

PUBLIC

Code Assessment

of the Auto Renew

Smart Contract

October 6, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Findings 10

6 Resolved Findings 11

7 Informational 13

8 Notes 14

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help StarknetID with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Auto Renew according to
Scope to support you in forming an opinion on their security risks.

StarknetID has implemented a non-upgradable auto-renewal contract to streamline domain renewals for
users. Users can seamlessly enable or disable spending flows, which, subject to certain conditions, are
executed by a designated, whitelisted renewer. These conditions include annual execution and ensure
the domain expires in less than a month. The contract is governed by an admin, with users being
responsible for setting accurate allowances.

The most critical subjects covered in our audit are functional correctness and security of user funds.
Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code Corrected 1

• Specification Changed 1

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Auto Renew repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V
Date Commit Hash Note

1
21 September
2023

54bcb58cd5c840f58f9b7f206c93e9db0b826ffd Initial Version

2
4 October 2023 9fce6d7ffc746107ab31216d96b04de698e33f8f After Intermediate Report

For the cairo smart contract, the compiler version 2.2.0 was chosen. At the time of this review
(September 2023) Starknet v0.12.2 was live on mainnet. This review cannot account for future changes
and possible bugs in Starknet and it's libraries / token contracts.

The following file was in scope of this review:

• auto_renewal.cairo

2.1.1 Excluded from scope
Any file not listed above is excluded from the scope. Notably the naming and starknet identity contracts
are not in the scope of this review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

At the end of this report section we have added subsections for each of the changes accordingly to the
versions.

StarknetID offers a non-upgradable auto renewal contract which facilitates the renewal of a user's
domain.

2.2.1 Auto Renewal contract
Users can activate the automatic renewal by creating a spending flow for a domain and approve sufficient
allowance for the contract. The spending flows will be consumed by the renewer to call renew() on the
naming contract in a recurrent way. Users will keep the possibility of cutting it at any time and won't pay
the transaction costs, and will only be charged the limit_price that is specified by the user.

The main entrypoints for the users are:

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

1. enable_renewals() - The function for a user to enable a spending flow. Each spending flow is
uniquely identified by the triplet of (user_address, domain, limit_price). The
last_renewal for the user of this domain will also be reset to 0 in this call.

2. disable_renewals() - A user can cut one of his spending flows anytime by calling this function
with the same triplet of (user_address, domain, limit_price). Though there is no view
function provided for this data, it can be retrieved from the emitted events in
enable_renewals().

The whitelisted renewer is a privileged role who can call renew() or batch_renew() to renew the
domain for the users according to enabled spending flows. batch_renew() will invoke _renew() in a
loop for the input span, and will revert if any of the individual _renew() fails.

The following checks are done in _renew():

1. The spending flow is checked to be enabled.

2. The last_renewal timestamp is compared to the current block timestamp to ensure at least 364
days have elapsed since the last renewal. (Note a user can reset last_renewal to 0 by disable a
renewal and enable it again)

3. The expiry of the domain is fetched from the naming contract. The renewal can only proceed if
the domain will expire within one month. This also guarantees a domain will not be renewed
simultaneously by multiple spending flows.

Afterwards, the last_renewal will be updated to the current block timestamp. Then it will spend
allowance to transfer limit_price from the user to the auto renewal contract, transfer tax to the tax
contract and finally call renew() on the naming contract to renew the domain. It's worth noting that the
renew() call to the naming contract will revert if there is insufficient funds on the auto renewal contract
instead of checking the limit_price-tax_price with the domain price. Besides, the user should not
set a limit_price that is larger than the actual domain price, otherwise, the redundant amount will still
be charged and remain with the auto renewal contract.

The following view functions are provided:

1. is_renewing() - Returns if a spending flow is enabled given a triplet of (user_address,
domain, limit_price).

2. get_contracts() - Returns the naming, token, and tax contracts addresses.

The whole contract is governed by an admin who has the privilege to call:

1. update_admin() - To set the admin to another address.

2. update_tax_contract() - To set the tax contract.

3. update_whitelisted_renewer() - To set the whitelisted renewer.

4. toggle_off() - To disable the renewal irreversibly.

5. claim() - To withdraw excess ERC-20 tokens from this auto renewal contract.

2.2.2 Roles and Trust Model
The admin ultimately governs this contract. The renewer is another privileged role triggering the
execution of the renewals. They are always trusted to never behave against the users and the system,
otherwise:

1. The admin can withdraw the dust in the auto renewal contract and the tax.

2. The admin can disable the contract irreversibly by toggle_off().

3. The renewer can only stop calling renew() or batch_renew() as a keeper, or not sending any
tax to the tax contract.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Users are untrusted. They are assumed to set limit_price correctly (guided by the official front end)
and give sufficient allowance.

The ERC-20 token is expected to be the StarkGate: ETH Token. Most importantly the ERC-20 token
used by the auto renew contract must revert in case of a failed transfer() or transferFrom().

2.2.3 Changes in Version 2

• Instead of having to spend the allowance specified in the flow, the automation bot can now spend a
less amount. When enabling a spending flow for a domain (enable_renewals()) the user now
sets an allowance. is_renewing() has been replaced by get_renewing_allowance(). This
function returns the allowance a renewer has given for a domain. In renew(): limit_price has
been replaced by domain_price. To disable renewals (disable_renewals()) the caller has to
specify only the domain.

• Updating the admin address has been changed to a two step process: The current admin initiates
the the change using start_admin_update(), the new admin finalizes the update by calling
confirm_admin_update(). Until the new admin has taken over, the current admin can always
stop or change the update.

• Admin functions changing states, except start_admin_update() now emit events.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 2

• Code CorrectedInconsistent Sanity Checks of Span Length

• Specification ChangedIncorrect Comments

6.1 Inconsistent Sanity Checks of Span Length
Design Low Version 1 Code Corrected

CS-STKIDAUTO-005

In batch_renew() there are sanity checks to validate that the domain, renewer, and limit_price
spans have the same length. However, similar length verifications are missing for the tax_price and
metadata spans, which is inconsistent.

Discrepancies in length would ultimately lead to a failure with an expect('pop_front error');
error, nevertheless sanity checks may be implemented consistently.

Code corrected:

The missing sanity checks have been added.

6.2 Incorrect Comments
Correctness Low Version 1 Specification Changed

CS-STKIDAUTO-004

In the constructor, the auto renewal contract approves max u256 (integer::BoundedInt::max())
allowance to the naming contract. Whereas the comment says the allowance is set to 2^251-1.

Specification changed:

The comment has been corrected to: allowing naming 2^256-1.

6.3 Admin Functions Do Not Emit Events
Informational Version 1 Code Corrected

CS-STKIDAUTO-006

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The admin functions to update admin address, tax contract, whitelisted renewer, toggle flag, and claim
tokens do not emit events. Users are not able to observe these state updates by events and are
expected to query these up-to-date states onchain.

Code corrected:

Admin functions changing states, except start_admin_update() now emit events.

6.4 Unused Imports
Informational Version 1 Code Corrected

CS-STKIDAUTO-003

The following imports are not used and could be removed.

use traits::{TryInto, Into};
use option::OptionTrait;
use integer::u64_try_from_felt252;
use debug::PrintTrait;

Code corrected:

The unused imports have been removed.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Disable Renewals Do Not Check the Flag
Informational Version 1 Risk Accepted

CS-STKIDAUTO-001

disable_renewals() will set the flag of the corresponding spending channel to false regardless of the
current flag. As a result, a user can call disable_renewals on an already disabled channel and emit
the DisabledRenewal event, which might be misleading to the observers of this event.

7.2 batch_renew() Reverts if One Action Fails
Informational Version 1 Risk Accepted

CS-STKIDAUTO-002

Inherent to the design of batch_renew(), a single unsuccessful renew action within the loop reverts the
entire execution. It is the responsibility of the whitelisted renewer to ensure the batch is valid.

Technically, interference with the operation of the Auto Renew Bot is possible by front running its
transaction, for instance by removing token transfer approval, renewing a domain (which is
permissionless), disabling the flow. Given the centralized sequencer, such disruptions are not expected.
However, potential future decentralization of the sequencer could elevate the likelihood of such
disruptions occurring throughout the contract's lifetime (years).

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 A Domain With No Owner Can Still Be
Renewed
Note Version 1

There is no ownership check if a domain has an owner when it is renewed. In case a user set a renewal
spending flow for a domain that nobody owns, the renewal will succeed and the domain's expiry will be
set to one year. The user who buys the domain later will take the benefit from this renewal:

• Alice renews a domain D that nobody owns, D will have one year of expiry since then.

• Later, Bob buys domain D for one year.

• Now Bob owns domain D which has two years expiry.

8.2 The Admin Can Pause Auto Renew
Note Version 1

Though there is no specific functionality to pause calls to renew() and batch_renew(), the admin can
still achieve this. The admin can set the tax contract address to 0x0. In the present ETH ERC-20 contract
implementation, transactions transferring to the 0x0 address revert.

StarknetID - Auto Renew - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Auto Renewal contract
	2.2.2 Roles and Trust Model
	2.2.3 Changes in Version 2

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Inconsistent Sanity Checks of Span Length
	6.2 Incorrect Comments
	6.3 Admin Functions Do Not Emit Events
	6.4 Unused Imports

	7 Informational
	7.1 Disable Renewals Do Not Check the Flag
	7.2 batch_renew() Reverts if One Action Fails

	8 Notes
	8.1 A Domain With No Owner Can Still Be Renewed
	8.2 The Admin Can Pause Auto Renew

