PUBLIC

Code Assessment

of the Subsquid
Smart Contracts

April 17, 2024

Produced for

by

& sussaquip

(S: CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

N o o b~ WDN P

Notes

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG

11
12
13
15
21

https://chainsecurity.com

1 Executive Summary

Dear Subsquid Team,

Thank you for trusting us to help Subsquid with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Subsquid according to Scope
to support you in forming an opinion on their security risks.

Subsquid implements the on-chain part of the Subsquid protocol. The various parties of the system can
stake their $SQD tokens in exchange for rewards for workers and stakers or computation units (CUs) for
gateway operators.

The most critical subjects covered in our audit are the safety of the funds, the reward accumulation and
distribution mechanism, the calculation of the computation units, and the vesting mechanism. The
security of the funds is high as we were not able to uncover ways to steal user's funds. Reward
distribution could be unfair in case a staker front-runs reward distribution (see Recent stakers get unfair
yield). It could also be blocked if the number of workers grows a lot (see Reward distribution can run out
of gas). The CU calculation could be improved as there are cases where CUs are double-counted (see
Computation units are not split between an operator's gateways). The vesting could break in case the
user claims their rewards through the vesting contract. All the issues have been addressed.

The general subjects covered include but are not limited to access control, rounding errors, the rollup
(ArbitrumOne) where the contracts are to be deployed, documentation, and specification. The security
regarding access control and rounding errors is high. Even though there exists a lot of documentation for
the protocol itself, the interface of the on-chain part to the rest of the system is underspecified. Therefore,
we had to make assumptions about how the system will be implemented e.g., what events are going to
be observed. Hence, there could be more issues in this area that were not anticipated by the auditing
team. Testing could also be improved as we uncovered a few issues that could be easily detected this
way.

In summary, we find that the security of the codebase is satisfactory but there is room for improvement.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EEED-Severity Findings 0
CID-Severity Findings 0
(Medium)-Severity Findings 2
W Code Corrected) 1
o) 1
(Low)-Severity Findings 12
W Code Corrected) 1
A cknowedged 1
@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Subsquid repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 20 March 2024 | e0a94752031b0816a260901457475f26535de342 Initial Version

2 | 15 April 2024 2e48952fe8b7496224408f3ed44eale4341eec7b0 Fixes

3 | 17 April 2024 294c8f739bf5b2b653d3b1c59131d54ec02aebad 2nd Round of Fixes

For the solidity smart contracts, the compiler version 0. 8. 20 was chosen. In particular the files in scope
are the following files under the packages/ contract s/ src/ directory:

* Execut abl e. sol

* \Vest i ng. sol

» Gat ewayRegi stry. sol

* Rewar dCal cul ati on. sol

* St aki ng. sol

*Di stributedRewar dDi stri buti on. sol

* Wr ker Regi strati on. sol

* Net wor kControl | er. sol

* Al l ocati onsVi ewer . sol

» Sof t Cap. sol

e Tenpor ar yHol di ng. sol

* Rewar dTr easury. sol

» gat eway- st rat egi es/ Equal Str at egy. sol

e gat eway- st rat egi es/ Subequal Strat egy. sol

* Rout er. sol

*Vesti ngFact ory. sol

» Tenpor ar yHol di ngFact ory. sol

* AccessControl | edPausabl e. sol

For the review of the $SQD token, please refer to the respective audit.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.1.1 Excluded from scope

All the contracts not mentioned in the scope are considered out-of-scope. External libraries such as
OpenZeppelin and prb are also excluded. The contracts will be deployed on Arbitrum One rollup. The
system makes use of | i bp2p which is out-of-scope. The library is expected to assign non-predictable
peer ids to the various nodes of the network.We assume that the semantics of the EVM operations as
implemented for ArbitrumOne are similar to those of Ethereum mainnet. The transactions are assumed to
be sent directly to the ArbitrumOne Sequencer, therefore no front-running should be possible, at least as
far as the registration of various parties is concerned. The use of the on-chain information from the
various off-chain components of the system was considered only on a best-effort basis as the
documentation is lacking. The admins of the system are assumed to parametrize the system properly
and assign the correct roles to the respective components.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Subsquid implements an on-chain system for the reward distribution of workers and stakers in the
Subsquid network. Subsquid network is built to provide a permission-less database with horizontal
scalability. Workers provide the system with storage and computation resources and receive
compensation of $SQD. Workers should be registered on-chain by bonding 100 _000 $SQD. If a worker
fails to adhere to the protocol, its bond will be slashed (not yet implemented). $SQD holders can also
stake in a worker to guarantee its reliability and earn a portion of the rewards. The data are consumed by
gateways controlled by operators. This system updates its internal state in time intervals of a duration
called epochs.

In what follows, we delve into the on-chain system for registration of workers, staking, and distributing the
rewards.

2.2.1 Worker Registration

Workers, the entities providing computation/storage in the network, can get registered by providing a
bond. Later, they can be deregistered with the bond being redeemed.

regi ster(): Any user, who possesses the required bond, can register a worker identified by a unique
peerID (hex representation of the libp2p peer ID of the worker), through this function. If the worker was
previously registered and then removed, the previous worker ID is reassigned to it, otherwise, it gets a
fresh ID for this worker. The registration time for a worker is the start of the next epoch. Finally, the bond
amount of $SQD is moved from the caller to the Wor ker Regi st r at i on contract and the caller would be
the creator of the worker.

der egi st er () : Any registered worker can deregister. A worker is considered as deregistered starting
from the beginning of the next epoch. As long as its bond amount is still in the system, it is considered
inactive but it remains in act i veWr ker | ds.

wi t hdraw() : After getting deregistered, the creator can withdraw the bond. To call this function a
certain lock period after deregistration must be passed. Then, its bond is returned to its creator.

A registered worker can be in two states:
1. Fully Active: i sWor ker Acti ve() returns true i.e., the registration epoch has passed but not
the deregistration epoch (if such has been recorded).

2. Bonded: The worker is registered in the act i veWor ker | ds i..e, the bond of the worker hasn't
yet been claimed.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Another useful devised functionality is the ability to withdraw the excessive bond amount. If after the
registration of a worker, the bond amount goes down, the creator can withdraw the excessive amount.
However, if the bond increases, this function reverts. We assume the bond amount only decreases over
time.

2.2.2 Staking

This contract is the entry point for the stakers who want to stake (deposit) or unstake (withdraw) $SQD.
Moreover, it's responsible for keeping the accounting of the rewards stakers have accumulated.

deposi t () : Any user can stake an amount for any worker. Deposits fail if no rewards were distributed
for the last 2 epochs, as it implies that the system is broken, or if the hard limit on the total amount staked
into a specific worker has been reached.

wi t hdraw() : Withdrawals are allowed after the end of the next epoch after last staking. Stakers can
withdraw part of the $SQD they have staked.

Whether depositing or withdrawing stakes, the pending reward for the staker yielded by the worker since
the last checkpoint gets calculated proportional to its staked value. Then, updates the last checkpoint of
the caller to be the rewards cumulated per share of stake.

Any reward distributor (users holding REWARDS DI STRI BUTOR _ROLE) can distribute (di stri bute())
rewards to the stakers of the particular workers. In this first experimental version of Subsquid,
REWARD_DISTRIBUTOR_ROLE is not given out to users, it's only given to "bots" operated by the
admins. There are multiple of them just to protect against accidental mistakes, they are assumed to be
honest. This is done by increasing the cumulated reward per share.

2.2.3 Reward Distribution

This contract holds a set of distributors. During timeframes of 256 blocks, one distributor is selected. The
current distributor, selected in a pseudo random way, can commit rewards for a range of blocks in the
past for the workers and stakers. Committing automatically approves the commit. Other distributors can
observe this commitment and approve this further by calling appr ove() . Once the required approval
threshold is reached, the reward distribution takes place. During reward distribution it is checked that the
distributions are sequential (i.e., if the previous distribution was for the range of [A, B] of blocks, the
current distribution should be [B + 1, (]). This function calls into St aki ng. di stri bute().

cl ai m) : Reward treasury can claim for a given staker. This function calls into St aki ng. cl ai ()
which updates the checkpoint and sets the claimable amount for this staker to 0. Then it adds the
claimable amount for each worker operated (owned) by this staker and sets each one to O.

2.2.4 Reward Treasury

The reward treasury holds the funds to be distributed as rewards to the workers and the stakers. The
reward distribution logic is implemented via some reward distributor contracts. A user can claim the
rewards they are eligible for.

cl ai m): When the contract is not paused, a user specifies a whitelisted distributor contract e.g.,
DistributedRewardDistribution and optionally the receiver of the rewards. The reward distributor
calculates the amount the user is eligible which is then sent to the receiver. Hence, before claiming,
enough amount of reward should already be in the treasury.

The owner of the contract can whitelist distributors and reclaim all funds in case of emergency.

2.2.5 Gateway Registry

To query the network, data consumers have to operate a gateway. An operator can stake $SQD for a
period of time to receive Computation Units (CUs). This contract keeps a list of whitelisted gateways.
Computation units are distributed among different workers according to the strategy of each operator. If
no strategy of preference is set, the default strategy is used.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Operators can register their gateway of interest. All the gateways operated by an operator form a cluster.
The maximum size of a cluster is specified by the owner of the registry. A cluster is considered active as
long as its operator has staked some amount of $SQD.

An operator of a given gateway can deregister and remove this gateway from the cluster as well as the
active gateways.

Operators can stake $SQD for some time to activate their gateways. After staking, all the gateways
present in the cluster of the operator get automatically activated, no matter if a non-zero amount of $SQD
has been staked. Finally, the specified amount is transferred from the staker to the gateway registry.
Once staked, and the lock start of the staking passed, the staker can increase the staked amount and set
the start lock of staking to the next epoch.

When staking or increasing the stake, there is an option to stake for an infinite repetition (conceptually,
like staking for a period and after the end of the lock instantly unstake and stake again). Stakers can
choose this option by setting wi t hAut oExt ensi on when staking. Adding a stake might extend the
staking period for another staking duration, but cannot change the wi t hAut oExt ensi on. To enable this
option, the operator has to call enableAutoExtension(). And to reset it
di sabl eAut oExt ensi on() should be called, which not only disables the auto extension of the lock
period but also sets the end lock to the beginning of the next interval of stake duration.

After the end of the lock period, operators can unstake the whole staked amount by calling
Gat ewayRegi st ry. unst ake() which deactivates all the gateways operated by the operator and
transfers the staked amount to the operator.

Operators can change their preferred strategy by calling Gat ewayRegi stry. useStrat egy(). Note
that although operators have this freedom to choose their strategy, they are allowed to choose it only
from a set of whitelisted strategies.

All gateways operated by a single operator get the same computation units calculated as:
anount dur ati onBl ocks mana boost Fact or (dur at i onBl ocks aver ageBl ockTi ne)

mana describes how many CUs are accessible for a single $SQD during 1000 blocks. The longer the
operator stakes its $SQD, the more its equivalent CU gets boosted according to the boost Fact or () [in
Reward Calculation]

2.2.6 Router

As described in the previous sections, this system consists of multiple units. Each unit might end up
calling another one. Router lays in the middle and forwards the calls to the correct unit. It keeps track of
the following contracts:

1. worker registration
2. staking

3. reward treasury

4. network controller

5. reward calculation

Admin of this contract can update the addresses of the core units after deployment.

2.2.7 Network Controller

Network parameters, like the length of epochs, get set through this contract. Later, other contracts query
the Network Controller to fetch these parameters.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.2.8 Reward Calculation

The network rewards are paid out to workers and stakers for each epoch and the reward calculation
contract calculates the claimable rewards by each worker and staker. It provides the following interfaces:

1. effectiveTVL(): returns the sum of the bond amount plus capped staked (see below) for all the
active workers. Please note that it considers the current bond amount. Hence, if during registration
the bond amount was higher and the excessive amount was not reclaimed, it is not counted
towards the TVL.

2. baseApr () : calculates the rewards based on the utilisation rate as follows: The APY is 70% if the
utilization is over 90%. If it's positive then it follows the equation 25% + u/2. If the utilization is
negative i.e, the actual utilization exceeds the target then the APY is max(20% + u/20, 0).

3.apyCap(): for a =zero TVL, the APY can be up to 100%, otherwise it's
APR_CAP(total_staked) = 0.3 *INITIAL_POOL_SIZE/effectiveTVL.

The actual APY would then be the value returned by baseApr () capped by apyCap() .

1. boost Fact or () : to incentivise the gateways to stake their tokens for a longer period of time. In
particular the boost factor is: 1 for staking less than 60 days, 1 + 2(d — 30days)/30days, where d
is the staking duration, if the duration is less than 180 days, 2 if the duration is less than 360 days,
2.5 is less than 720 days, 3 otherwise.

As mentioned above, during the calculation of ef f ecti veTVL(), the staked amount of a worker gets
capped. To cap this, the following function is used:

2\(x-1)* 2

(5)% 7 -3)
Where x is the staking share i.e., the portion of the staked amount for a worker over the sum of the
staked amount and bonded amount.

2.2.9 Vesting and Temporary Holding

Funds can be distributed through two kinds of wallets, Subsqui dVest i ng or Tenpor ar yHol di ng that
allow funds to be used within the protocol while limiting their usage outside of it. For Subsqui dVest i ng,
the release schedule contains an immediate releasable amount (cliff) plus a gradual release of the rest.
In the holding wallets the funds are locked for a beneficiary to interact with the Subsquid network and
after expiry they are claimable by the owner.

2.2.10 Trust Model and Assumptions

We assume the Router contract is correctly configured and forwards the queries to the correct contracts.
Furthermore, the functionality of the system depends on the parameters set in the network controller.
Therefore, the parameters should be set correcily.

Users having the role of REWARDS_DI STRI BUTOR_ROLE are trusted as they propose the commitments
for the rewards distribution as well as approving them.

The vesting wallets and temporary wallets are created by users having the VESTI NG_CREATCR _ROLE
and the HOLDI NG_CREATOR_RCOLE respectively. They are assumed to appropriately set up the wallets.

Admin of the Reward Treasury is trusted to whitelist the distributors correctly. The admin of the system
has the ability to pause specific contracts namely:

» TemporaryHoldingFactory

» DistributedRewardDistribution

* VestingFactory

» GatewayRegistry

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

* Staking
» WorkerRegistration

* RewardTreasury

As pausing between different contracts is not synced, we assume that the admin will appropriately pause
the contracts they want to if the need arises.

In this assessment, we assumed the reward token is $SQD.

As this reward distribution system is supposed to be launched on Arbitrum, we assume bridging $SQD
tokens from the mainnnet to Arbitrum is flawless.

2.2.11 Version 2
In the second version, the following changes were introduced:

* The selection of the distributor is not pseudo random but is determined in a round-robin fashion.

» The Subequal strategy. Gateway operators can specify a subset of workers they want to
distribute their computation units to.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E

(C)-Severity Findings 0

(Medium)-Severity Findings 1
 Recent Stakers Get Unfair Yield ()

(Low)-Severity Findings 1

« Gateway Operator Can Add 0 SQD to His Stake ()

5.1 Recent Stakers Get Unfair Yield
(Mediumj [Version 1](j

In the Di stri but edRewar dDi stri buti on contract, the rewards being committed to and approved
include the time range [f ronBl ock, t oBl ock] they were computed for. However, when the proposal
is executed (when the last approve() arrives), the distribute() function calls
St aki ng. di stribute(), which gives out yield to the current stakers of the specified worker,
regardless of whether they were already staking during the relevant timeframe.

CS-SQDC-001

This means that a staker joining after the period for which the rewards are computed, but before the last
approve() arrives for that proposal, gets an unfair share of those rewards. Symmetrically, a staker
leaving in the same window will lose their fair share of the rewards.

Code partially corrected:

Users are forced to stake for more epochs determined by epochsLockedAf t er St ake. This value is set
by the admin.

5.2 Gateway Operator Can Add 0 SQD to His
Stake
(Low] (Version 1)[j

The function Gat ewayRegi stry. addSt ake() does not revert if called with anount = 0; instead, it
extends the lock period by one "segment”, starting from the next epoch. This behaviour is harmless
per-se (it is roughly equivalent to enabling auto-extension), but it is undocumented.

CS-SQDC-002

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

Acknowledged:
It is not an intended behaviour, but since there’s no harm in that, we will keep that and add a comment.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 1

» Reward Distribution Can Run Out of Gas

(Low)-Severity Findings 11
» Distribution With Multiple Commitments
» Supporting the Same Worker in Subequal Strategies
» Claiming Can Run Out of Gas
» Delegation Limit Redundant With Soft Cap
« Distributor Index
» Gateway Operator Can Stake 0 SQD
+ Gateway Staking for Less Than an Epoch, With Autoextension
» Missing Check When Removing Distributor
» Retiring a Small Worker Can DOS the Reward Distribution
» Stake Duration Is Not Sanity-Checked
» Transferring the Ownership of Vesting

Informational Findings 4

* Redundant Grant of Admin Role

+ Redundant Role-Granting Function

« Event Rewarded Can Be Emitted With 0 Reward
« Two Different Implementations of effectiveTVL()

6.1 Reward Distribution Can Run Out of Gas
I (Viedium) (Version 1) (SXTXLITD)

The reward distribution system implicitly requires reward proposals to cover all active workers for their
time window: this is because proposals have to cover consecutive timeframes (enforced through
| ast Bl ockRewar ded), therefore one cannot, at a later time, "go back" and integrate an old proposal
with worker rewards it did not include. If the system grows too big, the reward distribution would break
because the one transaction to reward all workers would hit the block gas limit.

CS-SQDC-016

Code corrected:

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The number of delegates is capped by maxDel egat i ons which is settable by the admin.

6.2 Distribution With Multiple Commitments
7DD (Low) (Version 2) (CXIESIEED)

In version 2, the system allows multiple distributors to call
Di stri butedRewardDi stri bution.conmit() for the same block range. Other distributors can
approve this commitment for this range only once. However, if a second commitment takes place the
approvals are reset. Moreover, the distributors already have approved this commitment they are not
allowed to reapprove it.

CS-SQDC-017

Code corrected:

A second commitment doesn't reset the number of approvals.

6.3 Supporting the Same Worker in Subequal
Strategies

(Correctness JICTIWERRTIRY Code Corrected)

Using the subequal strategy, gateway operators can choose to delegate their queries to a specific subset
of workers by calling Subequal St rat egy. support Wr ker s() . Each time a worker is supported, the
count of workers increases. However, there's no check that a worker has already been supported.
Therefore, the worker count might be greater than the actually supported workers. The same issue exists
for Subequal Strat egy. unsuppor t Wr ker s() . Note that this issue could also lead to division by 0
when Subequal St rat egy. conput at i onUni t sPer Epoch() is called.

CS-SQDC-005

Code corrected:

A check for worker duplication was implemented.

6.4 Claiming Can Run Out of Gas
7D (Low) (Version 1) CXSIZET)

The function St aki ng. cl ai n() iterates through all the workers this staker has staked into. There is no
bound on the number of workers one can stake into: if it grows too large, the claiming transaction might
hit the block gas limit, making it altogether impossible to claim yield without temporarily unstaking from
some workers.

CS-SQDC-009

Code corrected:

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

The contract now enforces a hard limit of 100 delegations per staker. Note that the number of max
delegations can be changed by the admin.

6.5 Delegation Limit Redundant With Soft Cap
(Design [(EDIERITB] Code Corrected)

The St aki ng. deposi t () function enforces a hard cap on the total amount of SQD staked in favour of
any single worker. This is redundant with the soft cap induced by the law of diminishing returns
implemented in Sof t Cap.

CS-SQDC-015

Code corrected:
The hard cap was removed.

6.6 Distributor Index
(Correctness J(ETINZZITB) Code Corrected

The system decides who the current distributor is by calling
Di stri but edRewar dDi stri bution. di stributorlndex() which implements the following logic:

CS-SQDC-014

ui nt 256 sl ot Start bl ock. nunber 256 256;
return uint 256(bl ockhash(slotStart)) distributors.length();

When the bl ock. nunber is a multiple of 256, the slotStart equals to bl ock. nunber . bl ockhash for
the current block returns 0 instead. This means the distributor will always be the one with index 0 for the
multiples of 256.

Code corrected:

The distributor index is not determined by bl ockhash. It changes in a round-robin fashion as follows:
return (bl ock. nunmber r oundRobi nBl ocks) distributors.length();
However, the distributor index might not change the way it's expected. For example, consider the case

where r oundRobi nBl ocks is a multiple of di stri butors. | ength() then the index is always going
to be 0.

6.7 Gateway Operator Can Stake 0 SQD
7D (Low) (Version 1) (XTSI

The function Gat ewayRegi stry. st ake() does not check that anmount > 0, so a gateway operator
can call it with anount set to 0 and have all his gateways be marked as active.

CS-SQDC-008

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

The function now includes a check that the staked amount is greater than m nSt ake which is initially set
to 1. m nSt ake can be changed by the admin.

6.8 Gateway Staking for Less Than an Epoch,
With Autoextension

Desig {(FVEEZTRY] Code Corrected

Gateway operators can set an "autoextension" option for their staking position, which is meant to prolong
it indefinitely, in whole consecutive "segments" of the original duration, until the option is disabled. Yet,
the function Gat ewayRegi stry. conput ati onUni t sAvai | abl e() does not play well with this
mechanism, if the stake duration is less than an epoch.

CS-SQDC-011

Say that the duration is one tenth of an epoch (and autoextension is enabled): then an epoch is "tiled" by
10 segments, so the available CUs in the epoch should be 10 times those afforded by a single segment
(which is, instead, what the function returns). On the other hand, if it were actually implemented this way,
one could spend all those CUs in less than an epoch, then "prematurely” disable the autoextension, and
finally unstake, thus spending more CUs than what should be granted by the effective lock period.

Code corrected:

Gateway locking cannot be shorter than one epoch. However, should the epoch duration be increased,
for stakers who have staked under the previous configuration, the staking duration could be less an
epoch.

6.9 Missing Check When Removing Distributor
7D (Low) (Version 1) (XL

In the Di stri but edRewar dDi stri buti on contract, the function r emoveDi stri but or () does not
check that the resulting di st ri but ors. | engt h() is greater than or equal to r equi r edAppr oves, as
is instead done in the set Appr ovesRequi r ed() function.

CS-SQDC-006

Code corrected:

The check was added to the function r enoveDi stri but or () as well.

6.10 Retiring a Small Worker Can DOS the Reward
Distribution

(D (Low) (Version 1) ST

The function St aki ng. _di stri bute() reverts if the worker in question has no SQD staked in his
favour. Therefore, a malicious actor can register a worker doing only a tiny amount of work (just enough
to earn some rewards), and also stake some SQD in his favour (he needs to be the only staker for that

CS-SQDC-018

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

worker). Then, when the reward proposal arrives to Di stri but edRewar dDi stri buti on, he can
unstake everything from his worker. The proposal will then fail to execute because
Di stri but edRewar dDi stri bution. di stribute() will revert, temporarily blocking the rewards for
all other workers as well, until a new proposal is submitted to make up for it.

Code corrected:

The function St aki ng. _di stri bute() now does nothing, instead of reverting, if the worker's total
stake is 0.

6.11 Stake Duration Is Not Sanity-Checked
D) (Low) (Version 1) (XTI

In the function Gat ewayRegi stry. st ake(), the parameter dur ati onBl ocks is not checked to lie
within some reasonable bounds. A user can therefore inadvertently plug in a disproportionately high
value (e.g. thinking it is meant to be a duration in seconds) and lock their tokens for too long.

CS-SQDC-013

Code corrected:

The stake duration is now checked not to exceed 3 years.

6.12 Transferring the Ownership of Vesting
7D (Low) (Version 1) (CXESIZET)
CS-SQDC-003

Subsqui dVest i ng aims to limit the usage of $SQD only within the protocol. However, the ownership of
Subsqui dVesti ng can be transferred to a contract which could issue transferrable shares of
Subsqui dVest i ng and therefore create a derivative of $SQD that can be traded.

Code corrected:

Ownership transferring was disallowed. We assume that the beneficiaries of the vesting accounts will not
be contracts.

6.13 Event Rewar ded Can Be Emitted With O
Reward

[Informational] [Version 1]

In the St aki ng contract, the Rewar ded event is emitted by the functions updat eCheckpoi nt () and
cl ai m(') . However, while the former checks for the reward to be positive before emitting the event, the
latter does not.

CS-SQDC-010

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Code corrected:

The event is now only emitted for positive rewards.

6.14 Redundant Grant of Admin Role
[Informational] [Version 1]

In the Di stri but edRewar dDi stri bution contract, the constructor grants the
DEFAULT_ADM N_ROLE to the deployer. This is redundant with the constructor of
AccessCont r ol | edPausabl e, which Di st ri but edRewar dDi st ri buti on inherits from.

CS-SQDC-004

Code corrected:

The redundant statement was removed

6.15 Redundant Role-Granting Function
[Informational] [Version 1]

In contract Tenpor ar yHol di ngFact ory, the function al | owTenpor aryHol di ngCreator () is
redundant with the public gr ant Rol e() function (in OpenZeppelin's AccessCont r ol), inherited from
AccessCont r ol | edPausabl e.

CS-SQDC-007

Code corrected:

The redundant function was removed

6.16 Two Different Implementations of
effectiveTVL()
[Informational] [Version 1]

The function effectiveTVL() is implemented both in RewardCal culation and in
Wor ker Regi strati on: in the former calculates the soft capped sum of the total bonded amount, the
latter simply estimates the total bonded amount of all the workers.

CS-SQDC-012

Code corrected:

The function was removed from the Wor ker Regi st r at i on contract.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

7 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 CIliff Value

During vesting, the cliff depends on the t ot al Al | ocat i on i.e., the current balance of the token in the
contract and the released amount. However, it ignores the deposi t edl nt oPr ot ocol amount. This
means, the value of the cliff and he vested amount varies depending on the amount of assets deposited
into the system.

7.2 Computation Units Are Not Split Between an
Operator's Gateways

The function Gat ewayRegi st ry. conput ati onUni t sAvai | abl e() calculates the CUs available to a
gateway by applying some mathematical formulas to the stake of its operator, regardless of the presence
of other gateways belonging to the same operator. Therefore, the CUs earned by an operator are
"replicated" across all its gateways. According to Subsquid, the cluster is considered as a single instance
of a gateway, with different endpoints. Therefore workers would have to track each cluster as a whole
and monitor CU usage.

7.3 Incentives for Gateway Operators

Gateway operators can lock their $SQD tokens for a period of time to get CUs in return. The number of
CUs depends on the many factors:

* the staked amount

* the locked duration

« the mana factor i.e., CUs per $SQD per epoch

» the boost factor a step function for the most part with the exception of durations between 60 and
180 days where it's linear.

If the duration is set to a value greater than an epoch length then its effect is ignored. Therefore the CUs
per epoch follow behave according to the graph below.

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

Available CUs as a function of duration
(amount=1000, mana=10)

CUs

_—

0.01 0.1 0.41 1 2 5 10 60 180 360 720 1500
Duration in days (log)

Note that the operators have no incentive to stake for longer than an epoch unless they want to stake for
longer than 60 days. Then they don't have an incentive to stake for longer than 180 days unless they
want to stake for 360 days. Moreover, an operator can use the autoextension option so their $SQD
remains staked until they decide otherwise.

7.4 Incorrect Behavior of Variable
deposi t edl nt oPr ot ocol

The function Vesting. vestingSchedul e() is the sole consumer of the storage variable
deposi t edl nt oPr ot ocol inherited from Execut abl e. It is meant to track the total $SQD that are
currently not in the Vesting wallet itself, but have been deposited elsewhere in the protocol and can be
withdrawn at a later time (e.g. locking $SQD as a gateway operator). It is used in
_vestingSchedul e() to compensate the fact that total Allocation (equal to
SQD. bal ance (address(this)) plus the already-released funds, see 0z
Vest i ngWal | et . vest edAnount ()) does not include such deposited funds.

However, the implemented behaviour for this variable, defined in Execut abl e, does not match the
description. Indeed, if after a call into the protocol (using Vesti ng. execute()) some $SQD are
returned to the wallet (e.g. by calling GatewayRegistry.unstake()), the variable
deposi t edl nt oPr ot ocol is simply reset to 0, instead of being decremented by the appropriate delta.
This harms the user, in case they have multiple positions open in the protocol through the wallet, which
will now be left unaccounted for in the vesting schedule

According to Subsquid, this is not considered to be an issue. However, users should be aware of this
particular behavior of Subsqui dVest i ng contract.

7.5 Malleability of nsg. dat a

In the DistributedRewardDi stribution contract, the functions conmit() and approve()
calculate a commiment hash as keccak256(nsg. dat a[4:]), whereas the function canAppr ove()
calculates it by explicitly using abi . encode(), namely as keccak256(abi . encode(fronBl ock, t
oBl ock, recipients, workerRewards, _stakerRewards)). This is a slight discrepancy, since
neg. dat a is malleable: a caller to comi t () or approve() can construct nsg. dat a in many different
ways, all encoding the same logical parameters (see
https://docs.soliditylang.org/en/v0.8.25/security-considerations.html#minor-details). On the other hand,
abi . encode() always serialises the parameters in the same way, regardless of how they are encoded
in meg. dat a.

Besides the two calculations potentially mismatching (which leads to a potentially wrong answer by
canApprove()), the very exposure to the malleability of nsg. dat a in the conmi t () function is an

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 22

https://docs.soliditylang.org/en/v0.8.25/security-considerations.html#minor-details
https://chainsecurity.com

issue. The current distributor can inadvertently call the function with a "non-default" encoding: if the other
distributors then try to appr ove() using the "default” encoding, the call will revert. Moreover, the current
distributor can reset the approval count to 1, by re-submitting the same commit with a different encoding.

7.6 Wrong Initialisation of Epoch Variables

(D) (Version 1

In contract Net wor kCont rol | er, the constructor initialises fir st EpochBl ock as next Epoch().
However, the function next Epoch() is not yet able to return the correct value at this early stage, since it
itself relies on the value of f i r st EpochBl ock being correct (and not 0).

This leads first EpochBl ock to take a value lower than it should (although still in the future), thus
reducing the effective duration of epoch 0.

7.7 addDi stributor() and
renoveDi stri butor() Change
di stri butorl ndex

(D) (Version 1)

In the DistributedRewardDi stribution contract, the functions addDi stributor() and
renoveDi stributor() modify distributors.length(), thus changing the return value of
di stributorl ndex().

@ Subsquid - Subsquid - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Worker Registration
	2.2.2 Staking
	2.2.3 Reward Distribution
	2.2.4 Reward Treasury
	2.2.5 Gateway Registry
	2.2.6 Router
	2.2.7 Network Controller
	2.2.8 Reward Calculation
	2.2.9 Vesting and Temporary Holding
	2.2.10 Trust Model and Assumptions
	2.2.11 Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Recent Stakers Get Unfair Yield
	5.2 Gateway Operator Can Add 0 SQD to His Stake

	6 Resolved Findings
	6.1 Reward Distribution Can Run Out of Gas
	6.2 Distribution With Multiple Commitments
	6.3 Supporting the Same Worker in Subequal Strategies
	6.4 Claiming Can Run Out of Gas
	6.5 Delegation Limit Redundant With Soft Cap
	6.6 Distributor Index
	6.7 Gateway Operator Can Stake 0 SQD
	6.8 Gateway Staking for Less Than an Epoch, With Autoextension
	6.9 Missing Check When Removing Distributor
	6.10 Retiring a Small Worker Can DOS the Reward Distribution
	6.11 Stake Duration Is Not Sanity-Checked
	6.12 Transferring the Ownership of Vesting
	6.13 Event Rewarded Can Be Emitted With 0 Reward
	6.14 Redundant Grant of Admin Role
	6.15 Redundant Role-Granting Function
	6.16 Two Different Implementations of effectiveTVL()

	7 Notes
	7.1 Cliff Value
	7.2 Computation Units Are Not Split Between an Operator's Gateways
	7.3 Incentives for Gateway Operators
	7.4 Incorrect Behavior of Variable depositedIntoProtocol
	7.5 Malleability of msg.data
	7.6 Wrong Initialisation of Epoch Variables
	7.7 addDistributor() and removeDistributor() Change distributorIndex

