

PUBLIC

Code Assessment

of the Bribe Platform

Smart Contracts

Jan 17, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 7

4 Terminology 8

5 Findings 9

6 Resolved Findings 14

7 Notes 16

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear StakeDao team,

Thank you for trusting us to help StakeDao with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Bribe Platform according to
Scope to support you in forming an opinion on their security risks.

StakeDao implements smart contracts allowing users to incentivize (or bribe) Curve token holders to vote
for a specific Curve gauge.

The most critical subjects covered in our review are Adjusted Bias Measured Possibly Too Late and
Queued Upgrade Still Taken in Account After Closing Bribe. Both issues open the possibility to drain
funds. All critical and high issues raised have been corrected accordingly. Still, many issues were
acknowledged or the risk is accepted.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 1

• Code Corrected 1

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 5

• Code Corrected 1

• Risk Accepted 4

Low -Severity Findings 7

• Code Partially Corrected 1

• Risk Accepted 3

• Acknowledged 3

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Bribe Platform repository based on
written communication.

The scope consists of two solidity smart contracts:

1. ./src/Platform.sol

2. ./src/PlatformFactory.sol

The table below indicates the code versions relevant to this report and when they were received.

V Date Commit Hash Note

1 22 Nov 2022 c0f573bd1a8f31dd1852250f498ec4294be64eb6 Initial Version

2 29 Nov 2022 7e9fe1582b7f1169bad12f51a707ffe25a88aa6c Version 2

For the solidity smart contracts, the compiler version 0.8.17 was chosen.

2.1.1 Excluded from scope
Any other file not explicitly mentioned in the scope section. In particular tests, scripts, external
dependencies, and configuration files are not part of the audit scope.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

StakeDao offers a bribes system, that provides economic incentives for holders of veCRV tokens to vote
on desirable Curve liquidity gauges, as part of the Curve CRV inflation distribution mechanism.

2.2.1 Curve CRV distribution
The Curve protocol defines an inflation schedule for its own CRV governance token. Every week, a
preset amount of CRV is minted and distributed to Liquidity Providers (LPs) that stake their liquidity
tokens in Curve Gauges. Holders of VeCRV, the vested CRV token, can vote on their preferred Gauges,
and the amount of CRV allocated per Gauge is proportional to the outcome of the weekly vote. Curve's
GaugeController holds a list of Gauges and their relative weight according to the user's votes. CRV
rewards will then be distributed each period, in a one-week timeframe for which the votes are
reevaluated and distribution changed consequently. Once CRV is locked in the Curve Voting Escrow as
VeCRV, it cannot be transferred. StakeDao's Bribe system allows holders of VeCRV to profit from their
voting power by allowing rewards to be allocated for votes cast toward specific Gauges.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

2.2.2 StakeDAO bribes contract
StakeDao introduces the contract Platform.sol which will handle the rewards distribution, and the
factory contract PlatformFactory.sol that is used to manage and deploy one Platform contract
per GaugeController distinct address.

2.2.3 PlatformFactory
The PlatformFactory is used as a contract factory and the Platform manager, managing platforms
is possible using a constructor-defined owner account. The most important feature is the deploy
function. It is used to deploy a new Platform smart contract. The deployment address will directly
depend on the gaugeController passed as a parameter. Note, that this function is accessible by
anyone and that no checks concerning the validity of the gaugeController is done. Each platform can
then be mapped with an owner-defined platformFee through the setPlatformFee function. The fees
will be directly sent to the feeCollector address which is defined through an owner-permissioned
setter function. A platform can also be "killed" by the owner through the factory, which will disable almost
all actions on the specific Platform contract.

2.2.4 Platform
Bribing users will be done through the Platform smart contracts. Any account can bribe voters for a
valid gauge and with any reward token. The creator of the bribe can choose certain periods into which the
total reward amount will be split and then proportionally shared with voters of the gauge for each period.
They can also specify a blacklist of users that should not be rewarded and not be taken into account for
the total voting power computation for each period. Additionally, a manager for the bribe is defined at
creation time. The previously explained logic is implemented in the createBribe function, which returns
a new bribe id once executed. Later on, if the bribe has been made upgradable by its creator, the bribe
manager can upgrade it and add a reward amount including additional periods to bribe voters. Voters can
claim their rewards through the claim and claimAll functions. The gaugeController is queried to
retrieve the voting power of the user and to compute the share that they should receive for the current
period. Unclaimed rewards for each period will be accumulated and split across every period left.
Leftovers can be claimed by the bribe manager once the bribe has ended or if the platform has been
killed by the factory owner.

2.2.5 Trust model and assumptions
The ERC20 tokens used are assumed to not have fees and to not be rebasing. The factory owner is
supposed to be trusted, he has the power to kill any deployed platform and to set a fee for each bribe
creation of up to 99% of the reward amount. Bribe managers are assumed to not be trusted.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Risk AcceptedUnkill Function Allows Claiming After Closing

• Risk AcceptedBribe Manager Can Deny Bribe by Decreasing maxRewardPerVote

• Risk AcceptedGaugeController Not Checkpointed Before First Period Update

• Risk AcceptedRepeated Addresses in Bribe Blacklist Cause Total Bias Under Estimation

Low -Severity Findings 7

• AcknowledgedError Messages and Event Usage

• Code Partially CorrectedGas Optimizations

• Risk AcceptedIncorrect User Bias Calculation

• Risk AcceptedMissing Sanity Checks

• AcknowledgedNaming Issues, NatSpec Missings, Incorrect Comments, Typos

• AcknowledgedUnused Imports

• Risk AcceptedsafeTransfer Functions Do Not Check Contract Existence

5.1 Unkill Function Allows Claiming After Closing
Security Medium Version 2 Risk Accepted

Function unKill(), only callable by the PlatformFactory contract owner, allows to reset isKilled
to false. If a bribe manager calls closeBribe() while the Platform is killed, and the platform is then
unkilled, the bribe becomes claimable again, even though the left over funds have been transferred by
closeBribe(). Users can claim their bribes and the funds will be taken from other bribes sharing the
same tokens.

Risk accepted

StakeDao accepts the risk but already fixed the issue by removing the unkill function in the latest code
version that was not included in the audit.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5.2 Bribe Manager Can Deny Bribe by Decreasing
maxRewardPerVote
Security Medium Version 1 Risk Accepted

The bribe manager can use increaseBribeDuration() to queue a decrease of
maxRewardPerVote to close to 0 just before the start of a claiming period, to rug the expected bribe of
users who have already voted.

Risk accepted

StakeDao states that they accept the risk.

5.3 GaugeController Not Checkpointed Before
First Period Update
Correctness Medium Version 1 Risk Accepted

The GaugeController is not checkpointed in _updateRewardPerToken(). If no vote has been cast
on the gauge before the first period, _getAdjustedBias() will return 0 instead of the actual value, or
might revert if blacklisted users cause an underflow to happen. This can cause the reward to become
unclaimable for some voters.

Risk accepted

StakeDao states:

While it would cause an issue for the first period with old vote users not
being able to claim their rewards, it would be solved by the next period
with the rolling over.

5.4 Repeated Addresses in Bribe Blacklist Cause
Total Bias Under Estimation
Security Medium Version 1 Risk Accepted

Newly created bribes can have repeated addresses in the blacklist. If an address is present multiple
times in the blacklist, its bias will be deducted multiple times from the total bias in
_getAdjustedBias(), and the function might return a value smaller than the cumulative bias of
potential claimers. rewardPerToken can therefore be manipulated upward by inserting repeated
addresses in the blacklist.

Risk accepted

StakeDao states that they accept the risk.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5.5 Error Messages and Event Usage
Design Low Version 1 Acknowledged

1. In PlatformFactory, StakeDao might consider adding an event to the state change in
setFeeCollector.

2. In Platform, the error messages INVALID_GAUGE is not used.

Acknowldeged

StakeDao acknowledges the issue. No actions are taken.

5.6 Gas Optimizations
Design Low Version 1 Code Partially Corrected

1. Double external call to vote_user_slopes in _claim(), at line 385 - 387

2. The function getActivePeriod is redundant since activePeriod is already public and will
implicitly define an external getter

3. _updateRewardPerToken calls getCurrentPeriod which was in both execution flows called
right before in the parent function

4. getPeriodsLeft and getActivePeriodPerBribe copy the entire Bribe struct from storage
to memory, but only use 2 of the fields from the struct. This causes unnecessary SLOAD operations
to be performed, at a cost that scales linearly with the size of the blacklist.

Code partially corrected

getCurrentPeriod() is now only called once. The two other potential optimizations were not applied.

5.7 Incorrect User Bias Calculation
Correctness Low Version 1 Risk Accepted

The internal _getAddrBias() function returns 0 if currentPeriod + _WEEK >= endLockTime.
However, as long as endLockTime is bigger than currentPeriod the user has voting power. Indeed,
in its time progression, a user bias will incorrectly go from slope * 3 * WEEK to slope * 2 * WEEK
to 0 while skipping slope * 1 * WEEK.

Risk accepted

StakeDao is aware of the issue but decided to accept the risk and leave the code as it is.

5.8 Missing Sanity Checks
Design Low Version 1 Risk Accepted

The following arguments are not checked or are insufficiently checked if they make sense:

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

• In Platform.createBribe the variable manager (address zero check), maxRewardPerVote
(zero check) and a check for rewardPerPeriod as it could be zero after the division with
numberOfPeriods

• In Platform.updateManager there is no sanity check for address zero

• In Platform._claim() it is not checked that the bribe exists

• In PlatformFactory setting the fee collector and transferring the owner are not checked for
address zero

Risk accepted

StakeDao states that they accept the risk.

5.9 Naming Issues, NatSpec Missings, Incorrect
Comments, Typos
Design Low Version 1 Acknowledged

In Platform.sol:

1. line 104, missing @notice for Upgrade struct

2. line 126, incorrect grammar: Minimum duration a Bribe

3. line 158, rewardPerToken naming is ambiguous, the variable value is better understood as the
reward per vote not the reward per token.

4. line 254, Target bias for the gauge, incorrect NatSpec on parameter maxRewardPerVote

5. In createBribe() NatSpec, missing parameters upgradeable and manager.

6. line 503: comment says called once per Bribe, however the function is called multiple times
on the first period, but the condition is only true on first call.

7. line 640: _additionnalPeriods declaration contains a typo

8. getActivePeriod and getActivePeriodPerBribe are named ambiguously, they do very
different things but share almost the same name

Acknowldeged

StakeDao acknowledges the issue. No actions are taken.

5.10 Unused Imports
Design Low Version 1 Acknowledged

The contract PlatformFactory imports ERC20 but does not use it.

Acknowldeged

StakeDao acknowledges the issue. No actions are taken.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5.11 safeTransfer Functions Do Not Check
Contract Existence
Security Low Version 1 Risk Accepted

The safeTransfer and safeTransferFrom functions of solmate's safeTransferLib do not check that
the token contract actually exists. If called with a token address that doesn't contain code, the calls will
succeed even if no transfer is performed. This could be an issue when a token will be deployed at a
predictable address.

Risk accepted

StakeDao states that they accept the risk.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 1

• Code CorrectedAdjusted Bias Measured Possibly Too Late

High -Severity Findings 1

• Code CorrectedQueued Upgrade Still Taken in Account After Closing Bribe

Medium -Severity Findings 1

• Code CorrectedcloseBribe Does Not Refund Tokens Added in Upgrade

Low -Severity Findings 0

6.1 Adjusted Bias Measured Possibly Too Late
Security Critical Version 1 Code Corrected

The amount of excluded votes belonging to the users in the blacklist are counted by the internal
function _getAdjustedBias for the recently concluded period when _updateBribePeriod() is
called. However, the period update only happens when users interact with the contract. Between the start
of the new voting period (timestamp / WEEK * WEEK) and the time _updateBribePeriod() is
called, a blacklist user can cast a new vote on the gauge, which is incorrectly counted by
``_getAdjustedBias() as belonging to the previous period.

rewardPerToken at period T is computed as

rewardPerToken(T) = rewardPerPeriod / (total_bias(T) - omitted_reward(T_blacklisted_last_vote))

So the periods of total_bias and omitted_reward might not match.

Since the bribe creator has full control on who to include in the blacklist and what gauge to set the bribe
on, they can make rewardPerToken as high as they desire by making the denominator arbitrarily small
with a blacklisted user that they control. Since _claim() doesn't check that
bribe.totalRewardAmount is not exceeded when distributing the reward, a dishonest bribe creator
can use this bug to steal funds from other bribes.

Code corrected

A check has been added so that subtracting the bias of a blacklisted user is only performed if the
blacklisted user has voted before the start of the period. Otherwise bias is not deducted and rewarded
users get a bit less.

_lastVote = gaugeController.last_user_vote(_addressesBlacklisted[i], gauge);
if (period > _lastVote) {
 _bias = _getAddrBias(userSlope.slope, userSlope.end, period);
 gaugeBias -= _bias;
}

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

A check is also introduced so that the cumulative bribe payout never exceeds the
bribe.totalRewardAmount.

6.2 Queued Upgrade Still Taken in Account After
Closing Bribe
Security High Version 1 Code Corrected

A queued upgrade for a bribe can still be taken in account after the manager has closed the bribe with
closeBribe. If it is the case, then part of the following rewards distributed are stolen from other bribes.

Once the bribe is closed by the manager, claiming again will update the bribe and reset the
endTimestamp in the future, without taking in account the totalRewardAmount - amountClaimed
amount withdrew by the manager.

Using this attack to steal all the funds of the contract is possible with no risks, but would necessitate at
least the same amount of tokens that the attacker wants to steal and being able to lock them for multiple
weeks.

Code corrected

The upgrade is now deleted from the queue when closeBribe() is called.

6.3 closeBribe Does Not Refund Tokens Added in
Upgrade
Design Medium Version 1 Code Corrected

When a bribe is closed while an upgrade is queued, the unclaimed amount will be refunded to the bribe
manager, but not the additional _increasedAmount added in the queued upgrade.

Code corrected

During the closing of a bribe, if there is an upgrade in the queue, instead of transferring back
total reward amount - amount claimed, the total amount after the upgrade is used.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Interface Definitions
Note Version 1

To indicate a file is an interface, the naming convention is to prepend an I to the file name. The interface
SmartWalletChecker and VeToken is for test purposes only. Interfaces used only for test purposes
are usually separated into test folders.

The following interfaces are defined but not used:

In GaugeController: add_gauge (only for tests), WEIGHT_VOTE_DELAY,
gauge_relative_weight_write, gauge_relative_weight, gauge_relative_weight,
get_total_weight, get_gauge_weight, add_type (only in tests), admin.

7.2 claimable() Might Return Incorrect Values
Note Version 1

Due to the nature of view functions not being able to change state, the claimable() view function
doesn't checkpoint the gauge nor it updates the period, so the value it returns could be invalid. This
should be made clear in the natspec.

StakeDao - Bribe Platform - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Curve CRV distribution
	2.2.2 StakeDAO bribes contract
	2.2.3 PlatformFactory
	2.2.4 Platform
	2.2.5 Trust model and assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Unkill Function Allows Claiming After Closing
	5.2 Bribe Manager Can Deny Bribe by Decreasing maxRewardPerVote
	5.3 GaugeController Not Checkpointed Before First Period Update
	5.4 Repeated Addresses in Bribe Blacklist Cause Total Bias Under Estimation
	5.5 Error Messages and Event Usage
	5.6 Gas Optimizations
	5.7 Incorrect User Bias Calculation
	5.8 Missing Sanity Checks
	5.9 Naming Issues, NatSpec Missings, Incorrect Comments, Typos
	5.10 Unused Imports
	5.11 safeTransfer Functions Do Not Check Contract Existence

	6 Resolved Findings
	6.1 Adjusted Bias Measured Possibly Too Late
	6.2 Queued Upgrade Still Taken in Account After Closing Bribe
	6.3 closeBribe Does Not Refund Tokens Added in Upgrade

	7 Notes
	7.1 Interface Definitions
	7.2 claimable() Might Return Incorrect Values

