

PUBLIC

Code Assessment

of the Sturdy Aggregator

Smart Contracts

October 13, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 11

7 Informational 17

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Sturdy team,

Thank you for trusting us to help Sturdy with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Sturdy Aggregator according
to Scope to support you in forming an opinion on their security risks.

Sturdy implements Sturdy Aggregator, a lending optimizer with the ability to provide just-in-time liquidity
by moving funds between different lenders.

The most critical subjects covered in our audit are functional correctness, asset solvency, and access
control. Security regarding all the aforementioned subjects is high.

The general subjects covered are specification and gas efficiency. Security regarding the aforementioned
subjects is high.

Note that the zkAllocation is not specified precisely and is treated as a black box.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 6

• Code Corrected 5

• Risk Accepted 1

Low -Severity Findings 3

• Code Corrected 1

• Specification Changed 1

• Acknowledged 1

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Sturdy Aggregator repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 14 Sept 2023 6ee0b32613ae239c349399690392d56ab24faa7b Initial Version

2 02 Oct 2023 a218c477b172d1a073826d4e3535093554d97737 Version 2 with fixes

3 03 Oct 2023 abcdf18428f0eaff5ac441c339ffa0c3ab52d05a Version 3 with fixes

For the solidity smart contracts, the compiler version 0.8.18 was chosen.

The following contracts are in the scope of the review:

core:
 SiloGateway.sol
 DebtManager.sol

2.1.1 Excluded from scope
Any contracts not explicitly listed above are out of the scope of this review, especially VaultV3, any
implementation of ISilo or other lenders, and the ZK verifier. Third-party libraries are out of the scope of
this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sturdy offers Sturdy V2 Aggregators, in which users can lend a single asset to a Yearn-style lending
optimizer, which in turn deposits the assets to whitelisted silos. The lenders interact with the aggregator,
which is a vault similar to Yearn's VaultV3, linked to a DebtManager. The borrowers interact with the
SiloGateway, which can move assets between Silos.

The scope of this review is limited to the SiloGateway and the DebtManager.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.1 Silo Gateway
The SiloGateway allows borrowers to borrow assets from a silo. If the silo does not already have
enough assets, the function borrowAsset will request just-in-time liquidity from the DebtManager. The
amount requested will be such that the target silo's utilization does not exceed the configured utilization
limit after borrowing. After the liquidity has been added, the SiloGateway will pull the collateral token
from the msg.sender, and borrow the amount of asset tokens against the collateral for the provided
_receiver.

2.2.2 Debt Manager
The DebtManager contract is linked to one aggregator (VaultV3) and is responsible for managing the
token allocation to the different lenders, some of them being silos. The lenders are expected to be
ordered by their APR, given by an APR oracle. The admin can sort the lenders whenever necessary by
calling sortLenderwithAPR().

Just-in-time liquidity: When a SiloGateway requests just-in-time liquidity, the needed liquidity will be
withdrawn from other lenders following their ordering, i.e., from lowest to highest APR. If the needed
amount cannot be withdrawn, the transaction will revert.

Token allocation: There are two whitelisted addresses that can change the token allocation of the
aggregator between the different lenders: the contract's owner and a ZKverifier. The contract owner is a
privileged address that can set arbitrary debt amounts for the lenders. The ZKverifier can be called by
anyone. It will reallocate tokens whenever someone can prove that a certain allocation strategy will give a
better yield than the current one. When reallocated, tokens can flow only between active lenders and
within the maximum debt boundaries defined by the vault. Note that the DebtManager may have only a
subset of the strategies that exist in the aggregator added as Lenders. As a result, JIT liquidity can only
be pulled from those strategies.

2.2.3 Trust Model
Users: not trusted Debt manager's owner: trusted to add/remove lenders, set the APR oracle address,
whitelist lenders, and correctly fill the _pairToLender mapping in a non-adversarial manner. Can sort
the lenders' array whenever it is needed. Trusted to manually set token allocation in a non-adversarial
manner. Silo gateway's owner: trusted to set the utilization limit in a non-adversarial manner. Lenders:
lenders must be carefully chosen by Sturdy and are trusted to act non-maliciously. ZKverifier: assumed to
only call zkAllocation with inputs that increase the APR of the system. The implementation and
guarantees of the ZKproofs are not currently known and are outside the scope of this review.

2.2.4 Changes in V2

• Each lender has a utilization limit that can be set in the DebtManager instead of one global limit in
the SiloGateway

• When requesting liquidity, the amount withdrawn from each lender is limited so their utilization limit
is respected.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedzkAllocation May Not Behave as Expected

Low -Severity Findings 1

• AcknowledgedborrowAsset() Slippage Protection

5.1 zkAllocation May Not Behave as Expected
Design Medium Version 1 Risk Accepted

CS-STUAGG-004

The zkAllocation function is assumed to only be called with a lender allocation that increases the
total APR of the aggregator.

However, the possible allocations depend on the state of the blockchain at execution time, which is likely
impossible to know at proof generation time. In particular, the aggregator.update_debt function
gives no guarantees on how much it will withdraw or deposit when it is called with a certain target debt. It
may deposit/withdraw more or less than expected, depending on the current state.

In general, the aggregator will try to get "as close as possible" to the target debt, but will not revert even if
far away from the target. For example, a call that tries to reduce debt by 100, but due to tokens being
locked in the strategy, only reduces debt by 1, will not revert. However, there will be a revert if there is a
call that would deposit or withdraw a zero amount.

Consider the following illustrative example:

1. There are two lenders, A and B. Both have a debt of 100. The minimum_total_idle of the
aggregator is set to 10. There are 210 tokens in the aggregator in total.

2. The interest rates change such that A now has a slightly lower interest rate than B.

3. A zk proof is generated, that claims that a better allocation of tokens would be 90 tokens in A, and
110 tokens in B. This is true at proof generation time.

4. Someone withdraws 5 tokens from the aggregator.

5. The zkVerifier verifies the proof, and calls zkAllocation().

6. update_debt(A,90) is called. It was expected at proof generation time that this withdraws 10
tokens. However, since then, assume the internal balances of A have changed, and only 7 tokens
are withdrawable. 7 tokens are added to the total_ idle.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

7. update_debt(B,110) is called. It was expected at proof generation time that this deposits 10
tokens. However, now the total_idle of the aggregator is only 12 and the minimum is 10, so
only 2 tokens are deposited to B.

8. zkAllocation() successfully returns. Now the balances are A: 93 and B: 102. This has a
lower APR than if there had been no change and the balances had stayed A: 100 and B: 100.

There can be many lender-specific conditions that limit how much can be added/withdrawn. These
conditions can be dependent on the current state of the blockchain, with no way to know the limits in
advance. As the allocation zk proofs must be generated ahead of execution time, it does not seem
possible that they can take all of these limits into account. This may lead to cases where a zk proof
verifies, but the resulting APR is lower. A malicious actor may even be able to frontrun the
zkAllocation call to change the state such that the allocation becomes worse.

Zk proof generation should also consider the effects of process_report, which can change
current_debt, otherwise update_debt may lead to more tokens deposited to that lender than
expected.

The severity of this issue depends on what exactly is proven in the zk proofs, which is out of the scope of
this audit and is treated as a black box.

Risk accepted:

Sturdy understands and accepts the risk.

Sturdy responded:

The time period between proof generation and execution time will be quite small, so changes are unlikely.
Given that there is no risk of lost funds (only suboptimal yield), we're accepting this risk for the time being
and will consider lender-specific limits in the future.

5.2 borrowAsset() Slippage Protection
Design Low Version 1 Acknowledged

CS-STUAGG-010

Silo.borrowAsset() returns the amount of shares debited when borrowing. However, this value is
ignored by SiloGateway.borrowAsset(). The received amount of shares may be smaller than
expected.

Acknowledged:

Sturdy acknowledges and understands the issue. Sturdy states:

The value to be compared depends on the external silo's logic (ex: Fraxlend, Aave V3, Compound V3).
Slippage protection will be added where needed.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 5

• Code CorrectedSorting of the Lenders Is Incorrect

• Code CorrectedIdle Assets Not Used for requestLiquidity

• Code CorrectedUtilization Limit Does Not Take Into Account JIT Liquidity

• Code CorrectedUtilization Limit Only Enforced on Requesting Lender

• Code CorrectedutilizationLimit Is Not Always Enforced

Low -Severity Findings 2

• Specification ChangedIncorrect Code Comment

• Code CorrectedReentrancy Guards Applied Inconsistently

Informational Findings 3

• Code CorrectedGas Optimizations

• Code CorrectedMissing Input Sanitization

• Code CorrectedMisleading Error Names

6.1 Sorting of the Lenders Is Incorrect
Correctness Medium Version 2 Code Corrected

CS-STUAGG-013

Version 2The sortLenderWithAPR function was updated in .

The algorithm that sorts the lenders by APR only swaps the lenders' addresses in the array, but the
positions in the new APRs array are not swapped. This leads to the list of APRs being out of sync with
the list of lenders, which leads to incorrect sorting comparisons.

Example result of the implemented algorithm:

• lenders = [A, B, C, D]

• aprs = [0, 1, 0, 0]

• result of the sorting: [A, D, B, C]

• correct result should have B at the end of the array

Code corrected:

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The codebase has been updated so that the array of APRs is also updated along with the array of
lenders, fixing the issue.

6.2 Idle Assets Not Used for requestLiquidity
Design Medium Version 1 Code Corrected

CS-STUAGG-001

In DebtManager, requestLiquidity() has the following check:

if (requiredAmount > totalIdle) {
 unchecked {
 requiredAmount -= totalIdle;
 }
 }

This will use idle liquidity to partially fulfill a request, but only if the requiredAmount is more than the
idle amount.

If there are enough idle assets to cover the entire requiredAmount, they will not be used at all.

Code corrected:

The code has been updated such that if the totalIdle amount is greater or equal to the
requiredAmount, the idle assets will be used and nothing will be pulled from other lenders.

6.3 Utilization Limit Does Not Take Into Account
JIT Liquidity
Design Medium Version 1 Code Corrected

CS-STUAGG-002

When borrowing from a silo, even if JIT liquidity can be performed, there is a limit on the utilization of the
silo before the liquidity transfer. The utilization of the silo, before JIT liquidity is taken into account, cannot
exceed 100%.

Example:

1. Silo A has 100k, silo B has 900k.

2. A user wants to borrow 300k from silo A, but this will revert since the computed utilization rate will
be 3 * PREC_UTIL (300%).

Code corrected:

The utilization limit check before JIT liquidity is taken into account has been removed.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.4 Utilization Limit Only Enforced on Requesting
Lender
Design Medium Version 1 Code Corrected

CS-STUAGG-014

When calling borrowAsset(), the utilization limit is only enforced on the requesting silo, but not on the
other lenders, which can be fully utilized if JIT liquidity is used.

There could be situations where all the silos are fully utilized but one.

Code corrected:

The utilization limit can now be set per lender in DebtManager and is enforced in borrowAsset in the
requesting lender, but also in the lenders from which the liquidity is being pulled.

6.5 utilizationLimit Is Not Always Enforced
Correctness Medium Version 1 Code Corrected

CS-STUAGG-003

In borrowAsset(), requestLiquidity() is called with the _amount that should be deposited to the
Silo such that the utilizationLimit is respected. However, requestLiquidity() can deposit a
smaller amount than what is expected.

The amounts that are withdrawn from other lenders by the aggregator are calculated as follows:

newDebt = aggregator.update_debt(lenders[i], newDebt);
 unchecked {
 withdrawAmount = lenderData.current_debt - newDebt;
 }

This does not always correctly calculate the withdrawAmount. When withdrawing from a lender, there
can be an unexpected loss. In this case, the withdrawn amount will be smaller than the change in debt.

Consider the following excerpt from VaultV3, which is the implementation of aggregator:

making sure we are changing idle according to the real result no matter what.
We pull funds with {redeem} so there can be losses or rounding differences.
withdrawn: uint256 = min(post_balance - pre_balance, current_debt)

If we got too much make sure not to increase PPS.
if withdrawn > assets_to_withdraw:
 assets_to_withdraw = withdrawn

Update storage.
self.total_idle += withdrawn # actual amount we got.
Amount we tried to withdraw in case of losses
self.total_debt -= assets_to_withdraw

new_debt = current_debt - assets_to_withdraw

The withdrawAmount value that should be calculated in requestLiquidity() is actually
withdrawn, the change in total_idle.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

If there is a loss while withdrawing from the lender, an insufficient amount of totalIdle will be available
when depositing to the Silo. In most cases this will lead to a higher utilization than
utilizationLimit, but in cases where losses are large or utilizationLimit is configured to be
close to 100%, the Silo.borrowAsset() call at the end of SiloGateway.borrowAsset() will
revert, as there will not be enough funds in the Silo.

Version 2 :

The code now uses an accurate amount of tokens to reduce requiredAmount. However, two
conditions have been added in the DebtManager.requestLiquidity() logic.

One early-return check in the for loop:

if (requiredAmount < minIdle) break;

And one require check after the for loop:

require(requiredAmount <= minIdle, Errors.AG_INSUFFICIENT_ASSETS);

Recall that requiredAmount = amount + minIdle. If requiredAmount is greater than 0, it means
that the current idle amount is smaller than amount + minIdle. When updating the debt of the
requesting lender, the aggregator will still keep minIdle and the amount sent to the lender can be
smaller than amount. This would lead to the requesting lender exceeding its utilizationLimit.

Code corrected:

The codebase has been updated so that DebtManager.requestLiquidity() compares the
aggregator's totalIdle before and after the call to update_debt() to know exactly how many tokens
have been withdrawn from the lender.

The early-return check has been removed and the require check corrected to

require(requiredAmount == 0, Errors.AG_INSUFFICIENT_ASSETS);

which ensures that enough assets have been retrieved.

6.6 Incorrect Code Comment
Correctness Low Version 1 Specification Changed

CS-STUAGG-005

On the manualAllocation function, there is the following comment:

@dev Manual update the allocations.
Calculate the newAPR, curAPR and if newAPR < curAPR then it would be failed.

However, there is no check in the code that makes the call fail if newAPR < curAPR. The admin could
input any manual allocation, no matter the resulting APR.

Spec changed:

The comment has been removed.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6.7 Reentrancy Guards Applied Inconsistently
Design Low Version 1 Code Corrected

CS-STUAGG-012

The SiloGateway has a reentrancy guard on its borrowAsset function, but DebtManager does not
have a reentrancy guard on requestLiquidity().

Note that there can be multiple SiloGateway for each DebtManager, so it could technically be
possible to reenter requestLiquidity().

Code corrected:

A reentrancy guard has been added to requestLiquidity() in DebtManager.

It has also been clarified that the system is not intended to be used with reentrant tokens such as
ERC-777.

6.8 Gas Optimizations
Informational Version 1 Code Corrected

CS-STUAGG-006

1. The functions DebtManager.removeLender and SiloGateway.borrowAsset could be
payable to save gas.

2. In the function DebtManager.requestLiquidity the condition for continue could be moved
at the beginning of the for loop. This avoids unnecessarily loading from storage.

3. The function DebtManager.requestLiquidity could avoid the big for loop if the totalIdle
amount is enough to cover requiredAmount.

4. The function DebtManager.sortLendersWithAPR makes a lot of calls to the APR oracle.
These calls could be cached to avoid querying the same value multiple times.

Code corrected:

1. No change. Sturdy states:

Since anyone can call DebtManager.removeLender and SiloGateway.borrowAsset,
they should not be payable in order to prevent the user from potentially
sending ether and losing funds.

2. The condition has been moved at the beginning of the loop.

3. If the total idle assets are enough to cover the required amount, the loop is completely skipped.

4. The APR is queried once for every lender in an independent loop before sorting.

6.9 Misleading Error Names
Informational Version 1 Code Corrected

CS-STUAGG-007

• The error returned by DebtManager._manualAllocation() when the new debt exceeds the
lender's max debt should be AG_HIGHER_DEBT

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

• The error returned by DebtManager.requestLiquidity() when the requiredAmount is not
equal to zero should be AG_INSUFFICIENT_ASSET

• The errors returned when the lender's address is not active should be AG_INVALID_LENDER

Code corrected:

The error names have been changed to more accurately reflect the error.

6.10 Missing Input Sanitization
Informational Version 1 Code Corrected

CS-STUAGG-008

The SiloGateway constructor and setUtilizationLimit function do not sanitize
utilizationLimit_. It could accidentally be set to more than 100%.

Code corrected:

The logic related to the utilization limits has been moved to the DebtManager, where input sanitization is
properly done. The limits are enforced to be strictly smaller than UTIL_PREC.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 manualAllocation Can Ignore Unrealized
Losses
Informational Version 1 Acknowledged

CS-STUAGG-011

In manualAllocation(), there is the following check:

if (lenderData.current_debt == position.debt) continue;

This is intended to skip a lender if there should be no change to its debt.

However, the current_debt value may be outdated, as there is no call to
assess_share_of_unrealised_losses().

As a result, the debt of the position when including unrealized losses may be different than expected.

Acknowledged:

Sturdy responded:

Unrealised losses will be very rare;
in the event they do occur, process_report() will be called before
manualAllocation() to prevent a discrepancy.

7.2 zkAllocation Could Contain Duplicates
Informational Version 1 Acknowledged

CS-STUAGG-009

In _manualAllocation(), there is no check that unique lenders are included in the input.
zkAllocation() has a length check on the new positions array, but there may be duplicate entries.

The admin may call _manualAllocation() with any values.

Additionally, the existence check for positions happens after continue. As a result, a non-existent
position could be included in the array if the new position.debt is 0.

Acknowledged:

Sturdy responded:

To reduce gas costs, we don't check duplicate entries.
This is a permissioned function, so the admin and zkVerifier will avoid duplicated lenders.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Additionally, the existence check for positions has been moved to before the continue in the
_manualAllocation loop.

Sturdy - Sturdy Aggregator - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Silo Gateway
	2.2.2 Debt Manager
	2.2.3 Trust Model
	2.2.4 Changes in V2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 zkAllocation May Not Behave as Expected
	5.2 borrowAsset() Slippage Protection

	6 Resolved Findings
	6.1 Sorting of the Lenders Is Incorrect
	6.2 Idle Assets Not Used for requestLiquidity
	6.3 Utilization Limit Does Not Take Into Account JIT Liquidity
	6.4 Utilization Limit Only Enforced on Requesting Lender
	6.5 utilizationLimit Is Not Always Enforced
	6.6 Incorrect Code Comment
	6.7 Reentrancy Guards Applied Inconsistently
	6.8 Gas Optimizations
	6.9 Misleading Error Names
	6.10 Missing Input Sanitization

	7 Informational
	7.1 manualAllocation Can Ignore Unrealized Losses
	7.2 zkAllocation Could Contain Duplicates

