PUBLIC

Code Assessment

of the Neulock

Smart Contracts

June 20, 2025

Produced for

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

o 01 A W N P

Resolved Findings

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG

10
11
12
13

https://chainsecurity.com

1 Executive Summary

Dear Lucas,

Thank you for trusting us to help Studio V with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Neulock according to Scope
to support you in forming an opinion on their security risks.

Studio V implements a storage contract to be used with an on-chain password manager. The access to
the contract is gated through an NFT contract, with a points system attached.

The most critical subjects covered in our audit are access control, functional correctness, and
Denial-of-Service vectors.

Security regarding access control is high, after an issue that allowed bypassing the token-gating system
has been fixed, see Subscription Can Be Passed Around. Functional correctness is high, after issues
with the royalty implementation has been fixed, see Royalty Payments With Native Tokens Break
Marketplace Integrations. Security regarding Denial-of-Service vectors is high after the previously
implemented refund mechanism was removed, see Refund Mechanism Can Be Abused to DOS a Series.

A general subject covered is gas efficiency. Gas efficiency was improved, see Burning Can Increase
Withdraw Gas Cost and Gas Optimizations.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

Code Corrected

¥ Specification Changed

(Low)-Severity Findings

Code Corrected

¥ Specification Changed

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Neulock repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they

were received.

V | Date Commit Hash Note

1 | 07 May e44a32f7ea3f1f2017815¢3d0802047a31dec9 | Initial Version
2025 04

2 | 16 Jun 14136b5d1215b5716dd3f4ela9cfaae21b9494 | Version after 1st round of fixes
2025 aa

3 | 20 Jun ¢386f625fc60667aa48dfe54aebad3f63c4acbd | Version after 2nd round of fixes
2025 5

For the solidity smart contracts, the compiler version 0. 8. 28 was chosen.

The following files of the cont r act s/ folder are in the scope of this review:

current/
Enti tl ement V1. sol
LockV1. sol

LogoV2. sol

Met adat aV2. sol

NeuV2. sol

St or ageV2. sol
utils/
Uils.sol

After (Version 2), the scope was updated to the following:

current/
Entitl ement V2. sol
LockV2. sol

LogoV2. sol

Met adat aV3. sol
NeuV3. sol

St or ageV3. sol

ol d/

Entitl ement V1. sol
LockV1. sol

Met adat aV2. sol
NeuV2. sol

St or ageV2. sol
util s/
Uils. sol

Studio V - Neulock - ChainSecurity - © Decentralized Security AG 5

https://github.com/Studio-V-Tech/neulock-onchain/tree/e44a32f7ea3f1f2017815c3d0802047a31dec904
https://github.com/Studio-V-Tech/neulock-onchain/tree/e44a32f7ea3f1f2017815c3d0802047a31dec904
https://github.com/Studio-V-Tech/neulock-onchain/tree/14136b5d1215b5716dd3f4e1a9cfaae21b9494aa
https://github.com/Studio-V-Tech/neulock-onchain/tree/14136b5d1215b5716dd3f4e1a9cfaae21b9494aa
https://github.com/Studio-V-Tech/neulock-onchain/tree/c386f625fc60667aa48dfe54aeba43f63c4ac5d5
https://github.com/Studio-V-Tech/neulock-onchain/tree/c386f625fc60667aa48dfe54aeba43f63c4ac5d5
https://chainsecurity.com

2.1.1 Excluded from scope

Any file not explicity mentioned in the scope section is excluded from the scope of this review. In
particular, third-party libraries like openzeppel i n-contracts and
openzeppel i n-cont ract s- upgr adeabl e are assumed to work as intended and are out of the scope
of this review. The proxy contracts and their potential admin are out of the scope of this review. The
off-chain app, master key and passwords derivation schemes are out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Studio V offers the Neulock Web3 password manager. Encrypted application data is stored on IPFS at
some content ID (CID). The core of the on-chain system is a simple key store contract whose role is to
store the user-encrypted CIDs. The access to the system is regulated by NFTs representing an
entitlement to use it.

2.2.1 NeuStorageV2

The NeuSt or ageV2 contract is meant to be used behind a UUPS upgradeable proxy and is expected to
replace NeuSt orageVl. The main functionalities of the contract are the saveData() and
retrieveData() functions:

esaveDat a(t okenl d, data): the main purpose of this function is to store the encrypted CID
(dat a) on-chain. First, the caller is checked to be entitled to use the system by querying the
NeuEntitlementV1_ contract (details in the next section). Then, the nsg. val ue is checked to be O if
the entitlement is provided by a different token than a NEU NFT, or the caller is required to be the
owner of the NEU NFT with the given t okenl d. If some ETH was passed along with the call, it is
used to increase the sponsor points for the t okenl d (details in NEU NFT and Metadata). Sponsor
points can only be accrued when accessing the system using a NEU NFT. Next, the dat a is stored
in a mapping, where the key is the nsg. sender .

eretrieveDat a(owner) : this function is a getter function that returns the data stored for the given
owner .

The contract defines two roles: DEFAULT _ADM N ROLE and UPGRADER ROLE. The
DEFAULT_ADM N_ROLE manages the roles in the contract. UPGRADER RCLE is allowed to upgrade the
contract and to reinitialize it with i ni ti al i zeV2().

2.2.2 NeuEntitlementV1

The NeuEnt i t | enent V1 contract is meant to be used behind a UUPS upgradeable proxy. The contract
manages a set of token contracts that are allowed to provide entitlement for users to use Neulock. The
set is managed with the permissioned functions addEntitlenmentContract() and
renoveEntitl ement Contract (). The contract is called by NeuSt or ageV2 to check whether a user
is allowed to use the system (hasEnti t| ement ()). The entitlement is checked by querying the user's
balance in each of the entitlement contracts until one of them returns a positive balance. By default, the
NeuV2 NFT contract is added to the set of entitlement contracts upon initialization.

The contract defines three roles: DEFAULT _ADM N_ROLE, UPGRADER ROLE, and OPERATOR_ROLE. The
DEFAULT_ADM N_ROLE manages the roles in the contract. UPGRADER _RCLE is allowed to upgrade the

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

contract and to initialize it with i niti ali ze(). The OPERATOR_ROLE is allowed to add and remove
entitlement contracts.

2.2.3 NEU NFT and metadata

The logic of the NEU NFT is split into two contracts: NeuV2 and NeulMet adat aV2. The NeuV2 contract is
the token itself, while NeuMet adat aV2 manages the metadata of the token. The NEU token also
implements the EIP7496 (https://eips.ethereum.org/EIPS/eip-7496), which enables NFT to implement
certain traits. The only supported trait is the poi nt s trait, which allows each NFT to accumulate sponsor
points.

The NeuV2 contract exposes functions for users to buy and burn the token. The NEU token can also be
minted by the OPERATOR ROLE for free. For normal users, the NEU token can be bought
(saf eM nt Publ i c()) per series, by paying the price in ETH. Public minting is only possible for series
that have been set as avai | abl e, but the OPERATOR _RCLE can also mint series that are not available.
Each series has a finite number of tokens that can be minted at a fixed price. After a token has been
bought, it can be refunded during a time period of 7 days after the minting date. Refunded tokens cannot
be re-minted.

As mentioned in NeuStorageVz2, the storage contract can request the increase of sponsor points of a
token when data is saved. To achieve this, the NeuV2 contract calls the NeuMet adat aV2 contract to
increase the sponsor points of the token and transfers the ETHto the NeuDaoLockV1. Storage contracts
must first be granted the PO NTS_| NCREASER RCLE in the NeuV2 contract to be allowed to increase the
points. The NeuMet adat aV2 contract can be changed in NeuV2 but this should be done carefully as
such a change can break the accounting.

In order to create new series of tokens, the OPERATOR RCLE of NeuMet adat aV2 can call the
addSeri es() function with a name, a price in Gaei , the ID of the first token of in the series, the
maximum number of tokens in the series, and some color parameters for the SVG rendering of the logo
for the token' series. The SVG data of the logo is provided by the LogoV2 contract, which can be
changed in NeuMet adat aV2. The name must be unique, and the token IDs of the new series must not
overlap with token IDs of previously added series. If the name does not start with WAGM , the tokens in
the series give governance rights.

Both NeuV2 and NeuMet adat aV2 are meant to be used behind a UUPS upgradeable proxy.

The NeuV2 contract defines four roles: DEFAULT _ADM N _ROLE, UPGRADER ROLE, OPERATOR _RCLE,
and PO NTS | NCREASER ROLE. The DEFAULT_ADM N _ROLE manages the roles in the contract.
UPGRADER _ROLE is allowed to upgrade the contract and to initialize it with initialize(). The
OPERATOR _ROLE is allowed to update the metadata contract, update the DAO lock contract, grant the
PO NTS | NCREASER RCLE, mint tokens from available and not yet available existing series to arbitrary
addresses for free, withdraw any ETH balance (such as minting fees) that does not need to be kept for
refunds, change the rate of wei/sponsor points, and change the metadata URI for the trait of
NeuMet adat aV2. The PO NTS | NCREASER ROLE is expected to be granted to one or more
NeuSt or ageV2 contracts.

The NeuMet adat aV2 contract defines four roles: DEFAULT _ADM N ROLE, UPGRADER RCLE,
OPERATOR _ROLE, and NEU RCLE. The DEFAULT_ADM N _ROLE manages the roles in the contract.
UPGRADER _ROLE is allowed to upgrade the contract and to initialize it with initialize(). The
OPERATOR _ROLE is allowed to add new series, change the availability status of a series, change the
price of the tokens in a series, and update the address of the logo contract. The NEU_RCLE is expected
to be given only once and to the NeuV2 contract.

(S: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 7

https://eips.ethereum.org/EIPS/eip-7496
https://chainsecurity.com

2.2.4 NeuDaolLockV1l

The NeuDaoLockV1 contract receives the ETH amounts used to increase sponsor points and locks them.
It is possible to unlock the tokens for the currently set DAO by having the holders of at least seven NEU
tokens with governance rights call the unl ock() function, which will register the token ID as a key token.
The holder of a key token can also cancel their participation by calling cancel Unl ock() . Once the
required number of key tokens is reached, anyone can call wi t hdr aw() to transfer the contract balance
to the DAO. The OPERATOR_ROLE can change the DAO address. This will also reset the number of key
tokens.

The contract defines two roles: DEFAULT _ADM N ROLE and OPERATOR ROLE. The
DEFAULT_ADM N_ROLE manages the roles in the contract. OPERATOR _ROLE is allowed to update the
address of the DAO.

2.2.5 Changesin V2

« All contracts except NeuLogoV2 have an increased version number.

* An entitlement cooldown period of 1 week is enforced in case of frequent transfer of the NEU, see
specific rules described in Subscription Can Be Passed Around.

* The refund mechanism has been removed.

* The metadata contract of the NEU contract cannot be updated anymore afteriniti al i zeV3() is
called.

* Points can be added by anyone to arbitrary existing tokenlds. The PO NTS_| NCREASER_ROLE has
been removed.

* A new function NeuSt or ageV3. saveDat aV3() has the same functionality as saveDat a(), but
skips the points increase.

2.3 Trust Model

» Users: not trusted

e Holders of the DEFAULT _ADM N ROLE on each contract: Fully trusted to manage the
contract-specific roles in a non-adversarial manner. In the worst case, critical roles such as
UPGRADER_ROLE can be granted, which can change the implementation logic of some contracts.

» Holders of the UPGRADER ROLE on each contract: fully trusted to manage the contract upgrades
and (re-)initializations in a non-adversarial manner. In the worst case, this role can change the
implementation logic of their respective contracts. A compromised UPGRADER ROLE could overwrite
the data saved by NeuSt or ageV2, steal the ETH locked in NeuV2, or simply break the system.

* OPERATOR_ROLE of NeuEntitl enment V1: Partially trusted. In the worst case, a compromised
operator could add entitlement contracts, which could be used to grant access to the system to
arbitrary users. They can also remove entitlement contracts, which would disallow users from using
the system that should be allowed to.

« OPERATOR_ROLE of NeuV2: Fully trusted as of (Version 2). In the worst case, a compromised operator
could change the royalty recipient address, which could allow them to steal all the royalties paid by
trading platforms. Additionally, they can mint tokens for free.

*« OPERATOR_ROLE of NeuMet adat aV2: this role is trusted to manage the series, their price and the
logo contract address in a non-adversarial manner. In the worst case, this role can create new series
with arbitrary parameters or change the price of existing series.

* OPERATOR_ROLE of NeuDaolLockV1: this role is trusted in setting the new DAO address in a
non-adversarial manner. In the worst case, this role can set an arbitrary address and eventually
steal the locked funds if it is approved by enough holders.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

*« PO NTS_| NCREASER ROLE: Partially trusted. The PO NTS | NCREASER RCLE is only partially
trusted, as the NeuV2 contract checks that any call coming from it sends enough ETH. However, it is
trusted to pass the correct t okenl d that paid for the call. This role has been removed in (Version 2),

« NEU ROLE: this role is trusted and is expected to be held only by one address, the NEU token
contract. If this role is granted to more addresses, it could disrupt the operations in the original NEU
token.

 The royalty receiver address is assumed to be able to receive and handle the native token, and to be
able to handle arbitrary tokens that can be used as payment for the NFT.

It is assumed that the initialization functions (initialize, initializeVX ...) are always called
in order by the UPGRADER_ROLE.

(S: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

« CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings E
(CD-Severity Findings ¢
(Medium)-Severity Findings 0
(Low)-Severity Findings ¢

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 2

» Royalty Payments With Native Tokens Break Marketplace Integrations
» Subscription Can Be Passed Around

(Medium)-Severity Findings 3
» Metadata Contract Can Be Updated
« Refund Mechanism Can Be Abused to DOS a Series
» Royalties in Non-Native Tokens Are Locked

(Low)-Severity Findings 5
« Burning Can Increase Withdraw Gas Cost eIl N e ERFEET
* Inconsistency in Initialization Steps (SRS

* Inconsistent Refund Period EZelillE R SETT-L]

 Missing Events (LERSIEET
» Missing Input Sanitization (SN

Informational Findings 12

» Missing Getter for Number of Entitlement Contracts
+ NEU Contract Is Not Necessarily the First Entitlement Contract

* EIP7496 Compliance
» Gas Griefing by Adding Many Unlock Keys

» Gas Optimizations (Xl

» Loop Iterator Increment Optimization Is Unnecessary

« Missing Natspec

« NEU Can Be Removed From the Entitlement Contracts List

» Storage Variable Without Explicit Visibility

» Uninitialized Dependency

+ Unused Role in NeuMetadataV2

» setStorageContract Does Not Remove Previous Contract

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6.1 Royalty Payments With Native Tokens Break
Marketplace Integrations

Design | High | (ZEZTBY Code Corrected)

The NEU token implements EIP2891 (https://eips.ethereum.org/EIPS/eip-2981), which defines a recipient
for royalty payments. As the royalties can be in ETH or other ERC20-like tokens, the r eci pi ent address
should be able to handle such tokens. In the case of NeuV2, the contract does not have a r ecei ve()
function, so royalty payments with ETH will revert. This will cause any sale of NEU with ETH on
marketplaces that pay royalties to revert. As a result, only marketplaces that do not pay royalties would
be able to trade NEU.

CS-NLCK-001

Code corrected:

The contract NeuV3 allows to set a new royalty recipient with i ni ti al i zeV3(), and update it with the
function set Royal t yRecei ver () callable only by the OPERATOR_ROLE. The recipient is expected to
be able to receive the native token.

6.2 Subscription Can Be Passed Around
(Design | High {CEETTB| Code Corrected

The NEU NFT represents an entitlement to the Neulock services. However, since it can be transferred, in
theory only one user needs to buy the NFT to enable anyone to use the service. This could create
secondary markets where the NFT is lent to users to temporarily use Neulock before returning it, without
having to pay the full price of the NFT.

CS-NLCK-002

Code corrected:

The NeuV3 NFT has a new associated data ent i t | enent Dat e that is used to control the entitlement of
a token ID. It works as follows:

eonmnt,entitl enent Dat e is not touched and has value 0
eonburn, entitl enent Dat e is reset
* on a transfer, there are 3 cases:
l.entitl ementDate > bl ock. ti nestanp: the transfer happens during the cooldown
period, so the previous owner never received entitlement. The cooldown is not changed.

2.entitlementDate + 1 week <= bl ock. ti nest anp: the current owner was holding
the token for at least 1 week after the entitlement date, the new owner gains entitlement at
bl ock.tinmestanp + 1. The entitlementDate of the token is updated to
bl ock.tinmestanp + 1.

3.entitlementDate <= block.tinmestanp < entitlenmentDate + 1 week: the
entitlement date has been reached but the new owner has to wait for enti t | enent Dat e
+ 1 week to gain entitlement. The entitl enent Date of the token is updated to
entitlenentDate + 1 week.

This mechanism allows normal transfer of the token, while making flashloans and other lending services
impractical.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 14

https://eips.ethereum.org/EIPS/eip-2981
https://chainsecurity.com

6.3 Metadata Contract Can Be Updated
(Design LT ICLETIRY] Code Corrected)

The NeuV2. set Met adat aContract () function allows to change the address of the metadata
contract. The main intended use is to set it after the contract has been initialized. However, once the
address is set for the first time, the OPERATOR_ROLE is still allowed to update it. Updating the metadata
is risky, as it is tracking some internal accounting such as the refund values.

CS-NLCK-003

Code corrected:
The metadata contract is now setin NeuV3. i niti al i zeV3() and cannot be changed afterwards.

6.4 Refund Mechanism Can Be Abused to DOS a
Series

(Design JCT DR Specifcation Changed)

When a series is added by the operator, a finite number of tokens and a fixed price for them must be set.
This, in conjunction with the refund feature, opens a DOS vector for the series. An attacker could buy all
the tokens of a series and have them refunded, effectively making them unavailable for other users and
forcing Studio V to issue a new series. Due to the refund, this has no cost aside from gas.

CS-NLCK-004

Additionally, the refunded tokens will increase the cost of the privileged wi t hdr aw function, as described
in Burning Can Increase Withdraw Gas Cost.

Spec changed:

The refund mechanism has been completely removed from the codebase.

6.5 Royalties in Non-Native Tokens Are Locked

(D) (Widium) (Version 1) ST

As explained in Royalty Payments With Native Tokens Break Marketplace Integrations, the NEU token
can receive royalties. However, the current implementation does not offer the possibility to withdraw
non-native tokens (e.g. ERC20-like tokens). As a result, any non-native tokens received as royalties will
be locked in the contract and cannot be recovered unless it is upgraded.

CS-NLCK-005

Code corrected:

The contract NeuV3 allows to set a new royalty recipient with i ni ti al i zeV3(), and update it with the
function set Royal t yRecei ver () that callable by the OPERATOR_ROLE. The recipient is expected to
be able to handle non-native payment tokens.

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

6.6 Burning Can Increase Withdraw Gas Cost

(Desigi JWETOIZZZETRY] Specification Changed)

In NeuMetadataV2, the sumAl | Ref undabl eTokensVal ue() function loops through all series and
finds the refundable tokens. It loops from the back, terminating when it finds the first non-refundable
token. This means it should only look at one token per series if all of them are older than the refund
window. However, if the last tokens have been burned, the loop will continue through the series until it
finds an unburned token. This means that a burned token at the end of a series will increase the gas cost
of all future calls.

CS-NLCK-006

This can increase the gas cost of the sumAl | Ref undabl eTokensVal ue() function, which is called in
the wi t hdr aw() function. If there are many burnt tokens, it may not be possible to withdraw, as the gas
cost may exceed the block gas limit.

Spec changed:

The refund mechanism has been completely removed from the codebase. Burning tokens at the end of
the series can still increase the cost of NeuMet adat aV3. _hasRef undabl eTokens(), which is used
by NeuMet adat aV3.initializeV3(). This is acceptable as NeuMet adataV3.initializeV3() is
a permissioned function that will be called only once.

6.7 Inconsistency in Initialization Steps

(D (Low) (Version 1) CXIEEIEED)

In the NeuSt or ageV2 contract, the i nitialize() function allows to fully initialize a new deployment
without calling initializeV2(), as it also sets the _entitlenmentContract. In this case,
initializev2() allows the UPGRADER ROLE to update the _entitl ement Contract later if
initializeV2() was notcalled on deployment.

CS-NLCK-007

On the other hand, initializing the NeuV2 contract requires to call initialize() first and then
initializeV2() tocomplete the setup.

One of the two options should be chosen for the sake of code consistency.

Code corrected:

All contracts now require calling the initializers in sequence to fully initialize the contract.

6.8 Inconsistent Refund Period

[Low] [Version 1] Specification Changed

There is an inconsistency between the behaviors of NeuMet adat aV2. get Ref undAmount () and
NeuMet adat aV2. sumAl | Ref undabl eTokensVal ue() at the refund window boundary. While the
function NeuMet adat aV2. get Ref undAnmount () will revert if the time elapsed since m nt edAt is
exactly REFUND_W NDOW the function NeuMet adat aV2. sumAl | Ref undabl eTokensVal ue() will
take the token into account if the elapsed time is exactly REFUND_W NDOW

CS-NLCK-008

In the code:

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

function get Ref undAnmount (ui nt 256 tokenl d) external view returns (uint256) {

require(bl ock. ti nestanp met adat a. m nt edAt REFUND_W NDOW " Refund wi ndow has passed");

}

excludes the equality, but

function sumAl | Ref undabl eTokensVal ue() external view returns (uint256) ({

i f (block.tinmestanp nmet adat a. m nt edAt REFUND W NDOW {

br eak;

}

t ot al Val ue net adat a. ori gi nal Pri cel nGnei ;

}

will add the ori gi nal Pri cel nGaei in case of equality

Spec changed:

The refund mechanism has been completely removed from the codebase.

6.9 Missing Events
7D (Low) (Version 1) XIS

Events should be emitted every time an important storage update is done. Ideally, an observer should be
able to reconstruct the contract state by solely looking at the events. The following actions should emit an
event:

l.Intheinitialize() of NeuEntitl enent V1, the Entitl enent Contract Added event should
be emitted after adding the neuCont r act to the set of entitlement contracts.

CS-NLCK-009

2.Intheinitialize() function of NeuMet adat aV2, the LogoUpdat ed event should be emitted
after setting the address of the logo contract.

Code corrected:

The described events are now emitted in the initializers.

6.10 Missing Input Sanitization
7D (Low) (Version 1) GRS

1. When a series is added or when the price is updated, the price is not checked to be non-zero. A0
price will make i sUser M nt ed() return f al se even if it is minted by a user.

CS-NLCK-010

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

2. When a series is added, naxTokens is not enforced to be at least 1. Setting maxTokens=0 would
create a 0 length series and render the ID fi r st Token unusable.

Code corrected:
1. FIXED. The price is enforced to be strictly greater than 0.
2. FIXED. The maxTokens value is enforced to be strictly greater than 0.

6.11 Missing Getter for Number of Entitlement
Contracts

[Informational] [Version 2]

The NeuEnt i t | ement V2 contract exposes the enti t| ement Contract sV2() function which take an
index as a parameter, but there is no easy way to determine the maximum value of the index before the
function reverts. This could be solved by adding a function that queries the number of entitlement
contracts.

CS-NLCK-021

Code corrected:

The function enti t| enent Cont ract sLengt h(), returning the number of entitlement contracts has
been added.

6.12 NEU Contract Is Not Necessarily the First
Entitlement Contract

[Informationalj [Version 2]

The function NeuEntitlementV2.initializeV2() assumes the first address in the
entitl ement Cont ract s will be the address of the NEU contract, but this is not necessarily true, as the
NEU contract address might have been removed from the set before the «call to
NeuEntitlementV2.initializeV2() was done. This would have the effect to have some
entitlement contract that is not the NEU token in the _neuCont r act storage variable.

CS-NLCK-022

However, this can only happen if the trusted OPERATOR _RCLE removes the contract.

Code corrected:

The function NeuEntitl ementV2.initializeV2() has been updated to take the address of the NEU
contract as an argument. The trusted UPGRADER ROLE is expected to provide the correct address.

6.13 EIP7496 Compliance
[Informationalj [Version 1]

CS-NLCK-011

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

The EIP7496 standard specifies the following:
The traitKey SHOULD be a keccak256 hash of a human readable trait nane.
(https://eips.ethereum.org/EIPS/eip-7496#keys--names)

However, the t r ai t Key used in NeuMet adat aV2. _get Trai t Val ue() is the trait name instead of its
keccak256 hash.

Code corrected:
The trait key has been replaced by the hash of the human readable trait name "points".

6.14 Gas Griefing by Adding Many Unlock Keys
[Informational] [Version 1]

In the function NeuDaolLockVl1. set NeuDaoAddr ess(), the deletion of keyTokenl ds will iterate
through the whole array to reset its content. The cost of calling the function increases with every key
token ID added to the array, and the array does not have an upper bound for its length (aside from the
t ot al Suppl y of NEU tokens). If many token IDs can be added by an attacker, updating the address of
the Neu DAO could become expensive or impossible (due to hitting the block gas limit).

CS-NLCK-012

Code corrected:

The keyTokenl ds array was replaced with an EnumerableSet to allow for efficient removal of keys
without iterating through the entire array. This change ensures that the cost of updating the Neu DAO
address remains constant, regardless of the number of keys added. The storage layout has changed.
The NeuDaolLockV2 contract will be deployed as a new contract, and the NeuDaoLockV1 contract will
be deprecated.

6.15 Gas Optimizations
[Informational] [Version 1]

The following possible gas optimizations have been identified:

CS-NLCK-013

1.In NeuEntitlenentV1l.userEntitlenmentContracts(), overwriting the length of
user Enti t | ement s with count would be more gas efficient than looping over the array.

2.In NeuDaoLockV1. wi t hdraw(), the addr ess(0) check is redundant as there cannot be key
tokens if the neuDaoAddr ess is addr ess(0) .

3.In NeuMet adat aV2. set Seri esAvail ability(), keeping the seri es as storage pointer
would be more efficient than copying the whole struct in menor y, as only the first word is needed.

4. The availability of series could be stored in a boolean mapping in order to avoid the cost of the loop
in NeuMet adat aV2. i sSeri esAvai l abl e.

5.In NeuMet adat aV2. cr eat eTokenMet adata(), an SLOAD is done for each
_series[serieslndex] access. It would be more efficient to load the Ser i es struct in memory
once and read its members from there.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 19

https://eips.ethereum.org/EIPS/eip-7496#keys--names
https://chainsecurity.com

6.

10.

11.

12.

In NeuMet adat aV2. _gi vesGover nanceAccess(), an SLOAD is done for each
_series[serieslndex].nane[i] access. It would be more efficient to load the name on the
stack once and read each letter from there.

. In NeuMet adat aV2. set Seri esAvail ability(), the event Seri esAvai |l abilityUpdat ed

is emitted with the same params in both branches of the second i f - el se construct. Emitting the
event out of the i f - el se would reduce the size of the bytecode and thus save some gas.

. In NeuMet adat aV2. addSeri es(), the variables seri esl ndex and seri esLengt h track the

same value and could be merged into one.

. The values returned by NeuV2. privateM nt () are never used. Not returning anything would

save some gas.

The event Tr ai t Updat ed is emitted twice in a single call to
NeuV2. i ncreaseSponsor Poi nts(). Once in NeuV2. increaseSponsorPoints() and
once in NeuMet adat aV2. i ncr easeSponsor Poi nts() .

In Byt es8Uti | s.toString(), the routine that increases i can be done in an unchecked block
to avoid unnecessary overflow checks.

In Bytes8UWils.toString(), the second loop can be done over a new ui nt 256 iterator,
capped to i iterations to avoid the redundant data[i] != 0 check. Having the iterator as
ui nt 256 will also make its increment unchecked (see the first compiler feature of
https://github.com/ethereum/solidity/blob/develop/Changelog.md#0822-2023-10-25).

1.

In NeuEntitlenentV2.initializeV2(), the length of the entitl ement Contracts array
could be cached to avoid an SLOAD at each iteration

Code corrected:

ga b~ W DN

© 00 N O

. FIXED. The result array is resized in assembly.

. FIXED. The redundant check has been removed.

. FIXED. Storage pointers are used.

. FIXED. A bit map is used to track the available series.

. FIXED. The cr eat eTokenMet adat aV3() function loads the series into memory before reading

from it.

. FIXED. The name is loaded in the context before executing the loop.

. FIXED. The emission of the event has been moved in specialized functions.
. FIXED. The variable ser i esLengt h has been removed.

. FIXED. The return values NeuV3. privat eM nt () have been removed.
10.
11.
12.

FIXED. The event is only emitted in NeuV2. _i ncr easeSponsor Poi nts() .
FIXED. The routine is done in an unchecked block.

FIXED. The loop logic has been simplified.

1.

FIXED. The length of the enti t | enent Cont r act s array is cached before the loop.

Studio V - Neulock - ChainSecurity - © Decentralized Security AG 20

https://github.com/ethereum/solidity/blob/develop/Changelog.md#0822-2023-10-25
https://chainsecurity.com

6.16 Loop lterator Increment Optimization Is
Unnecessary

[Informational] [Version 1]

In NeuMet adat aV2. get Trai t Val ues(), the i ++ operation can be left in the loop declaration and
doesn't need to be explicitty unchecked. The compiler automatically does the optimization since
0. 8. 22.

CS-NLCK-014

Code corrected:
The index increment has been moved in the loop declaration.

6.17 Missing Natspec
[Informational] [Version 1]

The contracts currently do not include any NatSpec comments to document functions, parameters, return
values, events, or contract metadata.

CS-NLCK-015

NatSpec comments can provide clear and concise documentation for users and developers interacting
with the smart contracts. They can also help maintainability of the codebase. As such, it is considered a
best practice to include NatSpec comments.

Code corrected:

NatSpec has been added to all the contracts in current/ .

6.18 NEU Can Be Removed From the Entitlement
Contracts List

[Informational] [Version 1]

The NEU contract should always stay in the set of entitlement contracts, but a compromised or inattentive
OPERATOR_ROLE could remove it with NeuEntitl ement V1. renoveEntitl enent Contract().
Explicitly preventing this case could increase the user's confidence that their NEU token can always be
used with the system, as long as no upgrade allowing the removal is made.

CS-NLCK-016

Code corrected:

The Entitlement contract now tracks the NEU contract separately and it cannot be removed.

6.19 Storage Variable Without Explicit Visibility
[Informational] [Version 1]

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG 21

https://docs.soliditylang.org/en/latest/natspec-format.html
https://chainsecurity.com

CS-NLCK-017

By default, a storage variable has its visibility set as i nt er nal . Even though the default behavior is
conservative, it is best practice to always explicitly set the visibility of a storage variable.

The following storage variables are missing an explicit visibility:
e _traitMetadataURl in NeuMet adat aV2

Code corrected:

All the storage variables now have an explicit visibility.

6.20 Uninitialized Dependency
[Informational] [Version 1]

In the NeuV2 contract initializer functions, _ ERC721Royal ty_init () is never called. Even though in
its current state the function is a no-op, it is good practice to call the initializer function in every
dependency.

CS-NLCK-018

Code corrected:
The newly added function NeuV3. i nitializeV3() calls__ ERC721Royalty init().

6.21 Unused Role in NeuMetadataV2
(Informational) (Version 1)

In Met adat aV2, there is an unused role called STORAGE_ROLE. This role is not used anywhere.

CS-NLCK-019

Code corrected:

The unused role has been removed.

6.22 setStorageContract Does Not Remove
Previous Contract

[Informationalj [Version 1] Specification Changed

In NeuV2, the function set St orageContract does not remove the previous contract from the
PO NTS_ | NCREASER ROLE, but adds the new one. If it should be removed, the DEFAULT_ADM N RCLE
can remove it manually.

CS-NLCK-020

Spec changed:

@ Studio V - Neulock - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

The PO NTS_I NCREASER_ROLE has been fully removed. Now, i ncr easeSponsor Poi nt s() can be
called by anyone on the NeuV3 contract.

I:$: Studio V - Neulock - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 NeuStorageV2
	2.2.2 NeuEntitlementV1
	2.2.3 NEU NFT and metadata
	2.2.4 NeuDaoLockV1
	2.2.5 Changes in V2

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Royalty Payments With Native Tokens Break Marketplace Integrations
	6.2 Subscription Can Be Passed Around
	6.3 Metadata Contract Can Be Updated
	6.4 Refund Mechanism Can Be Abused to DOS a Series
	6.5 Royalties in Non-Native Tokens Are Locked
	6.6 Burning Can Increase Withdraw Gas Cost
	6.7 Inconsistency in Initialization Steps
	6.8 Inconsistent Refund Period
	6.9 Missing Events
	6.10 Missing Input Sanitization
	6.11 Missing Getter for Number of Entitlement Contracts
	6.12 NEU Contract Is Not Necessarily the First Entitlement Contract
	6.13 EIP7496 Compliance
	6.14 Gas Griefing by Adding Many Unlock Keys
	6.15 Gas Optimizations
	6.16 Loop Iterator Increment Optimization Is Unnecessary
	6.17 Missing Natspec
	6.18 NEU Can Be Removed From the Entitlement Contracts List
	6.19 Storage Variable Without Explicit Visibility
	6.20 Uninitialized Dependency
	6.21 Unused Role in NeuMetadataV2
	6.22 setStorageContract Does Not Remove Previous Contract

