's asset and the fleet's asset
match

9. FIX: zero checks have been added to the mint, deposit, redeem and withdraw functions
10. FIX: the newivaxRebal anceQper at i ons checked to be at most MAX_REBALANCE COPERATI ONS

Scope 3:
. FIX
FIX
FIX
FIX
FIX
FIX
FIX
FIX
. FIX
. FIX
. FIX

© © N o o 0w DN PE

T
= O

7.29 Remove onl yCommander

(Desig (DB Code Corrected)

The function ArkConfi gProvi der. unregi sterFl eet Coomander () has the onl yCommander,
given that only the current commander can unregister himself, this modifier is redundant.

CS-SMMRFI-EARN-044

Code corrected:

Summer.fi has removed this redundant modifier.

7.30 Revert Instead of Return

(D (Low) (Version 1) ISR

In the function Ti pJar . _shake, the function reverts whenever shar es==0 or wi t hdr awnAsset s==0.

CS-SMMRFI-EARN-028

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 35


https://chainsecurity.com

Code corrected:

In Ti pJar. _shake() Summer.fi has changed the code to return early by emitting Ti pJar Shaken
events with t ot al Di st ri but ed parameter set to 0.

7.31 Setting Duration of Vesting Wallet
7D (Low) (Version 1) (XL

In Summer VestingWal l et, durationSeconds is a constructor's input parameter. In
_cal cul at eTi neBasedVest i ng(), however, it is assumed that the duration of the vesting is 2 years
(8 quarters). Therefore, it is better to hardcode the duration of vesting to 2 years to make the code
consistent and avoid any mistake upon deployment.

CS-SMMRFI-EARN-046

Code corrected:
The duration of the vesting is hardcoded to 2 years in the constructor of Sunmrer Vest i ng\Wal | et .

7.32 Simplify Redemption Post-Expiry
7D (Low) (Version 1) CXSIZET)

In _redeentl eet Asset Fr onPt Post Expi ry(), the two-step redemption of firstly redeeming PY to SY
and then redeeming SY can be simplified by using | PAI | Acti onV3. r edeenPyToToken().

CS-SMMRFI-EARN-041

Code corrected:
Summer.fi has replaced the two-step redemption with a simple call:
| PAI | ActionV3(router).redeenPyToToken(
address(this),
addr ess(YT),

pt Anmount ,
t okenCQut put)

7.33 Slippage Protection and Price Oracle in
Pendl ePt Or acl eAr k
7D (Low) (Version 1) Y SIRTD)

The shoul dTr ade and shoul dBuy modifiers call _shoul dTr ade() to ensure the EMA price fetched
from the Curve stableswap pool is in a preset range before a swap is executed on an arbitrary system. In
the case where either the curve pool or the arbitrary system (AMM) is manipulated, the _shoul dTr ade

CS-SMMRFI-EARN-057

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 36


https://chainsecurity.com

check may not be sufficient to protect the system against slippage, as the Curve EMA price might not
reflect the swap price.

Code corrected:

Summer.fi has added an extra level of protection by considering the expected amount of PT by relying on
the conversion rate between PT and the underlying asset provided by the oracle. A small
sl i ppagePer cent age is however tolerated.

7.34 Staking Token Can Be a Reward Token
Security (ET)ZITB] Code Corrected)

In St aki ngRewar dsManager Base, the governor can add the staking token itself as a reward token.
This could lead to insolvency by redistributing the staked tokens held in the contract.

CS-SMMRFI-EARN-061

The following check is ineffective in this scenario since the contract holds the users' tokens in its balance:

ui nt 256 bal ance rewar dToken. bal anceOf (address(this));
i f (rewardTokenDat a. r ewar dRat e bal ance rewar dTokenDat a. r ewar dsDur at i on)
revert Provi dedRewar dTooHi gh();

Code corrected:

The notifyRewardAnount function in FleetCommanderRewardsManager now overrides the
StakingRewardsManagerBase and checks that the staking token cannot be added as a reward token.

7.35 Storage Not Properly Cleaned After Ark
Removal

(Desig \(EJUZZZTRY] Specification Changed)

When an ark is removed from the FI eet Commander , it is properly removed from the active arks but not
from the i sAr kW t hdr awabl e mapping if necessary.

CS-SMMRFI-EARN-054

Specification changed:

The FI eet Commander does not store whether an ark is withdrawable or not anymore. Instead, the ark
will provide this information when necessary.

7.36 Stronger Requirement for Commander
Registration

(Design (FOETRY] Code Corrected

CS-SMMRFI-EARN-045

@ Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 37


https://chainsecurity.com

In the current implementation, the FI eet Conmander Conf i gPr ovi der is responsible for checking that
a potential new ark does not already have a registered commander. This check can be done directly in
the ark, ie. have ArkConfigProvider.registerFleetComrander () requiring  that
confi g. commander is address(0).

The check can be extended to Ar kConf i gProvi der . unr egi st er Fl eet Commander () checking that
the current conf i g. conmander can unregister (is the caller).

It would be a stronger condition, as in this way, if there is already an active commander for an ark, it will
not get overwritten by another address holding COWANDER_ROLE.

Code corrected:

Summer.fi has corrected this issue by adding two checks at the beginning of the two aforementioned
functions:

function registerFl eet Commander () external onlyCommander {
i f (config.comuander address(0)) {
revert Fl eet Commander Al r eadyRegi stered() ;
}
confi g. commander nmsg. sender ;
em t Fl eet Conmander Regi st ered(nsg. sender) ;

}
function unregisterFl eet Conmander () external onlyCommander {
i (_nmsgSender () confi g. commander) {
revert Fl eet Commander Not Regi stered() ;
}
confi g. commander address(0);
em t Fl eet Conmander Unr egi st ered( nsg. sender) ;
}

7.37 Tip Stream for addr ess(0) Should Not Be
Allowed
(Design [(FTVEETTB] Code Corrected

If addr ess(0) is added as a tip stream recipient, it becomes impossible to call r emoveTi pSt ream()
or updateTipStream() on it because of _validateTi pStreanm(). Through the function
addTi pStrean() on can still update the allocation for addr ess(0), but it is not possible to reset its
al | ocat i on to zero (because of the check in _val i dat eTi pStreanmAl | ocati on()).

CS-SMMRFI-EARN-040

Code corrected:

Input sanitization has been added to forbid addr ess(0) as tip stream recipient.

7.38 Wrong Specifications
(Correctness J(ET)NZIITB) Specification Changed)

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 38


https://chainsecurity.com

CS-SMMRFI-EARN-049

Non-exhaustive list of wrong or incomplete specifications:

1.

The specification for the Protocol AccessManaged contract corresponds to the
Pr ot ocol AccessManager .

. The constructor of Prot ocol AccessManager specifies that the gover nor address should
receive all three GOVERNOR ROLE, GUARDI AN ROLE, DEFAULT_ADM N_ROLE, but only
GOVERNOR_ROLE is given.

. The specification for | ArkAccessManaged mentions ArkAccessControl instead of
| Ar kAccessManaged

. The specification of Raf t mentions it should manage auctions for the harvested rewards as well as
the buy-and-burn mechanism, but the Raf t only manages the auctions for the harvested rewards.

5. The natspec of FI eet Conmrander Conf i gPr ovi der is missing a title.

6. Fl eet Commander . r ebal ance() mentions "Validate that no operations are moving to or from the

bufferArk" above the call to _val i dat eReal | ocat eAl | Asset s() . This, however, corresponds
to the call to _val i dat eRebal ance().

. The constant DEFAULT_MAX REBALANCE_OPERATI ONS is never used, in spite of being
mentioned in | Fl eet Commander :

@lev The nunber of operations in a single adjustBuffer call is limted to DEFAULT_NMAX_REBALANCE OPERATI ONS

1.

The specs of Protocol AccessManaged are missing the description of the
ADM RALS QUARTERS ROLE

.The specs of Protocol AccessManager are missing the description of the
ADM RALS QUARTERS ROLE

.The specs of FleetComuanderCache. _w t hdrawabl eTot al Assets() mention the
"correctness of the isWithdrawable function" instead of the wi t hdr awabl eTot al Asset s function

. The specs of Fl eet Coormander Cache. get Wt hdr awabl eAr ksDat a() mention the "the
isWithdrawable function" instead of the wi t hdr awabl eTot al Asset s function

.The specs of FleetConmander Confi gProvider.onlyActiveArk() specify "If the
arkAddress is the buffer ark, it will not revert". But the onl yActi veAr k() function will revert for
the buffer ark.

. The specs of FlI eet Commander Cache. _get ArksDat a() mention the sorting mechanism, but
sorting has been removed from the function

Specification changed:

7

S

. FIX: the specs have been updated to match Pr ot ocol AccessManaged
. FIX: the specs have been updated to match the implementation

. FIX: the specs title has been changed to | Ar kAccessManaged

. FIX: the specs have been updated to match the implementation

. FIX: the specs title has been added

FIX: the comment has been removed and the implementation of
_val i dat eReal | ocat eAl | Asset s() updated

. FIX: DEFAULT_MAX_REBALANCE_CPERATI ONS has been removed

Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 39


https://chainsecurity.com

1. FIX: the specs have been updated to include ADM RALS_QUARTERS_ROLE

2. FIX: the specs have been updated to include ADM RALS QUARTERS ROLE

3. FIX: the specs have been updated to mention w t hdrawabl eTot al Assets instead of
i SWthdrawabl e

4. FIX: the specs have been updated to mention w thdrawabl eTot al Assets instead of
i SWthdrawabl e

5. FIX: the specs have been updated to match the implementation

6. FIX: the specs have been updated to match the implementation

7.39 Adm ral sQuarters Does Not Include a
Callpath to get Rewar d() on the

St aki ngRewar dsManager
7DD (Low) (Version 1) (CXISIEED)

Although the Adni ral sQuart ers can wrap users' calls to the staking and unstaking functionalities of
the staking rewards manager, it does not include the get Rewar d() function.

CS-SMMRFI-EARN-031

Code corrected:

Admi ral sQuarters. unst akeAndW t hdr awAsset s() introduces a new parameter, namely
cl ai mRewar ds, which when set, makes the rewards manager get rewards for the caller when
unstaking.

7.40 Code Consistency
[Informational] [Version 2]

Across the codebase Const ant s. MAX_UlI NT256 is usually used to represent t ype( ui nt 256) . max,
except in  TipJar._shake(), AaveV3Ark. harvest(), and the constructor of
Fl eet Commander Conf i gProvi der, where t ype(ui nt 256) . nax is used directly.

CS-SMMRFI-EARN-016

Code corrected:

In all of the aforementioned cases Constants. MAX U NT256 is used to represent
t ype(ui nt 256) . max.

7.41 Arbitrary Harvest Data
(Informationalj [Version 1]

CS-SMMRFI-EARN-024

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 40


https://chainsecurity.com

The har vest () function of the Raf t can be called with arbitrary r ewar dDat a. It is important to sanitize
that data in the arks using it, otherwise an attacker may be able abuse this data to steal reward tokens.

Code corrected:

The harvest () function has been updated with a onl yGover nor modifier and is thus now
permissioned.

7.42 FleetCommander Address Could Be
Immutable

[Informational] [Version 1]

The FleetCommanderRewardsManager defines the f | eet Commander address as a state variable.

CS-SMMRFI-EARN-013

It is only set once in the constructor and never updated, so it could be marked as immutable to save gas.

Code corrected:

The f | eet Conmmander address has been marked as immutable.

7.43 Incorrect Dust Threshold Calculation

[Informational] [Version 1]

In St aki ngRewar dsManager Base. r enoveRewar dToken(), the comment states that the dust
threshold should be 0.01% of one token. However, in the case where the token's decimals are known
and are more than 4, It is computed as 100 * (10 ** (decimals - 4)), whichis 1% of one token.

CS-SMMRFI-EARN-014

Code corrected:

The dust threshold is now correctly computed as 10 ** (decimals - 4).

7.44 Misnaming of Quadratic Decay Function

[Informational] [Version 1]

The DecayFunction library provides a DecayType called Exponent i al decay. However, the provided
functionality is actually a quadratic decay function, which has different properties.

CS-SMMRFI-EARN-018

To avoid confusion, the DecayType should be renamed.

Code corrected: Exponenti al has been renamed to Quadr ati c.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 41


https://chainsecurity.com

7.45 Power of AdmiralsQuarters Role

[Informational] [Version 1] Specification Changed

The AdmiralsQuartersRole in FleetCommanderRewardsManager is a trusted role that is expected to be
given to the AdmiralsQuarters contract by governance. However, governance can in principle give this
role to any address.

CS-SMMRFI-EARN-020

The address with the AdmiralsQuartersRole can call unst akeOnBehal f O () to unstake any user's
tokens from the FleetCommanderRewardsManager and give them to any address. As a result, it can
drain all staked funds.

This role is powerful and should only be given to trusted contracts.

Specification changed:
In (Version 2), the admiral's quarters can unstake users, but cannot recover their principal. As a result, this

role is much less powerful than in (Version 1),

7.46 Readability of Code
[Informational] [Version 1]

Admi ral sQuarters. swap() accomplishes the following two checks:

CS-SMMRFI-EARN-019

if (

address(fromloken) addr ess(0) address(t oToken) addr ess(0)
) A

revert |nvalidToken();
}
i f (assets 0) revert ZeroAnount();

which can be done with the internal functions _val i dat eToken() and _val i dateAnount ()
respectively.

Code corrected:

Summer.fi has used _val i dat eToken() and _val i dat eArmount () in the aforementioned case.

7.47 Rewards Balance Check Counts Unclaimed
Tokens

[Informational] [Version 1]

In StakingRewardsManagerBase, the noti f yRewar dAmount () function does a balance check to
ensure that the reward amount is present in the contract.

CS-SMMRFI-EARN-023

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 42


https://chainsecurity.com

ui nt 256 bal ance rewar dToken. bal anceOf (address(this));
I (rewardTokenDat a. r ewar dRat e bal ance rewar dTokenDat a. r ewar dsDur ati on)
revert Provi dedRewar dTooHi gh();

This check uses the entire balance of the contract. This means that unclaimed tokens that are allocated
to users are counted as part of the balance. This means the check is loose, and may overestimate the
amount of rewards that are available to be distributed. This could lead to some users not being able to
claim all their rewards.

This is only a problem if the governor chooses a reward amount that is too high.

Code corrected:
In (Version 2), the code pulls tokens from the governor directly instead of checking its balance.

7.48 Shares Left Behind When Shaking Fleet
Commanders

(Informational] [Version 1]

In Ti pJar._shake(), the number of shares to redeem are cached before redeen{) and thus
col | ectTi p() are called, meaning that the redeemed shares will be less than the actual balance of
Ti pJar at the time of redemption, if col | ect Ti p() was not called in the same block. The whole
balance could be redeemed by passing MAX Ul NT256. The shares are not lost as they can be
redeemed on the next shake.

CS-SMMRFI-EARN-021

Code corrected:

The _shake() function was updated to redeem the maximum available shares after tip collection.

7.49 Unnecessary Casting

(Informational] [Version 1]

« In the function Fl eet Cormander . val i dat eReal | ocat eAsset s(), there are some redundant
castings of address to address:

CS-SMMRFI-EARN-017

I T (address(fromArk) address(0)) {
revert Fl eet Commander Ar kNot Found(fronmArk) ;

}

if (!isArkActive(address(toArk))) {
revert Fl eet Commander Ar kNot Acti ve(t oArk);

}

if (!'isArkActive(address(fromArk))) {
revert Fl eet Commander Ar kNot Acti ve(fromArk);

}

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 43


https://chainsecurity.com

«In the functions Pendl ePtOracl eArk. redeentl eet Asset FronPt Post Expi ry() and
Pendl ePt Or acl eAr k. deposi t Mar ket Asset For Pt (), there are some redundant castings of
address to address:

Example:

ui nt 256 tokensToRedeem = | St andar di zedYi el d( SY) . pr evi ewRedeem
address(mar ket Asset ),
syBal ance
)
| St andar di zedYi el d( SY) . redeen
address(this),
syBal ance,
address(mar ket Asset ),
t okensToRedeem
fal se

Code corrected:

The unnecessary castings have been removed. Furthermore, naming of the function
_redeentl eet Asset Fr onPt Post Expi ry has been changed to
_redeenivar ket Asset Fr onPt Post Expi ry() .

7.50 UnstakeOnBehalfOf Does Not Claim Rewards
[Informational] [Version 1]

When a user's stake is unstaked on their behalf by the AdmiralsQuarters contract, their rewards are not
claimed.

CS-SMMRFI-EARN-015

This means the user will need to separately call the get Rewar d() themselves to claim their staking
rewards.

Code corrected:

In  (Version2)  the AdmiralsQuarters can pass the _clainRewards flag to
unst akeAndW t hdr awOnBehal f O to claim the rewards on behalf of the user in the same call.

7.51 Unused Code
[Informational] [Version 1]

The following parts of codebase are never used:

CS-SMMRFI-EARN-022

1. error | nval i dSwapType

2. error Lower EnaNot LessThanUpper Ena

3. error Upper EnaNot Gr eat er ThanLower Ena
4. error | nval i dMvar ket Expi ry

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 44


https://chainsecurity.com

Code corrected:

Summer.fi has removed these unused error definitions.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG

45


https://chainsecurity.com

38

Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

8.1 Gas Optimizations

(Informational] [Version 1] ( ]
CS-SMMRFI-EARN-008
Scope 1:
1. The cached data in Fl eet Commander is computed twice if r edeem() or wi t hdr aw() are called.

Cached data is computed during calls to redeem wi t hdraw, redeenfronBuffer, redeem
FromAr ks, w thdrawFronBuffer, w thdrawFromArks and redeent wi t hdr aw are calling
redeem wi t hdr awFr onBuf f er / Ar ks.

.In the Fl eet Coomander, when withdrawing or redeeming only from the Buffer Ark, the

withdrawal data doesn't need to be cached.

3. The function Fl eet Commander . wi t hdr awFr onBuf f er () is missing a data caching modifier.

4. In the Fl eet Commander, the functions t ot al Asset s() and wi t hdr awabl eTot al Asset s()

10.

11.

12.

13.

could check whether the data is cached before using get Arks() which will read from storage
multiple times.

.In the FleetConmander, the functions pause/unpause() have the modifier

whenNot Paused/ whenPaused, but this this redundant since the internal _pause/ _unpause()
functions already have the modifiers.

. In Pr ot ocol AccessManaged, the storage variable _accessManager can be immutable.

. In ArkConfi gProvi der, the addr ess(0) check for _par ans. confi gur ati onManager done

in the constructor is redundant with the check done in the constructor of
Confi gur ati onManaged.

. In multiple functions of Ark (sweep(), board(), disenbark(), nove()), config.asset

can be cached to avoid reading the storage too often.

.In Ark. sweep(), the call

| FI eet Commander (confi g. comrander) . get Confi g() . buf f er Ark reads the whole struct
from storage and loads it in  memory. This <call can be replaced by
| FI eet Conmander (confi g. commander) . bufferArk().

The static roles of Protocol AccessManager can be set as constants in
Pr ot ocol AccessManaged as well to avoid having to call the _accessManager to read the role.

The external calls to t hi s are unnecessary and can be replaced by internal calls or storage
access:

1.t hi s. commander () in Ark. boar d()

2.this.getConfig() inFl eet Conmander . transfer()

3.this.total Assets() in Fl eet Coomander . get Ef f ect i veAr kDeposi t Cap()

In Fl eet Conmmander . val i dat eBuf f er ExcessFunds, confi g. m ni nrunBuf f er Bal ance
can be cached to avoid repetitive storage access.

In Fl eet Coomander. val i dat eBuf f er ArkNot I nvol ved, config.bufferArk can be
cached in memory to avoid repetitive storage access.

Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 46


https://chainsecurity.com

14.

15.

16.

17.

18.

19.

20.

21.

22.

In Fl eet Commander Cache. _get Wt hdr awabl eAr ksDat a, the call to
_sort ArkDat aByTot al Assets is unnecessary as sorting is already performed by
_get Ar ksDat a.

In Fl eet Commander Conf i gProvi der. _addAr k(), the call
| Ark(ark).getConfig().commander can be replaced by | Ark(ark).conmander () to
avoid reading the whole Conf i g struct from storage and load it in memory.

In  AaveV3Ark. harvest (), clainmRewards() can be used in place of
cl ai mMRewar dsToSel f () to send the reward token directly to the raft, making it one transfer
instead of two.

In  TipJar.addTi pStream(), when «callng _validateTi pStreamAl | ocation, the
current Al l ocati on can be setto 0 as the stream should not exist, saving a storage read.

In Ti pJar, the total allocation can be tracked with a storage variable instead of reading multiple
storage slots when get Tot al Al | ocati on() is called.

In Ti pper. _accr ueTi p, the elapsed time check can be moved higher in the function as it is likely
to be triggered more often than a 0%tip rate.

In Raft. board(), the whole Dut chAucti onLi brary. Aucti on is read from storage but only
the paynent Token field is needed. A direct field access would save a significant amount of gas.

In Raf t contract the two functions get Auct i onl nf o() and get Obt ai nedTokens() return state
variables that are public and hence have public getters generated by the compiler.

The function Cool downEnf orcer. _set Last Acti onTi nest anp() is always called with 0. A
dedicated "reset" function simply setting O would save gas.

23. The deposi t () function with referral code has the whenNot Paused modifier, but this is already
enforced in the deposi t () function without referral code
1.In Raft._startAuction(), the call I Ark(ark).getConfig().asset can be replaced by

2.
3.

| Ark(ark).asset() to avoid reading the whole Confi g struct from storage and load it in
memory.

The function Ti pper . previ ewTi p() declares and initializes the t i ppedShar es variable twice

The function Fl eet Conmander . _real | ocat eAsset s() has a return value of ui nt 256, which
iS never used.

Scope 3:

1.

In the function Surmer Vesti ngWal | et. _vesti ngSchedul e(), the cliff duration can be added
in the first condition to return early when the contract is still in the cliff period

.In Summer Vesti ngWal | et. _cal cul at eTi neBasedVesting(), the calculation of

el apsedQuart er s can be simplified to:

ui nt 256 el apsedQuarters (timestanp start()) QUARTER,

. Sumrer Vest i ngWal | et. _cal cul at eUnvest edPer f or manceTokens(), iterates once over

the array to calculate t ot al Per f or manceTokens. Then, it calls
_cal cul at ePer f or manceBasedVest i ng() which iterates once again over the array to sum
those goal amounts up, for which the goal has been reached. Then subtracts the two from each
other. This can be done in one iteration by summing up only those goal amounts for which the goal
has not been reached yet.

. Furthermore, total PerfornmanceTokens can be cached and updated only when

recal | Unvest edTokens(), or addNewGoal () get called.

Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 47


https://chainsecurity.com

5. Admiral sQuarters. stake() fetches the rewards manager from fleet and then validates this
address through _val i dat eRewar dsManager (). However, st aki ngRewar dsManager can
never be 0 in the fleet. Similar argument holds in unst akeAndW t hdr awAsset s() .

6. The function Adni ral sQuarters. enterFl eet () can simply use the fl eet. asset () instead
of having i nput Token as parameter

7. The local variable under | yi ngAnmount is not used in
Adm ral sQuarters. noveFr onERC4626ToAdm ral sQuarters().

8. In Pendl ePt Or acl eAr k/ Cur veExchangeRat ePr ovi der the following variables can be defined
as immutable:
1. mar ket Asset
2.router

3.confi gTokenDeci mal s, this variable is also unnecessarily redefined every time
rollover occurs

4. mar ket Asset Deci mal s, this variable is also unnecessarily redefined every time
rollover occurs

5. curveSwap

6. baseToken

9. The constructor of Pendl ePt Or acl eAr k initializes some variables twice:
1. curveSwap through assignment in the constructor and in the
Cur veExchangeRat ePr ovi der constructor
2. mar ket through assignment in the constructor and _updat eMar ket AndTokens()

3. mar ket Expi ry through _updat eMar ket Dat a() and _updat eMar ket AndTokens(),
which also calls _updat eMar ket Dat a()

10.In the function Pendl ePt Or acl eAr k. _swapFl eet Asset For Pt (), the case
if (this.isMarketExpired()) iscaughtby the shoul dBuy modifier

11. Generally, to access the state variables inside a contract, calling them through t hi s increases the
gas consumption, as it instead of solely reading the state variable, makes an external call to the
contract itself. Examples are:

1.this.isMarket Expi red() inPendl ePt Oracl eArk

2.t hi s. next Market () in Pendl ePt Or acl eArk

3.thi s.val i dat eAndDecodeSwapFor Pt Par ans() in Pendl ePt Or acl eAr k

4.t his.val i dat eAndDecodeSwapPt For TokenPar ans() in Pendl ePt Or acl eArk

12. vali dat eToken() and _val i dat eRewar dsManager () implement the same functionality.

13.In Prot ectedMul ti cal | , if the context for _nmsgSender is always nsg. sender, the cont ext
can be removed

1. The storage variable _t ot al Perf or manceTokens in Surmer Vesti ng\Wal | et is updated but
never read, it might not be needed at all.

2.In the constructor of Sunmer Vesti ngWal | et, the check on _vestingType in the else-if
statement is redundant, as there exist only two variations of the vesting type: TeanVesti ng and
| nvest or ExTeanVest i ng.

(S: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 48


https://chainsecurity.com

Code partially corrected:

Scope 1:

1.
. FIX

© o0 N O

10.
11.
12.
13.
14.

oA woN

FIX

FIX
FIX

FIX: the whenNot Paused/ whenPaused modifiers have been removed from the
pause()/unpause() functions

. FIX: the _accessManager storage variable is now immutable

. FIX: the redundant check in the constructor of Ar kConf i gPr ovi der has been removed

. FIX: the value of confi g. asset is now cached.

.FIX: the sweep() function has been wupdated to use a direct «call to

| FI eet Conmander . buf f er Ark()

FIX: the roles have been copied in Pr ot ocol AccessManaged

NOFIX

FIX: the value of conf i g. m ni nunBuf f er Bal ance is now cached

FIX: the function FI eet Commander . _val i dat eBuf f er Ar kNot | nvol ved has been removed

FIX: sorting in _get Ar ksDat a() was removed, so sorting in _get Wt hdr awabl eAr ksDat a() is
now needed

15. FIX: the logic for commander check was moved into the Ar k

16. FIX

17. FIX

18. NOFIX

19. FIX: the logic of _accr ueTi p() has been updated and does not support the proposed gas saving

anymore

20. FIX

21. FIX: both get Auct i onl nf o() and get Cbt ai nedTokens() are removed

22. FIX: the function has been changed to _r eset Last Acti onTi nest anp

23. FIX
1. FIX: 1 Ark(ark).get Config().asset has been replaced with | Ark(ar k). asset ()
2. FIX
3. FIX

Scope 3:

1. FIX: the cliff has been added in the first condition

2.
3.
4.

S

FIX: the calculation of el apsedQuart er s has been simplified
FIX: the calculation of t ot al Per f or manceTokens has been optimized
FIX: the variable has been removed

Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 49


https://chainsecurity.com

. FIX: the rewards manager is not validated anymore
. FIX: the function now uses the fleet's asset
. FIX: the unused variable has been removed

. FIX: the variables have been defined as immutable

© 00 N O O

. FIX: the redundant initializations have been removed

10. FIX: the redundant check has been removed

11. NOFIX

12. FIX: _val i dat eRewar dsManager () has been removed
13. NOFIX

1. FIX
2. FIX

8.2 Read-only Reentrancy on TotalSupply
(Informational] [Version 1]

In St aki ngRewar dsManager Base, stake() and unstake() do not defend against read-only
reentrancy. If a token with transfer hooks (such as ERC-777) is used as the staking token, the
pre-transfer hook can be used to make the contract report an arbitrarily low total supply or an increased
total supply for the duration of the transaction.

CS-SMMRFI-EARN-009

If a third party protocol queries the total supply onchain, it might be vulnerable to read-only reentrancy
attacks.

The FleetCommander token that is intended to be used as the staking token does not exhibit this
behavior. It would only be an issue if a different staking token is used.

Risk accepted:

Summer.fi responded:

We are going to use Fleet tokens and wapped (OZ ERC20 W apper) Summer token only.

8.3 Removal of Arks Can Be DOSed
(Informational] [Version 1]( ]

CS-SMMRFI-EARN-010

One of the checks conducted when an ark is removed from a fleet commander is
ark.total Assets == 0. This check can unexpectedly fail in the following cases:

« the position managed by the ark is represented by a rebasing token, e.g. aToken. In this case,
some dust can remain in the ark after disembarking the whole amount from the integrated system.

» an attacker can send some tokens to the ark after it is disembarked and before it is removed

In both cases, the ark cannot be removed from the fleet commander.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 50


https://chainsecurity.com

Acknowledged:
Summer fi has replied with:

To remove the ark it's recommended to empty it using forceRebalance and exit in an atomic
transaction ( by governance). As for rebasing token case

i f (dat a. amount Const ants. MAX_ Ul NT256) {
anout fromArk. t ot al Assets();

} else {
anount dat a. anmount ;

}

We assumed that this check on rebalance will protect the ark from being left with dust, since it will
always get the amount of token in the current block. But indeed that might be a problem with an ark
using swaps in and out of the ark asset. In this case we might add a configurable ( by curator) dust
limit, allowing removal of an ark with assets within dust limit.

It is important that future arks have a way to be fully emptied before removal.

8.4 Unsafe Contract Dependency Graph

Assumption
[Informationalj [Version 1] ( ]

CS-SMMRFI-EARN-011

The modifiers onl yAut hori zedToBoar d() and onl yRaft () in ArkAccessManaged rely on the fact
that a more derived contract will implement the | Conf i gur at i onManaged interface without guarantee.
It does not pose any issue for the current codebase, but can be problematic if the Ar KAccessManaged
contract is used in a different setup.

Acknowledged:

Summer.fi is aware of this issue.

8.5 buyTokens Can Revert From Frontrunning
(Informational) (Version 1)( )

CS-SMMRFI-EARN-012

The buyTokens function in DutchAuctionLibrary must buy the exact number of tokens specified. If the
amount of tokens is no longer available, the function reverts.

As a result, a buyTokens call that wants to buy all tokens can fail if any amount of tokens is bought
before the call is executed. It may be profitable to intentionally cause reverts of buys, as the auction price
decreases with time.

Acknowledged:

Summer.fi has acknowledged the issue and decided not to make any code changes.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 51


https://chainsecurity.com

9 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

9.1 How to Choose Auction Parameters

The DutchAuctionLibrary relies on correct usage of the auction parameters to function correctly. The
following should be considered when choosing the auction parameters:

1. The auction parameters must be chosen by a trusted role, or default parameters must be used.
Allowing arbitrary users to set the auction parameters could lead to loss of funds.

2. The start and end price must be chosen such that the "true market price" is sure to lie between
the two prices. However, they should also not be too far apart, as if the price declines by a
large amount per block, it can cause lower clearing prices. This is especially important if the
auction duration is short.

3. The auction start and end price must be given as "payment token per auction token", taking into
account the number of decimals of the tokens. If a token does not support deci mal s(), the
default value of 18 is used.

4. If defaults are used, there should be a separate default for every payment/auction token pair,
as they will require different start and end prices.

5. In case the relative prices between tokens change significantly, the default auction parameters
must be adjusted. Market conditions should be monitored.

9.2 Liquidity Crisis in Aave and Compound
(D) (Version 1)

Users interacting with Admi ral sQuarters should be aware that when they want to redeem their
aTokens from Aave, by calling noveFr omAaveToAdm ral sQuart ers(), the market might not contain
enough funds to fulfill user's withdrawal request. Similarly, redeeming cTokens from Compound, by
calling noveFr onConpoundToAdm r al sQuart ers(), could fail.

9.3 Power of Governance

(D) (Version ©

Even though the governance and other roles are generally trusted to act in favor of the protocol, it is
important to note that malicious proposals or governance takeover can still happen.

The governance has the power to (non-exhaustive list):
« grant and revoke roles to arbitrary address
 add arks that can exfiltrate the protocol funds

« exfiltrate protocol funds through auctions

« ex: exit the liquidity from Pendl ePt Or acl eAr k by using wi t hdr awExpi r edMar ket ()

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 52


https://chainsecurity.com

« lock users' funds in the protocol

The keeper has the power to (non-exhaustive list):

« exit the liquidity from Pendl ePt Or acl eAr k by using arbitrary addresses for swapping the fleet
asset into the market asset and the other way around

9.4 Sequencer Downtime Can Influence Auction
Price

Summer Earn Protocol will be deployed on rollups with centralized sequencers such as Base and
Arbitrum One.

As the dutch auction price is dependent on timestamps, the sequencer can influence the price of a dutch
auction.

Sequencer downtime could make users temporarily unable to bid in the auction. As a result, the
auctioned tokens may be bought later than usual, leading to a clearing price significantly below the true
value of the auctioned tokens (or a canceled auction).

In addition to downtime due to technical issues, the sequencer is a trusted role that could act maliciously
in the following ways:
» A malicous sequencer could increase the block timestamp to reduce the auction price.

* A malicious sequencer could censor other users' transactions to become the only auction
participant. Then they could buy the auctioned tokens at the minimum price.

Performing the malicious actions likely has large external costs for the sequencer, so downtime is much
more likely than intentional malicious behavior.

The auction mechanism only works as intended if the sequencer is including bidders' transactions in a
fair and timely fashion.

Users should be aware that sequencer downtime can lead to mispriced rewards auctions.

9.5 Staking in Adm ral sQuarters
(D (Version 1)

Adm ral sQuarters. stake() is meant to stake user's fleet commander shares on his behalf into the
rewards manager. However, it assumes that the shares are already in the contract. As
Fl eet Commander shares cannot be freely transferred, the st ake() function is meant to be used in
conjunction with ent er Fl eet (), with the receiver set to the Admi ral sQuart ers. Therefore, users
should be aware of this behavior and should not call this function separately.

9.6 Adm ral sQuarters Uses O for Whole Balance

(D) (Version 1)

In Admi ral sQuart ers, zero indicates all the assets when withdrawing tokens, entering the fleet, or
exiting the fleet. Similarly, when staking or unstaking, zero indicates all shares. However, in
FI eet Commander , when withdrawing/redeeming, t ype( ui nt 256) . max indicates all shares belonging
to the user.

I:$: Summer.fi - Summer Earn Protocol - ChainSecurity - © Decentralized Security AG 53


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope


	3   System Overview
	3.1   Scope 1
	3.1.1   Access management system
	3.1.2   Address oracle system
	3.1.3   Arks
	3.1.4   TipJar
	3.1.5   FleetCommander
	3.1.6   Raft
	3.1.7   Changes in Version 2
	3.1.8   Changes in Version 3

	3.2   Scope 2
	3.2.1   Dutch Auction Library
	3.2.2   FleetCommanderRewardsManager
	3.2.3   Changes in Version 2

	3.3   Scope 3
	3.3.1   PendlePtOracleArk
	3.3.2   AdmiralsQuarters
	3.3.3   SummerVestingWallet
	3.3.4   Changes in Version 2

	3.4   Roles and Trust Model

	4   Limitations and use of report
	5   Terminology
	6   Findings
	6.1   Missing Token Transfer in SummerVestingWallet
	6.2   Pendle's totalAssets() Jumps Over Expiry
	6.3   Withdrawing From Expired Markets Can Drop the Shares Price
	6.4   Boarding AaveV3Ark Can Fail
	6.5   Disembarking Can Only Take Place in Specific Market Conditions
	6.6   Rebalance Cooldown Can Be Circumvented
	6.7   Unremovable Reward Tokens

	7   Resolved Findings
	7.1   Setting Rewards Manager Stores a Different Address
	7.2   State Not Updated Before Staking
	7.3   Tip Not Collected
	7.4   Tipped Shares Not Taken Into Account
	7.5   Wrong Order Assumption in Withdrawable Arks Caching
	7.6   Wrong Direction for Buffer Adjustment Checks
	7.7   Auctions Can Be Locked With Wrong Payment Token
	7.8   Compounding Tip Model
	7.9   Default Auction Params May Not Include Fair Token Price
	7.10   Disembarking AaveV3Ark Can Fail
	7.11   Guardian Can Drain the Vesting Wallet
	7.12   Max Rebalance Flows Can Be Circumvented
	7.13   Position Token Can Be Swept on Arks
	7.14   Unreached Goals Accounted After End of Vesting
	7.15   price_oracle Should Be Used to Read EMA Price
	7.16   Aave Can Be Withdrawn When Frozen
	7.17   Non Team Vesting Cannot Have Goals
	7.18   Positive Slippage in _swapPtForFleetAsset
	7.19   Calling sweep() on the BufferArk Moves All the Buffered Liquidity
	7.20   Code With No Effect
	7.21   FleetCommander Shares Can Be Locked in the Vault
	7.22   Inconsistent State of rewardTokensList
	7.23   Last Array Element Shortcut
	7.24   Misleading Function Name
	7.25   Misleading Variable Name
	7.26   Missing Events
	7.27   Missing Getter for Details
	7.28   Missing Input Sanitization
	7.29   Remove onlyCommander
	7.30   Revert Instead of Return
	7.31   Setting Duration of Vesting Wallet
	7.32   Simplify Redemption Post-Expiry
	7.33   Slippage Protection and Price Oracle in PendlePtOracleArk
	7.34   Staking Token Can Be a Reward Token
	7.35   Storage Not Properly Cleaned After Ark Removal
	7.36   Stronger Requirement for Commander Registration
	7.37   Tip Stream for address(0) Should Not Be Allowed
	7.38   Wrong Specifications
	7.39   AdmiralsQuarters Does Not Include a Callpath to getReward() on the StakingRewardsManager
	7.40   Code Consistency
	7.41   Arbitrary Harvest Data
	7.42   FleetCommander Address Could Be Immutable
	7.43   Incorrect Dust Threshold Calculation
	7.44   Misnaming of Quadratic Decay Function
	7.45   Power of AdmiralsQuarters Role
	7.46   Readability of Code
	7.47   Rewards Balance Check Counts Unclaimed Tokens
	7.48   Shares Left Behind When Shaking Fleet Commanders
	7.49   Unnecessary Casting
	7.50   UnstakeOnBehalfOf Does Not Claim Rewards
	7.51   Unused Code

	8   Informational
	8.1   Gas Optimizations
	8.2   Read-only Reentrancy on TotalSupply
	8.3   Removal of Arks Can Be DOSed
	8.4   Unsafe Contract Dependency Graph Assumption
	8.5   buyTokens Can Revert From Frontrunning

	9   Notes
	9.1   How to Choose Auction Parameters
	9.2   Liquidity Crisis in Aave and Compound
	9.3   Power of Governance
	9.4   Sequencer Downtime Can Influence Auction Price
	9.5   Staking in AdmiralsQuarters
	9.6   AdmiralsQuarters Uses 0 for Whole Balance


