

PUBLIC

Code Assessment

of the DMA v2 II

Smart Contracts

June 26, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 15

7 Informational 20

8 Notes 23

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Summer.fi with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DMA v2 II according to
Scope to support you in forming an opinion on their security risks.

Summer.fi implements updates to the DeFi Modular (DMA) Actions v2 architecture to support the usage
of transient storage. See the previous report for reference.

The most critical subjects covered in our audit are the usage of transient storage and functional
correctness. Functional correctness is improvable due to incorrect data being written, see Aave V3
actions bad data written. Additionally, there could be reentrancy scenarios in bad setups, see Reentrancy
Into the Contract. In case governance is untrusted, governance could add contracts such that this could
be exploited. Further, the design is improvable due to Collisions on Operations.

The general subjects covered are documentation, trustworthiness and gas efficiency. Documentation is
improvable, see Unclear actions setup. Trustworthiness is satisfactory. However, it is improvable, see the
paragraph above.

In summary, we find that the codebase provides a satisfactory but improvable level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com/security-audit/summer-fi-defi-modular-actions-v2/
https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 10

• Code Corrected 4

• Risk Accepted 5

• Acknowledged 1

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DMA v2 II repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 15 April 2024 f3c903c534fb14dd9c8118c8bed3155495d8c9c2 Initial Version

2 03 June 2024 56558d6d02f14ed0c5d4dc28f785fd40a39cd0d6 After Intermediate Report

3 11 June 2024 770123377bb08cc5dc252e8eb054a04d90da509
2

Further fixes

4 25 June 2024 ce0d7b8b773a8c0a526937f2a31b67928d40adb
a

Additional fixes

For the solidity smart contracts, the compiler version 0.8.24 was chosen.

The files below were in scope core system:

contracts/libs/Address.sol
contracts/libs/SafeMath.sol
contracts/libs/SafeERC20.sol
contracts/libs/ActionAddress.sol
contracts/libs/UseStorageSlot.sol
contracts/libs/UseRegistry.sol
contracts/libs/DS/ProxyPermission.sol
contracts/core/OperationExecutor.sol
contracts/core/OperationsRegistry.sol
contracts/core/types/Common.sol
contracts/core/constants/Aave.sol
contracts/core/constants/Common.sol
contracts/core/constants/Balancer.sol
contracts/core/types/Aave.sol
contracts/interfaces/aaveV3/DataTypes.sol
contracts/interfaces/aaveV3/IPoolAddressesProvider.sol
contracts/interfaces/aaveV3/IPoolV3.sol
contracts/actions/common/Executable.sol
contracts/interfaces/flashloan/IERC3156FlashBorrower.sol
contracts/interfaces/flashloan/balancer/IFlashLoanRecipient.sol
contracts/interfaces/tokens/IERC20.sol
contracts/core/constants/Maker.sol
contracts/interfaces/tokens/IWETH.sol
contracts/actions/common/WrapEth.sol
contracts/actions/common/UnwrapEth.sol
contracts/interfaces/balancer/IVault.sol
contracts/actions/common/TakeFlashloan.sol
contracts/interfaces/flashloan/IERC3156FlashLender.sol

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 5

https://github.com/OasisDEX/dma-library-automation/tree/f3c903c534fb14dd9c8118c8bed3155495d8c9c2
https://github.com/OasisDEX/dma-library-automation/tree/56558d6d02f14ed0c5d4dc28f785fd40a39cd0d6
https://github.com/OasisDEX/dma-library-automation/tree/770123377bb08cc5dc252e8eb054a04d90da5092
https://github.com/OasisDEX/dma-library-automation/tree/770123377bb08cc5dc252e8eb054a04d90da5092
https://github.com/OasisDEX/dma-library-automation/tree/ce0d7b8b773a8c0a526937f2a31b67928d40adba
https://github.com/OasisDEX/dma-library-automation/tree/ce0d7b8b773a8c0a526937f2a31b67928d40adba
https://chainsecurity.com

contracts/actions/common/SwapAction.sol
contracts/actions/common/SetApproval.sol
contracts/actions/common/SendToken.sol

2.1.1 Excluded from scope
All other files are out of scope. Any potential action not in scope or any integration with the contracts is
out of scope. All external systems are out of scope. Some files define constants that are undocumented;
the selection of these constants is out of scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Summer.fi implements updates to the DeFi Modular (DMA) Actions v2 architecture. Note that a previous
version has been audited in an earlier report. The main change introduced compared to the initial version
is that transient storage is now used for storing data necessary during a transaction.

2.2.1 Core
The DMA system allows executing a set of actions as a batch; called operations. As a central entry point,
the OperationExecutor offers the executeOp(Call[] memory calls) function. The function is
intended to be called with a delegatecall and thus is executed in the execution context of the proxy
executing the call. It fetches the action contract addresses from the Summer.fi’s service registry and
performs delegatecalls to the action contracts
execute(bytes calldata data, uint8[] memory paramsMap) function.

Ultimately, the OperationExecutor acts as a multicall implementation leveraging the service registry
as a source for logic templates to integrate with DeFi protocols. Note that actions may use data from
previous subcalls of the multicall. While that was possible in the previous version of DMA v2, the
mechanism to achieve this has been adapted to leverage transient storage.

Further, transient storage is used to keep track of the chain of calls so that the set of executed actions
(operation) can be validated against the OperationsRegistry. Namely, an operation is defined as the
keccak256 of the packed encoding of the service name hashes of the actions.

Note that arrays in transient storage are used. Namely, they are encoded as follows:

1. The storage slot slotPosition of an array with the string identifier salt is:
keccak256(abi.encodePacked("summer.proxy.storage", salt))

2. The length of an array with slotPosition computed in 1. is stored at
keccak256(abi.encodePacked(slotPosition, "length"))

3. The item at position i is stored at slot keccak256(abi.encodePacked(slotPosition, i)).

The transient arrays "actions" and "transaction" are used for storing the set of executed actions
and the data of previous calls, respectively.

The OperationExecutor implements the EIP-3156 callback function onFlashLoan and the Balancer
callback function receiveFlashloan to be able to receive flashloans. Note that a flashloan proceeds to
move the flashloaned funds to the proxy and aggregates further actions by calling the proxy so that it can
delegatecall into callbackAggregate(Call[] memory calls). That starts a new multicall

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com/security-audit/summer-fi-defi-modular-actions-v2/
https://chainsecurity.com

sequence similar to executeOp. However, the operation is not verified as the executed sub-actions of
the flashloan action are already validated as part of the action chain of the top-level executeOp
operation.

2.2.2 Actions
Actions implement an interaction with a protocol (e.g. borrowing on Aave). They implement a
parseInputs(bytes memory _callData) function that decodes the input arguments for the
integration. Further, execute(bytes calldata data, uint8[] memory paramsMap) is
implemented for each action to allow the OperationExecutor to forward the delegatecall.

All actions should follow the following pattern:

1. parseInputs: Parse the input data for the integration.

2. Adapt the input as specified: Based on paramsMap, adapt the input data for the integration.
Namely, that reads from transient storage to retrieve values previously used (e.g. the amount
WETH minted should be the amount of WETH to deposit into Aave). Note values (transient storage
slots) in paramsMap equal to 0 should use the input data from parseInputs. Thus, when they are
some non-zero i, the array item at i-1 of the "transaction" array in transient storage should
be used instead of the passed parameter.

3. Execute the action: Given the adapted input, perform the call to the external system.

4. Push the data to the "transaction" array in transient storage so that it can be referenced by
subsequent actions.

The following general actions are implemented

1. WrapEth wraps ETH. paramsMap at 0 can be used to read the amount to wrap from transient
storage. If the amount is uint256.max, the full balance is wrapped.

2. UnwrapEth unwraps wETH. paramsMap at 0 can be used to read the amount to unwrap from
transient storage. If the amount is uint256.max, the full balance is unwrapped.

3. SetApproval gives a token allowance to an address (either setting allowance or increasing
allowance). paramsMap at 2 can be used to read the amount for the operation from transient
storage.

4. SendToken and SendTokenAuto can send a given amount of a token or ETH to a recipient.
paramsMap at 2 can be used to read the amount to send from transient storage (SendTokenAuto
always reads from transient storage). If the amount is uint256.max, the full balance is sent.

5. SwapAction swaps tokens on the 1inch wrapper of Summer.fi. The received amount is pushed on
the transient storage array.

The following special actions (granting approval) are implemented:

1. TakeFlashloan takes a flashloan from Balancer V2 or the Maker flashmint module. **Note that
this temporarily grants permission to the executor due to the callback being directed there so that
the flashloan hooks can continue the aggregation (as described above).

The following are the Aave v3 actions:

1. AaveV3Borrow borrows a given amount of asset from Aave v3. paramsMap at 1 can be used to
read the borrowed amount from transient storage. The borrowed amount is pushed on the transient
storage array.

2. AaveV3Deposit supplies an amount of an asset to Aave v3. paramsMap at 1 can be used to read
the amount to deposit from transient storage (note that this amount is either added to the amount
defined as a parameter or fully used to replace the parameter). The supplied amount is pushed on
the transient storage array.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3. AaveV3Payback repays an amount of token debt on Aave v3. paramsMap at 1 can be used to
read the amount to repay from transient storage. The repaid amount is pushed on the transient
storage array.

4. AaveV3SetEMode sets the e-mode category. The set e-mode category is pushed on the transient
storage array.

5. AaveV3Withdraw withdraws an amount of tokens to an address from Aave v3. The withdrawn
amount is pushed on the transient storage array.

2.2.3 Roles and Trust Model
The following roles are defined:

1. Front-End: Trusted to provide proper data. The front-end is of utmost importance. It is required to
provide correct, reasonable and valid data. However, users bear the responsibility to validate the
transactions.

2. Summer.fi: Untrusted. While governance can whitelist operations and actions, it should not be able
to steal user funds.

3. Users: Untrusted. Users are untrusted. However, the users are expected to understand the
operations they are executing. Namely, the user should be aware of the potential drawbacks of
actions.

The general expectation is that the system is interacted with through user-owned proxies through
delegatecalls. Additionally, it is expected that the executor never holds any permissions except for
flashloan actions (similarly no action should hold any privileges). Interacting with actions that hand out
any sort of privilege can be dangerous and should be considered carefully.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 6

• Risk AcceptedAave V3 Actions Bad Data Written

• Risk AcceptedCollisions on Operations

• Risk AcceptedHypothetical Collision on Storage

• Risk AcceptedReentrancy Into the Contract

• AcknowledgedUnclear Actions Setup

• Risk AcceptedUnlimited Repayment on Behalf of Others

5.1 Aave V3 Actions Bad Data Written
Correctness Low Version 1 Risk Accepted

CS-DMAv2II-001

The Aave V3 actions may write wrong data to transient storage. Namely,

1. Deposit: Aave has an off-by-one error that may occur (due to rounding) when supplying collateral.
The received amount of aTokens could differ from the amount of tokens deposited.

2. Payback: If paybackAll, the unused amount is written to transient storage. If it is false but
amount is uint.max, the amount actually paid back is not written but uint.max is.

Risk accepted:

Summer.fi accepts the risk and states:

We will keep that in mind on the next deployment of action contracts.

5.2 Collisions on Operations
Design Low Version 1 Risk Accepted

CS-DMAv2II-003

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

An operation must be registered in the registry by its hash which is the hash of the packed encoding of
the actions in the order they are executed. However, due to a lack of depth of calls, two similar but
distinct operations may have the same hash. However, note that the same operations must be used.
Consider the below example traces that are semantically distinct but would share the same operation
hash.

1. Execution 1:

1. Action 1: Flashloan action

1. Action 2: During the flashloan action 2 is executed.

2. Operation 1 is executed:

1. Action 1: Flashloan

2. Action 2: After the flashloan, action 2 is executed.

The encoding for both would be Action 1 | Action 2, there is a fundamental difference between the
two.

Risk accepted:

Summer.fi accepts the risk and states:

We accept this risk in the current implementation due to the limitations in our encoding strategy.
However, we are committed to enhancing the robustness of our operation executor. In future versions,
we plan to redesign the operation executor to incorporate a more granular encoding method that
captures the depth and context of each action within an operation, thereby preventing hash
collisions for semantically distinct operations.

5.3 Hypothetical Collision on Storage
Correctness Low Version 1 Risk Accepted

CS-DMAv2II-004

The length of an array is stored at the position

keccak256(abi.encodePacked(slotPosition, "length"))

while items are stored at the position

keccak256(abi.encodePacked(slotPosition, index));

If bytes32("length") == bytes32(index), a storage collision may occur for an array (however,
unlikely due to a high index being needed).

Further, note that it does not follow the Solidity storage encoding, see Solidity docs.

Risk accepted:

Summer.fi accepts the risk and states:

While we accept the auditor's finding, we assess the practical risk of such collisions to be
minimal.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 12

https://docs.soliditylang.org/en/latest/internals/layout_in_storage.html#mappings-and-dynamic-arrays
https://chainsecurity.com

5.4 Reentrancy Into the Contract
Design Low Version 1 Risk Accepted

CS-DMAv2II-005

The OperationExecutor should typically never hold permissions unless a flash loan is executed
(proxy permissions are given). Thus, during flashloans the executor offers an attack surface for
reentrancy. While the flashloan functions are protected from being reentered, others are not. Namely,
executeOp and callbackAggregate are unprotected. Further, they can be invoked directly with a
call.

Consequently, calling the unprotected functions directly may lead to reentrancy issues. However, that
would require a special setup with actions. Consider the following example:

1. A user takes a flashloan

1. and proceeds to swap some tokens.

1. Then, the exchange contract does a callback to the attacker (e.g. native ETH
transfer)

1. where the attacker invokes executeOp with a hypothetical action
that allows calling execute on a proxy.

2. The attacker had access to a proxy.

2. Then, the user proceeds to perform some further actions.

Ultimately, given suitable actions, the ability to call proxy function with call may lead to issues.
Additionally, the permissions during flashloans are held during the full lifespan of the proxy. However, the
proxy could try to already revoke the permissions earlier.

Risk accepted:

Summer.fi accepts the risk and states:

We will further reassess the possibility of an operation being called from within another operation,
if it will not be the case we will apply a reentrancy lock on the executeOp function.

5.5 Unclear Actions Setup
Design Low Version 1 Acknowledged

CS-DMAv2II-020

There are several unclear code segments which do not have an impact on code correctness or security
but are unclear:

1. Sometimes paramsMap[1] (or similar is used) when for paramsMap[0] is not even used. That
makes the transaction simply more expensive. However, in the discussion with Summer.fi it was
indicated that that is due to historical reasons.

2. Not always are important values written to transient storage. For example, the wrapping of ETH
does not write how much ETH was wrapped. However, subsequent actions could potentially need
that information (e.g. deposit the wrapped amount to Aave).

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

3. Further, it is often rather unclear what should be written to transient storage. For example, for Aave
v3 deposits the amount of tokens deposited is written to transient storage and not the number of
aTokens received. Note that due to rounding issues these two are not equal. Hence it could be
helpful to get information on the data needed.

4. Sometimes there are some parts of actions that do not make much sense to be combined (e.g.
adding transient storage values to the param makes sense, but the implementations also allow for
doubling the param passed when transient storage is not read).

5. The SwapAction may receive input tokens back. These are not written to transient storage.

Note that in summary many actions are underspecified, inconsistent and unclear.

Acknowledged:

Summer.fi has acknowledged the above.

5.6 Unlimited Repayment on Behalf of Others
Design Low Version 1 Risk Accepted

CS-DMAv2II-008

In the AaveV3Payback action, a loan can be repaid on behalf of another user. Further, the user can set
the paybackAll flag, to repay an entire loan. However, combining these two features can lead to an
unexpected increase in the amount of tokens repaid. If the beneficiary is aware of an incoming
transaction that will repay their loan, they can frontrun the transaction to increase their debt. This would
result in the caller repaying more tokens than they initially intended.

Note that the Aave specification specifies the following:

Use uint(-1) to repay the entire debt, ONLY when the repayment is not executed on behalf of a 3rd party.

Risk accepted:

Summer.fi accepts the risk and states:

We recognize the outlined risk and accept it in the current implementation.

Further, Summer.fi states the following future consideration:

We will take this issue into account for the next deployment of action contracts. Future versions will be
designed to mitigate this risk, possibly by incorporating additional checks or restrictions to prevent
frontrunning and ensure that repayments on behalf of third parties adhere to the specified guidelines.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 4

• Code CorrectedFlashloan Action Stores Fees Only

• Code CorrectedArray Out of Bounds Undetected

• Code CorrectedSelector Retrieval For Small Data

• Code CorrectedTransient Storage Is Not Cleared

Informational Findings 8

• Code CorrectedUnused to When Borrowing

• Code CorrectedDead URL

• Code CorrectedExplicit Visibility

• Code CorrectedFloating Pragma

• Code CorrectedMagic Values Should Be Constants

• Code CorrectedUnused Imports

• Code CorrectedVulnerable Dependency

• Code CorrectedWrong Revert Message Emitted

6.1 Flashloan Action Stores Fees Only
Correctness Low Version 3 Code Corrected

CS-DMAv2II-022

The TakeFlashloanBalancer action stores the flashloan fees if feePercentage > 0, instead of
storing the sum of fees and borrowed amount as required by the specification.

uint256 feePercentage = IProtocolFeesCollector(
 IVault(getRegisteredService(BALANCER_VAULT)).getProtocolFeesCollector()
).getFlashLoanFeePercentage();
if (feePercentage > 0) {
 uint256 product = amounts[0] * feePercentage;
 uint256 fullFlashloanAmount = product == 0 ? 0 : ((product - 1) / ONE) + 1;
 getTransactionStorageSlot().write(bytes32(fullFlashloanAmount));
} else {
 getTransactionStorageSlot().write(bytes32(amounts[0]));
}

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

There are no current actions reading the value from transient storages, so we consider this issue to be
low severity.

Code corrected:

The code has been corrected.

6.2 Array Out of Bounds Undetected
Correctness Low Version 1 Code Corrected

CS-DMAv2II-002

The library StorageSlot implements arrays in transient storage. However, the read* functions do not
implement bound checks on the accessed item in transient storage. Thus, it may be possible that
paramMapping - 1 > length - 1. Ultimately, a zero item would be read. Nevertheless, it is not
truly a stored item.

Code corrected:

The read* function now checks that the accessed item is within the bounds of the array in transient
storage:

uint256 length = _getLength(slotPosition);

require(paramMapping <= length, "StorageSlot: Index out of bounds");

6.3 Selector Retrieval For Small Data
Correctness Low Version 1 Code Corrected

CS-DMAv2II-006

isCallingAnExecutable() takes bytes as an argument and tries to read the first 4 bytes to
compare them to the desired selector. However, convertBytesToBytes4() does not handle arrays
with a length of less than 4.

Code corrected:

The code has been adjusted to return 0x0 when the length is < 4. Thus, the require in
ActionAddress.execute will fail in the cases described above.

6.4 Transient Storage Is Not Cleared
Design Low Version 1 Code Corrected

CS-DMAv2II-007

The executeOp function and the actions write to transient storage. While transient storage expires after
a transaction, the transient storage is not cleared after executeOp has finished. Ultimately, calling

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

executeOp twice in the same transaction may lead to unintended consequences (e.g. call it through a
multi(delegate)call).

Code corrected:

The code has been adjusted to set the length to 0. See Dirty Transient Storage for further consideration.

6.5 Wrong Revert Message Emitted
Informational Version 3 Code Corrected

CS-DMAv2II-021

The newly introduced flashloan reentrancy checker is implemented as follows

function checkIfFlashloanIsInProgress() private view {
 bytes4 errorSelector = FlashloanReentrancyAttempt.selector;
 bytes32 key = FLASHLOAN_LOCK_SLOT;
 assembly {
 let isFlashloanInProgress := tload(key)
 if eq(isFlashloanInProgress, 1) {
 mstore(0, errorSelector)
 revert(0x1c, 0x04)
 }
 }
}

Note that the revert message will be wrong. Namely, the errorSelector will be encode as
0x5fa25215000...0000. Loading at 0x04 (4) at position 0x1c (28) will thus return zero.

Code corrected:

The code has been corrected.

6.6 Dead URL
Informational Version 1 Code Corrected

CS-DMAv2II-009

The NatSpec of executeOp() points to the source of AccountImplementation.sol. However, the
URL is dead.

Code corrected:

The implementation source code is reachable at the time of the fixes review.

6.7 Explicit Visibility
Informational Version 1 Code Corrected

CS-DMAv2II-010

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

The immutable variables in OperationExecutor have no visibility defined. While they are by default
public, it is best practice to state the explicit visibility.

Similarly, DIVISOR in CollectFee has no visibility defined.

Code corrected:

The code has been corrected.

6.8 Floating Pragma
Informational Version 1 Code Corrected

CS-DMAv2II-011

Summer.fi uses a floating pragma solidity ^0.8.15. It is considered best practice to deploy contracts with
the same compiler version and flags used in testing and audit to ensure that contracts are not
inadvertently deployed with an outdated compiler version that could introduce bugs that negatively
impact the contract system.

Code corrected:

Summer.fi has adjusted their codebase to use the fixed pragma 0.8.24 wherever suitable and
meaningful.

6.9 Magic Values Should Be Constants
Informational Version 1 Code Corrected

CS-DMAv2II-014

The array names in storage are always typed out (e.g. "actions"). However, to prevent typographical
errors in the future it could make sense to define them as constants. That would make the code more
consistent as other strings are defined as constants.

Code corrected:

The code has been adjusted to use helper functions that use constants.

6.10 Unused Imports
Informational Version 1 Code Corrected

CS-DMAv2II-016

Many files have many unused imports. Below is an incomplete list of unused imports (note more exist
and all files should be carefully evaluated):

1. OperationExecutor.sol: TakeFlashloan, Executable, IERC3156FlashLender

2. UseRegistry.sol: OPERATION_STORAGE

3. ProxyPermission.sol: FlashloanData, ServiceRegistry, DS_GUARD_FACTORY

4. SwapAction.sol: WETH, IWETH

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

5. CdpAllow.sol: OperationStorage, IVat, MathUtils, IWETH, WETH

6. Payback.sol: IVariableDebtToken, IWETHGateway, ILendingPool

7. Borrow.sol: IVariableDebtToken, IWETHGateway, ILendingPool

8. SetEMode.sol: IVariableDebtToken, IWETHGateway, ILendingPool

9. Withdraw.sol: OperationStorage

10. OpenVault.sol: OperationStorage

Code corrected:

Unused imports have been removed.

6.11 Unused to When Borrowing
Informational Version 1 Code Corrected

CS-DMAv2II-017

The borrow action for Aave V3 has an unused to field in its data.

Code corrected:

The to has been removed.

6.12 Vulnerable Dependency
Informational Version 1 Code Corrected

CS-DMAv2II-018

The Summer.fi repository imports the OpenZeppelin Contracts Library (Version 4.9.3) with a known
vulnerability. More details can be found here: https://github.com/advisories/GHSA-9vx6-7xxf-x967

The contracts in scope do not use the vulnerable function, but it is considered best practice to upgrade to
a patched version of the library.

Code corrected:

The Summer.fi repository has been updated to use the patched version of the OpenZeppelin Contracts
Library (Version 4.9.6).

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 19

https://github.com/advisories/GHSA-9vx6-7xxf-x967
https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
Informational Version 1 Code Partially Corrected Acknowledged

CS-DMAv2II-012

Below, some potential gas-saving opportunities are listed that could reduce gas consumption by some
degree to reduce execution cost:

1. ActionAddress: The callData bytes could save 4 bytes of call data per call if the input to the
executeOp calls does not include the execute selector. ActionAddress.execute could
encode the arguments with the selector. Ultimately 4x bytes of calldata could be saved where x is
the number of calls. That may especially be relevant for saving gas on L2s.

2. isFlashloanInProgress is a storage variable to detect flashloans and is typically set in the
context of the OperationExecutor. Given the transient nature of the variable, it could be stored
in transient storage.

3. Gas overhead with ServiceRegistry: It could be possible to replace the ServiceRegistry with a
version that batches calls. Ultimately, that could reduce the number of staticcall calls to 1 in
the loop in aggregate().

Further, below are some further opportunities to remove some redundant operations (not necessarily gas
savings):

1. isCallingAnExecutable(): encodes the execute selector and loads the first four bytes.
However, this operation is redundant as the .selector returns 4 bytes as desired.

2. getStorageSlotPosition: casts to a bytes32 to uint256 and back to bytes32. The
operation is redundant.

3. OperatorExecutor: The visibility of executeOp can be restricted to external instead of public.

4. FixedPoint / SafeMath: The overflow/underflow checks are redundant as solidity version ^0.8.0
enforces them by default.

Code corrected:

The gas optimization 2 has been implemented. The redundant operations 1, 2, and 3 have been removed
from the code.

Code partially corrected:

SafeMath is still used in actions but has been replaced in some places.

Acknowledged:

The gas optimization 1 and 3 have been acknowledged. Summer.fi also acknowledgeds the partially
corrected remaining issue.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7.2 Lack of Ownership Transfer Events
Informational Version 1 Acknowledged

CS-DMAv2II-013

OperationsRegistry.transferOwnership() does not emit an event. Events can help off-chain
applications retrieve data and should at least be emitted for important actions.

Acknowledged:

Summer.fi acknowledged the issue and replied:

In the near future we are planning to refactor the OperationRegistry and potentially not
use it in current form

7.3 Unused Contracts
Informational Version 1 Acknowledged

CS-DMAv2II-015

The contract UseStore is not used anywhere.

Further, natspec comments referencing UseStore are outdated:

• aave/v2/Deposit.sol

• aave/v2/Payback.sol

• aave/v3/Deposit.sol

• aave/v3/Payback.sol

• aave/v3l2/Deposit.sol

• aave/v3l2/Payback.sol

• common/SetApproval.sol

• common/UnwrapEth.sol

• common/UseStore.sol

• common/WrapEth.sol

• morpho-blue/Borrow.sol

• morpho-blue/Deposit.sol

• morpho-blue/Payback.sol

• spark/Deposit.sol

• spark/Payback.sol

Acknowledged:

Summer.fi acknowledges the issue and stated:

This repository holds some contract that are not used in it’s context, but are used in
summerfi-monorepo or `oasis-earn-sc` - we are planning to merge all repositories and only
use summerfi-monorepo before the next deployment of core contracts

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

7.4 WrapEth Functionality
Informational Version 1 Acknowledged

CS-DMAv2II-019

The WrapEth functionality could be generalized to wrap native tokens (e.g. wrapping matic to Wrapped
Matic on Polygon). However, the naming and the hardcoded "WETH" string for querying the service
registry may make it unsuitable for other native tokens.

Acknowledged:

Summer.fi stated:

We are not planning deployments on additional chains for now. However, we will make the
necessary changes if we decide to proceed with it.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Dirty Transient Storage
Note Version 1

The fix for Transient storage is not cleared introduced that transient storage is cleared. However, that is
not fully the case. Namely, only the length of the transient storage arrays is set to zero and transient
storage could be dirty. However, as long as the transient storage is only written with
StorageSlot.write() and read by StorageSlot.read() the code will work as intended.

8.2 Limitations on Correctness
Note Version 1

Users and governance should be aware that individuals could break the intended behavior of the system.
For example, a user could execute independent manipulations of transient storage at the given locations
so that the execution could be not as intended by governance and developers (e.g. clear transient
storage locations, add hashes to the array to bypass check for the correctness of operation hashes).
However, that is limited to the proxy of the user. Moreover, the intended functionality of the design could
be bypassed.

8.3 No Funds in Executor
Note Version 1

The users may send funds to the executor to repay flashloan debt. Users should validate that they do not
send too many funds to the executor, as these could be stolen.

8.4 No Permissions Should Be Held by the
Executor
Note Version 1

Users should be aware that the OperationExecutor should never be given any permissions (except
for the duration of a flashloan where they are required to enable executions in the context of proxy). If the
executor holds any permission, the user may be vulnerable to attacks (e.g. receiveFlashloan()
could be used to call into the proxy of the user).

8.5 Registry Usage
Note Version 1

Note that the service registry is sometimes not used for certain cases:

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

1. MCD_FLASH: The service registry is immutable. However, the flashloan module has been subject to
changes. Thus, MakerDAO's chainlog is used to allow updates of MCD_FLASH.

2. The balancer vault is defined in the service registry and used in some places. However, in the
receiveFlashloan callback, a constant is used. Summer.fi elaborated that this is most likely due
to historical reasons.

8.6 Supported Proxies
Note Version 1

While in theory any proxy can delegatecall the executor, some functionality may be unsupported by some
proxies. Namely, to support flashloan actions, the proxy must satisfy the following:

1. be a DPM proxy

2. be a DSProxy with either no authority contract or an authority contract that supports the full
interface of the guards used by DPM proxies

3. be an arbitrary proxy that supports one of the interfaces implemented by the two above (execution,
access control, ...)

If not, the permission handling will revert and flashloan functionality will not work. Further, note that
operations with other contracts may lead to some storage collisions or similar. Thus, 3 should always be
carefully evaluated for suitability.

8.7 Use of address.transfer
Note Version 1

Using address.transfer has been discouraged due to the possibility of changing gas costs of
opcodes. Further, some L2s (e.g. zkSync) do not support such transfers with low gas due to their internal
mechanics. Ultimately, Summer.fi should be aware that transferring ETH in such a way may not be future
proof.

Summer.fi - DMA v2 II - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Core
	2.2.2 Actions
	2.2.3 Roles and Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Aave V3 Actions Bad Data Written
	5.2 Collisions on Operations
	5.3 Hypothetical Collision on Storage
	5.4 Reentrancy Into the Contract
	5.5 Unclear Actions Setup
	5.6 Unlimited Repayment on Behalf of Others

	6 Resolved Findings
	6.1 Flashloan Action Stores Fees Only
	6.2 Array Out of Bounds Undetected
	6.3 Selector Retrieval For Small Data
	6.4 Transient Storage Is Not Cleared
	6.5 Wrong Revert Message Emitted
	6.6 Dead URL
	6.7 Explicit Visibility
	6.8 Floating Pragma
	6.9 Magic Values Should Be Constants
	6.10 Unused Imports
	6.11 Unused to When Borrowing
	6.12 Vulnerable Dependency

	7 Informational
	7.1 Gas Optimizations
	7.2 Lack of Ownership Transfer Events
	7.3 Unused Contracts
	7.4 WrapEth Functionality

	8 Notes
	8.1 Dirty Transient Storage
	8.2 Limitations on Correctness
	8.3 No Funds in Executor
	8.4 No Permissions Should Be Held by the Executor
	8.5 Registry Usage
	8.6 Supported Proxies
	8.7 Use of address.transfer

