PUBLIC

Code Assessment

of the Spool V2
Smart Contracts

October 20, 2023

Produced for

by

% Spool

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG

18
19
20
21
43
44

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Spool with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Spool V2 according to Scope
to support you in forming an opinion on their security risks.

Spool implements a system for meta-strategies where users invest in vaults that then collectively invest
in strategies that interact with third-party DeFi systems.

The most critical subjects covered in our audit are functional correctness, access control,
denial-of-service, precision of arithmetic operations, and reentrancy. Security regarding all the
aforementioned subjects is good.

The general subjects covered are gas-efficiency, documentation, and error handling.
In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but do not replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

¥ Code Corrected

(C[0)-Severity Findings

¥ Code Corrected

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

Code Corrected

¥ Specification Changed

|

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Spool V2 repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Private Repository

Date Commit Hash Note
\Y
1 | 24 April 2023 a42763a240ce924ead97ad7claab09655703bf33 Initial Version
2 | 24 May 2023 b63e530b83262016ecf4f0c77bedcd51ele9e7bf Second Version
3 | 28 June 2023 e2e65993b4209cac6a31a35fdf49b7c1b075bd36 Third Version
4 | 5 July 2023 c378d53b2b6641f166646d1fb330a448098899a7 Fourth Version
5 | 7 July 2023 09a7dch3f946fabec8dcfd5fad62e2d37ff05b5¢ Fifth Version

Public Repository

Date Commit Hash Note
V

1 | 18 October 2023 09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5¢ Fifth Version

For the solidity smart contracts, the compiler version 0. 8. 17 was chosen.

The files in scope are:

src/ Smart Vaul t . sol

src/ MasterWal | et . sol

src/guards/ Al'l oM i st Guar d. sol

src/ manager s/ Acti onManager . sol

src/ manager s/ R skManager . sol

src/ manager s/ Deposi t Manager . sol

src/ manager s/ Strat egyRegi stry. sol

src/ manager s/ Wt hdr awal Manager . sol

src/ manager s/ Guar dManager . sol

src/ manager s/ Asset G oupRegi stry. sol

src/ manager s/ Smar t Vaul t Manager . sol

src/ manager s/ UsdPri ceFeedManager . sol

src/ provi der s/ Exponenti al Al | ocati onProvi der. sol
src/ provi ders/ Li near Al | ocati onProvi der. sol
src/ provi ders/ Uni fornmAl | ocati onProvi der. sol
src/libraries/Real |l ocationLib. sol
src/libraries/uintl6al6Lib. sol
src/libraries/ArrayMappi ng. sol
src/libraries/uintl28a2Lib. sol
src/libraries/ Spool Utils. sol

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 5

https://github.com/solidant/spool-v2-core/tree/a42763a240ce924ead97ad7c1aab09655703bf33
https://github.com/solidant/spool-v2-core/tree/b63e530b83262016ecf4f0c77bedcd51e1e9e7bf
https://github.com/solidant/spool-v2-core/tree/e2e65993b4209cac6a31a35fdf49b7c1b075bd36
https://github.com/solidant/spool-v2-core/tree/c378d53b2b6641f166646d1fb330a448098899a7
https://github.com/solidant/spool-v2-core/tree/09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c
https://github.com/SpoolFi/spool-v2-core/tree/09a7dcb3f946fa5ec8dcfd5fa462e2d37ff05b5c
https://chainsecurity.com

src/libraries/MathUtils. sol
src/interfaces/| Smart Vaul t Manager . sol
src/interfaces/| MasterWall et. sol
src/interfaces/| R skManager. sol
src/interfaces/ | Wthdrawal Manager . sol
src/interfaces/| GuardManager. sol
src/interfaces/ Constants. sol
src/interfaces/| DepositSwap. sol
src/interfaces/ ComonErrors. sol
src/interfaces/| Rewar dvanager . sol
src/interfaces/| Strategy. sol
src/interfaces/| DepositManager. sol
src/interfaces/| Smart Vaul t. sol
src/interfaces/| Al ocationProvider. sol
src/interfaces/ | UsdPri ceFeedManager. sol
src/interfaces/| Swapper. sol

src/interfaces/ Request Type. sol
src/interfaces/ | Action. sol

src/interfaces/| Rewar dPool . sol
src/interfaces/ | Spool AccessControl . sol
src/interfaces/| StrategyRegistry. sol
src/interfaces/| Asset G oupRegi stry. sol

src/ rewar ds/ Rewar dPool . sol

src/ rewar ds/ Rewar dvanager . sol

src/ Deposi t Swap. sol

src/ Swapper. sol

src/ Smart Vaul t Fact ory. sol

src/external /interfaces/chai nlink/Aggregator V3l nterface. sol
src/external /interfaces/weth/|WETH9. sol
src/ access/ Rol es. sol

src/ access/ Spool AccessControl . sol

src/ access/ Spool AccessControl | abl e. sol

src/ strategi es/ convex/ Convex3pool Strat egy. sol
src/ strategi es/ convex/ ConvexAl usdStr at egy. sol
src/ strategi es/ convex/ ConvexStrat egy. sol
src/ strategi es/ curve/ Curve3Coi nPool Base. sol
src/strategi es/ curve/ Curve3pool Strat egy. sol
src/strategi es/ curve/ CurveAdapt er . sol

src/ strategi es/ curve/ CurvePool Base. sol

src/ strategi es/ hel per/ StrategyManual Yi el dVerifier. sol
src/strategi es/ BaseStrategy_ . sol
src/strategi es/ AaveV2Str at egy. sol

src/ strategi es/ ConpoundV2St r at egy. sol

src/ strategi es/ Ghost Str at egy. sol
src/strategi es/|dleStrategy. sol

src/ strategi es/ MorphoAaveV2St r at egy. sol
src/ strategi es/ MorphoConpoundV2St r at egy. sol
src/ strategi es/ MorphoSt rat egyBase. sol

src/ strategi es/ Noti onal Fi nanceSt rat egy. sol
src/ strategi es/ REt hHol di ngSt r at egy. sol

src/ strategi es/ SfrxEt hHol di ngSt r at egy. sol
src/strategi es/ St Et hHol di ngStr at egy. sol
src/strategi es/ Strategy. sol

src/ strategi es/ Wt hHel per. sol

src/strategi es/ YearnV2St r at egy. sol

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

In (Version 3), the following files were added to the scope:

src/libraries/PackedRange. sol

2.1.1 Excluded from scope

All other files. External protocols are assumed to be working correctly; hence, out-of-scope. Rebasing
and Fee-taking tokens are assumed not to be used in the system. Note that the scope is limited to the
presented code and does not include the integration of future, yet unknown, integrations and extensions.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Spool implements Spool V2, a collection of smart contracts where users can deploy meta-strategies,
called Smart Vaults (SVs), that then invest into strategies interacting with DeFi protocols. Users invest in
SVs and receive Smart Vault Tokens (SVTSs) in return while SVs then invest the user funds into
strategies, receiving Strategy Share Tokens (SSTS) in return, that deposit into third-party protocols. To
reduce gas costs, the number of interactions with external protocols is reduced by aggregating the SVs'
funds and investing them all together with "Do Hard Work" (DHW) actions. Ultimately, an asynchronous
process of depositing and withdrawing is implemented.

2.2.1 Smart Vaults

SVs are the layer at which users' investments are kept track of while being investors in strategies who
themselves invest in third-party protocols. Given a specification, the SVs are deployed through the
Smar t Vaul t Fact ory that sets the required state for the SV according to the specification. Note that
this should define the execution model of the SV and consists of several parameters.

1. Strategy-specific parameters
1. Asset Group ID: must be a valid asset group ID.

2. Strategies: all must be strategies of the same asset group ID and whitelisted. Limited to 16
strategies. Requires at least one strategy. Strategies must be unique.

2. Allocation-specific parameters:

1. Fixed strategy allocation: fixed asset allocation among the strategies. If zero, this is irrelevant,
since the parameters in 2. are used for computing allocations dynamically. If non-zero, the
parameters in 2. are irrelevant.

2. Risk tolerance: the parameter for weighting the contribution of APYs and risk scores. The
higher the risk tolerance, the higher the APY should be weighted against risk scores when
computing allocations.

3. Risk provider: address providing risk scores for strategies in the risk manager.
4. Allocation provider: provides the allocation of funds amongst different strategies of the SV.

3. Action Hook parameters (note that there is a maximum of 10 actions per request type)

1. Actions: list of whitelisted action contracts.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2. Action Request Types: a list, including what type of actions these are (in which context they
are called).

4. Guard Hooks parameters (note that there is a maximum of 10 actions per request type for each SV)

1. Guards: a set of guard definitions per request type. A guard definition is defined by a guard
contract, (string) method signature, an expected result value, the parameter types the guard
is expecting, the parameters to be passed to the guard, and the operator to compare the
expected value with the guard result. If no valid operator is used, the guard manager simply
treats the return value as a boolean.

2. Guard Request Types: list of what type of guards these are (in which context they are called).

5. Fee parameters
1. Management fee percentage: at most 5%
2. Deposit fee percentage: at most 5%

3. Performance fee percentage: at most 20%

6. Other
1. Name
2. Flag defining whether the vault admin can redeem for users.

3. The initial owner is set to the deployer.

Keep in mind that several parameters require a governance setup to be valid. See the corresponding
sections. (Asset Group Registry, Risk Manager, Allocation Provider, Guards, and Actions)

Once an SV is deployed, the central entry point for SV-related actions is the Smart Vaul t Manager
(SVM) contract. It handles users' actions such as user deposits, redemptions, and SVT claims.
Furthermore, it manages the communication with the St r at egyRegi st ry which is the entry-point for
DHW and, thus, the entry-point for SVs to indirectly interact with strategies.

The SVM orchestrates the strategies asynchronously. Namely, in so-called flush cycles, deposits and
withdrawals are aggregated per smart vault. At the end of such a cycle (when the smart vault is flushed),
the SVM will await the next DHW cycle, which should occur in the future. Hence, funds are awaited to be
freed and to be deposited. Once, the DHW cycles of all underlying strategies end, the SVM can
synchronize the result and, hence, finalize the deposits and withdrawals. Ultimately, SVM notifies
strategies when flushing, while retrieving the results upon synchronizing.

More specifically, with Smart Vaul t Manager . deposi t () and Smart Vaul t Manager . r edeen() (or
Smar t Vaul t Manager . r edeentor ()) users register their actions to be applied in the next DHW cycle.
The users receive deposit and withdrawal receipts in the form of an ERC-1155 (SV implements
EIP-1155) as so-called D-NFTs and W-NFTs which will grant them the right to claim SVTs or the
underlying funds, respectively, according to their deposited amounts and redeemed shares. Note that the
deposit amount should be distributed with a valid ratio according to the allocations of the underlying
strategies and the asset ratios in the strategies at the last executed DHW.

Once the previous flush cycle has been synchronized, an SV can be flushed again through
Smar t Vaul t Manager . f 1 ushSmart Vaul t () (or also optionally possible in deposits or withdrawals).

Smart Vault Manager notifies the strategies about aggregated deposits and withdrawals in an SV. These
aggregated deposits and withdrawals are accumulated for the next DHW cycle. More specifically, this
aggregation occurs in the St r at egyRegi st ry contract. Note that a new flush cycle can start after the
finished one has gotten synchronized. Meaning that new deposits and withdrawals can be made while
the SV awaits the result of the strategies; however, no new flush can be performed until the SV's
previous flush has not been finalized (synchronized). For deposits, a distribution of the underlying funds
is computed according to the SV's strategy allocation and the asset ratios at the last DHW. Namely, using
these it computes the asset allocations across strategies and the ideal deposits across assets. The ratio
between these two essentially defines what share of a token deposit should go to a strategy.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Once all DHWs for the strategies of an SV have been performed, the previous ("toSync") flush cycle can
be synchronized through (Smart Vaul t Manager . syncSmart Vaul t () (or mandatorily through any
other action at its beginning). The awaited results of the strategies are processed. Meaning, the
underlying assets of strategies and shares of SSTs are claimed according to the state at DHW and the
SV's deposits and withdrawals. Additionally, SVTs are preminted for all users according to the state when
the flush occurred (and DHW-dependent state necessary for SV fees).

Once the deposit/withdrawal epoch is synchronized, users can redeem their D-NFTS and W-NFTs for
SVTs and underlying tokens, respectively, with the corresponding functions
Smar t Vaul t Manager . cl ai nSmar t Vaul t Tokens() and
Smar t Vaul t Manager . cl ai MN t hdr awal () .

To summarize, the process can be described in five steps:

1. Aggregate deposits and withdrawals on the SV level. Users receive D-NFTs and W-NFTs.

2. Register SV for the next DHW by flushing. Aggregates SV deposits and withdrawals per strategy.
3. SV awaits the results of its strategies' DHWS.
4

. The SV can be synchronized. Based on the results of the DHW, an SV's shares of SSTs and
underlying are claimed while SVTs are preminted for all users (unpacking aggregation at 2.).

5. Based on the results of 4., the aggregated user actions of 1. can be unpacked per user by
redeeming the receipt tokens in return for SVTs or underlying tokens.

Note that the Smart Vaul t Manager manages the flush cycles and hence the synchronization. It,
however, commands the Deposi t Manager and the Wt hdr awal Manager contracts to manage the
deposits and withdrawals. First, they store the SV's aggregated actions. Second, they communicate the
deposits and withdrawals to the St r at egyRegi st ry (which consequently aggregates for the strategies,
see Strategies). Third, they process the deposit and withdrawal results. Last, they command the
Smar t Vaul t contract to mint/burn its ERC-20/ERC-1155.

Note that there exists a non-asynchronous redeem function, Srmart Vaul t Manager . r edeentast ().
Through the W t hdr awal Manager , it computes the amounts of SSTs claimable by the burned SVTs.
These SSTs are then redeemed through the St r at egyRegi st ry (which essentially batches calls to the
strategies). The withdrawn amounts are then received by the user. The user can decide to retrieve the
funds either redeen() or redeentast (), depending on his personal preferences (e.g., gas cost,
potentially unavailable funds in the underlying protocols, etc.).

Note that ROLE_SPOOL_ADM N removes strategies from vaults (and optionally makes them unsupported
by the system) by calling r emoveSt r at egyFr omVaul t s() . It replaces the strategies in the SVs with a
"ghost strategy" that is typically ignored when performing actions.

Recall that SVs can have dynamic strategy allocations. Changing the allocations is performed through a
calltoreal | ocat e() by ROLE_REALLOCATOR. A rough description of the process:

1. Retrieves and sets new allocations from the risk manager according to the SV specification
(synchronizes the smart vault if possible).

2. Computes per SV the deposits and withdrawals made to strategies in USD. Computes the total
deposits in USD needed.

3. Computes per SV the shares to be redeemed for the withdrawals.

4. For each SV, it virtually distributes each withdrawal in USD to the strategies that need a deposit
(based on the share they have of the total deposits needed). These results are aggregated to a
matrix where (i, j) represents the total USD flow fromS i to S j .

5. Matches between flows from S i to S j are computed. Essentially, S i will return some shares
SST j to S j as a"flow" that is equal in USD value to what S _j will returnin SST i to S i.

6. However, unmatched amounts will exist which result in unmatched SSTs. These are redeemed.
The resulting underlying funds are then distributed according to the unmatched USD amounts and

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

deposited into the strategies. This can be understood as S i transferring (by converting first)
SST j sharesto S j .

7. Ultimately, each SV can claim SST_j shares from the withdrawals it made from S_i to deposit into
S j for the shares matched and unmatched (5. and 6.) according to the ratio of the value it
deposited into S_j and the total value that has moved from S i to S j .

2.2.2 Strategies

The St r at egyRegi st ry is notified by Deposi t Manager and Wt hdr awal Manager about how much
they want to deposit to and withdraw from each strategy (addDeposit() and addWt hdrawal (),
respectively). With the aggregated deposits and withdrawals per strategy, the next DHW will deposit to
and redeem from strategies. That is done by the St r at egyRegi st ry. doHar dWbr k() which batches
the doHar dWor k() functions of each strategy. Note that, the strategies communicate the number of
SSTs minted, the number of assets withdrawn, the yield percentage since the last DHW, the strategy
value at post-DHW, and the total SSTs post-DHW. The registry then proceeds to finalize the DHW for
each strategy

1. by storing the asset ratios of the strategies (required for computing the distribution when flushing
SVs and for checking the deposit amounts to SVs),

2. by storing the asset exchange rates (required for claiming SSTs according to the deposits made
when synchronizing),

3. by storing the assets withdrawn (required for splitting the underlying assets among SVs when
synchronizing) and the unclaimed assets (assets not claimed yet - changes when SVs claim
underlying assets. Required for strategy removals),

4. by storing the minted and total SSTs, the strategies' values, and the DHW timestamp,
5. by updating the total yield percentage accumulated over time,

6. and by updating the weighted APY according to the new yield generated and the weighting formula.

Further, other functions are used internally (e.g., redeenfast(), clai MANthdrawal s(),
renoveStrat egy()). Besides these, the platform fees can be set with set Ecosystenfee(),
set Ecosyst enfeeRecei ver (), setTreasuryFee() and setTreasuryFeeReceiver() by
RCLE_SPOOL_ADM N. Additionally, ROLE_SPOOL_ADM N can set the emergency wallet with
set Emer gencyW t hdrawal Wal | et () while the ROLE_EMERGENCY_ W THDRAWAL_EXECUTOR can
initiate emer gencyWt hdraw() that batches energencyWthdraw() calls to strategies (and
optionally revokes their strategy status). The ROLE_SPOOL_ADM N can add new strategies with
regi sterStrategy(). Finally, the ROLE_STRATEGY_APY_SETTER can set a custom strategy APY
with set St r at egyApy() (in contrast to the running average APY computation in DHW).

2.2.3 Strategy

The contract St r at egy provides Spool V2 with an interface to the external protocols. As mentioned in
Strategies, it should implement the following functionalities:

1. doHar dWor k() to make the actual deposits to/withdrawals from the underlying protocol,

2. energencyW t hdr aw() to be called when a strategy is defected,

3. An ERC-20 implementation to represent its SSTs. It should support releasing and claiming SSTs,
4. Functionality to burn SSTs of an SV and return its deposited assets,

5. Functionality to accumulate protocol rewards (if the underlying protocol distributes any),

6. Functionality to distribute SSTs.

Each underlying protocol has a specific APIl. Hence, for each protocol, a customised implementation of
St r at egy is devised. In what follows, we describe the strategies of each protocol.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

2.2.3.1 Curve

The Cur ve3pool St rat egy interacts with the Curve 3pool containing DAI, USDC and USDT. All three
tokens must be deposited in roughly the same ratio the pool's balances are currently in. Deposited assets
yield an LP token that is then deposited into the respective Gauge contract of the pool, which yields yet
another LP token. The Gauge emits CRV token rewards that are redeemed and immediately swapped to
the underlying tokens on each DHW run. These tokens are then deposited into the pool again.

2.2.3.2 Convex

The Convex3pool Strat egy works similarly to the Cur ve3pool Strat egy. The pool LP tokens are,
however, deposited into Convex' Boost er contract instead of the Curve Gauge. The Boost er contract
yields CVX tokens in addition to CRV tokens.

The ConvexAl usdStrat egy also invests in the Curve 3pool. It then invests the LP tokens into the
Curve alUSD pool which consists of the 3pool LP token and the alUSD token, creating a pool with 4
tokens in total. The strategy only invests the LP token and 0 alUSD. It also only withdraws the LP token
and therefore consists of only the 3 original tokens. The alUSD pool LP token is then further invested into
Convex' Booost er contract.

2.2.3.3 Aave V2

The AaveV2St r at egy can be deployed to multiple instances, each with a different underlying token.
The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in an Aave v2
market as a supplier and does not perform borrowing on the supplied collateral. It does not handle any
rewards.

2.2.3.4 Compound V2

The ConmpoundV2St r at egy can be deployed to multiple instances, each with a different underlying
token. The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in a Compound
v2 market as a supplier and does not perform borrowing on the supplied collateral. It redeems COVP
rewards on every DHW run, converts them back to underlying and deposits them back into the protocol.

2.2.3.5 Idle

It implements an interface to Idle protocol, which facilitates users to optimise their asset allocations
across different protocols. This protocol is governed by users holding the governance tokens.

I dl eStrat egy supports only one underlying asset. Hence, it can be deployed multiple times with
different tokens. After receiving the underlying token, the strategy invests it in the Idle protocol. In return,
the users, for each deposited token, receive 1/ $I DLE Pri ce, as | DLE is a rebasing token and its value
increases monotonically. Users having deposited to Idle receive their rewards of governance tokens,
which can be traded against the underlying tokens and consequently be deposited into the protocol.

2.2.3.6 Morpho

Morpho is a P2P lending layer that uses another lending protocol for liquidity. Morpho contracts for two of
these underlying lending protocols are used in Spool V2:

The MbrphoConmpoundV2Strat egy can be deployed to multiple instances, each with a different
underlying token. The strategy has strictly only one underlying token per instance and can therefore only
be used by SmartVaults that belong to an asset group consisting of this token. The strategy invests in a
Morpho Compound v2 market as a supplier and does not perform borrowing on the supplied collateral. It
redeems MORPHO rewards on every DHW run, converts them back to underlying and deposits them back
into the protocol.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The Mor phoAaveV2St r at egy can be deployed to multiple instances, each with a different underlying
token. The strategy has strictly only one underlying token per instance and can therefore only be used by
SmartVaults that belong to an asset group consisting of this token. The strategy invests in a Morpho
Aave v2 market as a supplier and does not perform borrowing on the supplied collateral. It redeems
MORPHO rewards on every DHW run, converts them back to underlying and deposits them back into the
protocol.

2.2.3.7 Notional

Notional is a lending protocol for fixed-rate, fixed-term loans. While fixed-term lending might require
interaction from time to time, Notional also allows liquidity provisioning via so-called nTokens that
provide liquidity to all markets and roll-over loans automatically. Spool V2 invests in these nTokens.

The Noti onal Fi nanceStrat egy can be deployed to multiple instances, each with a different
underlying token. The strategy has strictly only one underlying token per instance and can therefore only
be used by SmartVaults that belong to an asset group consisting of this token. The strategy invests into a
nTokens for a certain market which is used to provide liquidity to multiple pools. The investments can
either be net-lending or net-borrowing depending on the current market. nToken investments yield Note
token rewards that are reinvested on every DHW run.

2.2.3.8 Rocket Pool

Rocket Pool gathers ETH from the staking users to spin up the ETH validators. Hence, users can only
deposit ETH to Rocket Pool and in return receive r ETH. As Ethereum validators receive rewards, they
pay fees to the protocol. As a result, for a certain amount of deposited ETH, fees will be accumulated and
the price of r ETH held by users against ETH increases. Spool V2, however, does not directly deposit to
Rocket Pool, but trades ETH with r ETH through Uniswap and Balancer.

It is worth mentioning, that as all deposited ETH in Spool V2 are converted to WETH, when interacting
with Rocket Pool, they should again be wrapped and unwrapped.

2.2.3.9 Frax

Frax Ether is an ETH staking derivative to generate yields. Staked ETH in Frax comes in two forms,
either frxETH or sfrxETH. When a user deposits to Frax by calling
frxETHM nt er . subm t AndDeposi t (), f r XETH gets minted. Holding frxETH on its own is not eligible
for staking yield. Therefore, f r xEt hM nt er locally exchanges frxETH against sfrxETH. sfrxETH
accrues the staking yield of Frax ETH validators. While sf r xETH is a rebasing token, the exchange rate
of f r xETH per sf r XETH increases.

Spool V2 devises another option for obtaining sf r xETH, as well as depositing to f r xEt hM nt er , which
is exchanging ETH on Curve to receive f r XETH and deposit it to sf r xEt hToken contract to receive the
respective amount of sf r xETH. When withdrawing, the only option is to redeem sf r xETH for f r xETH
and exchange it on Curve to get ETH back.

2.2.3.10 Lido

Lido is a liquid staking pool. It acts as an ERC-20 token, which represents staked ETH, namely st ETH.
Although st ETH tokens are pegged by deposited ETH, they yield fees and the market exchange rate
between st ETH and ETH increases with more ETH being deposited.

Spool V2 can receive st ETH either by sending ETH to the subm t function of Lido or exchanging its
ETH on Curve to obtain st ETH. When redeeming, it sells st ETH on Curve and receives ETH. Like Frax,
during redeeming the only possible way is to trade st ETH against ETH on Curve.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

2.2.3.11 Yearn

Yearn interfaces a Yearn Token Vault, which holds one and only one underlying token. Yearn, similar to
Spool V2, can be connected to multiple strategies to maximize its yield. It has a monitoring mechanism,
named Year n WAt ch, which monitors the health of underlying strategies and if necessary, reallocates
the deposited funds amongst them. Apart from this algorithm, to maximize the yield, Yearn has no reward
tokens.

When a user deposits to Yearn, it can theoretically revert if the total deposited value reaches a pre-set
limit. Minting yvToken is based on the free funds in the system (outstanding debts included). Upon
withdrawing, not enough tokens might be present in the Yearn Token Vault. In this case, Yearn has to
withdraw from the underlying strategies, which could potentially cause loss.

2.2.4 Guards

On SV deployment, the Guar dManager contract receives a set of guards and request types through
set Guar ds() from the SV factory. This deploys a "storage contract" per request type that contains all
guard definitions.

Guards support different request types (Tr ansf er SVTs, Transfer NFT, Bur nNFT, Deposit, and
W t hdr awal). The view function r unGuar ds() runs guards of a certain type. Note that this requires
encoding calldata according to the guard definition.

Users should carefully set up these guards, given the creation of the calldata.

Note that the only guard present in the codebase is the Al | owl i st Guar d where the smart vault-specific
role ROLE_GUARD ALLOALI ST _MANAGER can add and remove users from a whitelist with
addToAl l ow i st() andrenoveFronAl | ow i st ().

2.2.5 Actions

Upon the SV deployment, the Acti onManager contract receives a set of actions and request types
through set Action() from the SV factory. These, however, need to be whitelisted. Only
RCLE_SPOOL_ADM N can whitelist actions withwhi tel i st ().

The only request types that will be executed are Deposit and Wt hdrawal . The former will be
executed before the underlying assets are actually deposited into SV, while the latter will be executed
when withdrawals are claimed before the funds are sent. Note that this happens only through Spool V2
internal calls to r unAct i ons() .

2.2.6 Asset Group Registry

The Asset Gr oupRegi st ry contract defines supported groups of assets (at least one item). To create
an asset group, ROLE SPOCL_ADM N can register a list of ordered assets through
regi st er Asset Group(), which means that the asset group will not contain duplicate assets. Note that
each group can have only one ID. Further, the assets added to groups must be whitelisted which the
RCOLE_SPOOL_ADM N can do through al | owToken() or al | owTokenBat ch() .

2.2.7 Risk Manager

On SV deployment, the Ri skManager contract stores the SV's risk provider, risk tolerance, and
allocation provider with set Ri skProvi der, set Ri skTol erance(), and
set Al | ocati onProvi der (). The risk manager receives risk scores from ROLE_RI SK_PROVI DER
(note these are risk provider based) through the call set Ri skScor es() . These risk scores are in the
range from 1 to 100.

Note that deployers can specify STATI C_RI SK_PROVI DER as the risk provider which allows having a
static risk score of one for every strategy.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

The cal cul at eAl | ocati on() computes an SV's relative strategy allocation. It forwards the strategies,
their risk scores and APYs, and the SV's risk tolerance to the allocation provider that computes the
allocation. Note that it is validated that the allocation sums up to 100%.

2.2.8 Allocation Provider

The allocation provider devises cal cul at eAl' |l ocati on() for the instances of Ri skManager. It
practically calculates the allocation of SV's funds to the strategies, and ultimately the underlying
protocols. In the current state of Spool V2 three different policies for allocation provider is implemented,
which we are going to cover next.

2.2.8.1 Uniform Allocation Provider

Oblivious to the risk tolerance and APYs of the underlying strategies, this allocation provider evenly
distributes funds to the strategies. Due to rounding errors, the calculated allocations probably do not sum
up to 100%, hence, it collects the dust by assigning the difference to the first strategy.

2.2.8.2 Linear Allocation Provider

Given a risk score, it first finds ri sk\Wei ght and apyWi ght . The higher the risk score, the higher
apyWei ght and the lower ri skWei ght . It calculates the allocation to a given strategy as

nor nal i zedApy (uint256(data. apys[i]) MULTI PLI ER) apySum
ui nt 256 nornal i zedRi sk (MULTI PLI ER - (data.riskScores[i] MULTI PLI ER) ri skSum (dat a. apys. | ength 1),
al l ocations[i] nor mal i zedApy apyVeéi ght nor mal i zedRi sk ri skvei ght;

It is worth mentioning, that if APY of a strategy is negative, nor mal i zedApy is set to 0; hence, the
allocation would be computed solely concerning risk factors. Lower risk scores lead to higher
nor mal i zedRi sk, while higher apy lead to higher nor mal i zedApy.

2.2.8.3 Exponential Allocation Provider

It calculates the allocation to each strategy according to the following formula:

Zapy[i]lfskTa/erance

allocations[i] = SekScorel

As seen through this formula, higher risk tolerances as well as higher strategy APY's increase the
allocation, while risk score scales down the allocation.

2.2.9 USD Price Feed Manager

Given the pool of potentially distinct assets in an asset group, the USD price feed manager helps unify
the value of the underlying tokens to USD as a denomination unit. The USD price feed manager is a
wrapper around Chainlink price feeds. ROLE_SPOOL_ADM N can define the required parameters per
asset with set Asset () so that it works correctly with the Spool V2.

2.2.10 Master Wallet

The master wallet is the contract that holds underlying tokens. The funds deposited, waiting to be
invested into strategies, and the funds withdrawn from strategies, waiting to be claimed, are put into the
Mast er VAl | et . It can only be used by ROLE_ MASTER WALLET MANAGER (e.g., withdrawal manager
and strategy registry for transfers, governance for giving approvals).

2.2.11 Access Control

All access control is centrally managed in Spool AccessControl .

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

The default administrator role is equal to ROLE_SPOOL_ADM N. Special role administrators are the
ADM N_ROLE_STRATEGY and ADM N_ROLE_SMART_VAULT_ALLOW REDEEM that are the admins for
giving out ROLE_STRATEGY and ROLE_SMART_VAULT_ALLOW REDEEMroles.

It expands on the OpenZeppelin access control library and expands it by implementing

1. grant Smar t Vaul t Rol e() : either the governance or the vault admin can give out custom
vault-specific roles (see example in Guards). r evokeSnmar t Vaul t Rol e() revokes the role from
an address. renounceSnart Vaul t Rol e() and renounceSnmart Vaul t Rol e() to renounce
from a smart vault role.

2. grant Smart Vaul t Omer shi p() : used by factory to give ROLE_SMART_VAULT_ADM N to the
deployer.

3. pause() and unpause(): to pause and unpause the system (e.g., pauses SV manager and
DHW).

2.2.12 Swapper

The Swapper contract acts as a wrapper around DEXs. The ROLE_SPOOL_ADM N can (dis-)allow
exchange addresses for performing swaps with updat eExchangeAl | ow i st (). The swap() function,
swaps the tokens-in against the tokens-out and sends the tokens-out to the receiver. To swap, the
tokens-in need to be transferred to the swapper, before the swap() function is called. It batches multiple
calls to whitelisted exchanges according to the swap information (arbitrary calls possible). Unused funds
are returned to the receiver.

Note that no slippage protection is included here and that it is expected that exchanges are implementing
slippage protection. In general, it is not guaranteed that the swap info does not swap to other tokens
rather than the tokens-out.

2.2.13 Deposit Swap

The Deposi t Swap contract is a peripheral contract that implements the function swapAndDeposi t ().
It pulls funds from the caller (supporting native ETH) and swaps them through the swapper according to
the swap information to the assets of the smart vault. When the swap is complete, the funds are
deposited into the smart vault, and the remaining (known of) assets are sent back to the caller.

2.2.14 Rewards

The reward contract offers the possibility to add extra incentives to smart vaults. Namely, the vault
administrator or the Spool admin can add a reward with addToken() for an SV. Given a number of
reward tokens, the reward token, and an end timestamp of the reward release schedule, a configuration
for an SV can be created. These tokens are expected to be made claimable by
RCOLE_REWARD _POCOL_ADM Nin cycles (according to the release rate defined) in an off-chain component
by computing a Merkle Tree and publishing its root with addTr eeRoot () (option to update the root
updat eTr eeRoot () available). Users can claim rewards with cl ai () . Note that, it collects all the
rewards up to the cycle specified for a given SV and incentive token (implies that each user's total
rewards claimable must be monotonically increasing). Consider that an incentive period can be extended
for the same duration with extra tokens with ext endRewar dEm ssi on(), and that only non-blacklisted
and non-underlying (per SV) tokens are supported as incentives. Once a reward has been fully released
(end time has passed), it can be removed to create space for new rewards since at most 6 incentive
programs per SV can be active.

Only ROLE_SPOOL_ADM N can (un-)blacklist tokens for an SV with for ceRenoveRewar d() and
renoveFronBl acklist().

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

2.2.15 Roles & Trust Model

Main contracts such as Smart Vault, Smart Vault Factory, Strategy Registry, and Asset Group Registry
are deployed behind a beacon proxy. The proxy admin (assumed to be appropriately chosen, e.g., a
timelocked or limited multisig) is fully trusted to act honestly and correctly at all times.

We assume a correct deployment and consequently a sound assignment of roles.

There are several roles present that refer to smart contracts of the system. These are expected to match
the right contracts and are trusted.

« ROLE_SMART_VAULT | NTEGRATOR: It deploys and adds SVs to the Spool. However, users can
choose whether to interact with an SV or not. It should be assigned to the SmartVaultFactory.

« ROLE_MASTER WALLET MANAGER: In a sane deployment, this role is granted to trusted core
contracts namely SmartVaultManager, StrategyRegistry, DepositManager, and WithdrawalManager.

« ROLE_SMART_VAULT MANAGER: Granted to SmartVaultManager, DepositManager and
WithdrawalManager; hence, trusted.

« ROLE_STRATEGY_REQ STRY: StrategyRegistry holds this role and is assumed to be trusted.

*« ROLE_ALLOCATI ON_PROVI DER: Each contract holding this role should be fully trusted, as it can be
gueried as an allocation provider.

« ROLE_STRATEGY: To be valid, a strategy should have this role. It should be trusted, as it acts as an
interface for the underlying protocol.

« ADM N_RCLE_STRATEGY: Taken as fully trusted. Expected to be the strategy registry.

« ADM N_RCOLE_SMART _VAULT_ALLOW REDEEM Fully trusted, as it can assign the aforementioned
role to users. Expected to be the SV factory.

Other roles are privileged roles on the system level that can execute some privileged actions:

« ROLE_SPOOL_ADM N: Fully trusted as it has the highest privilege in the ecosystem (e.g., manipulate
the USD price feed, assign other roles).

* ROLE_EMERGENCY_W THDRAWAL _EXECUTOR: Can withdraw funds in case of emergency to the
emergency wallet. Assumed to be fully trusted and to use its powers only in case of emergency.

* ROLE_STRATEGY_APY_SETTER: Trusted as APYs directly affect allocations. Expected to only
provide meaningful values if necessary.

* ROLE_PAUSER and ROLE_UNPAUSER: These roles can pause/unpause the system. Hence, they
should be trusted, otherwise, users' funds can be trapped in the system.

* ROLE_REALLOCATOR: An address holding this role is privileged as it can call real | ocat e() and
provide the reallocation parameters which should be set correctly. Fully trusted since bad
reallocation parameters could be provided.

* ROLE_DO _HARD WORKER: Fully trusted, as it is capable of calling doHar dWor k() . Similar, to the
above.

* ROLE_RI SK_PROVI DER: The smart contract having this role should be trusted and using untrusted
risk providers should be avoided, as it feeds in risk scores for each strategy which ultimately affects
the allocation of an SV.

* ROLE_REWARD POOL_ADM N: Fully trusted for the incentive mechanism.

Further, some roles are specific to a smart vault:

« ROLE_SMART_VAULT_ADM N: Generally trusted. Can assign smart vault-specific roles (e.qg., for the
allow list guard). Also, can redeem for users (to the users).

* ROLE_GUARD ALLONLI ST _MANAGER: This role is in charge of maintaining allow lists for an SV;
hence, capable of bricking the vault. Therefore, it should be fully trusted if it is used.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

Last, some roles describe the properties of smart vaults:
* ROLE_SMVART_VAULT_ALLOW REDEEM Fully trusted. A malicious user holding this role can redeem
the assets of other users and block them from receiving the planned yields.
External Users: Untrusted and could act maliciously.

We assume the users holding privileged roles, e.g., doHardWorker and reallocator, calculate the optimal
and correct slippages off-chain, before feeding them into the system. We further assume that the admin
does not add malicious tokens to the Asset Gr oupRegi stry.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CIEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings e

(C)-Severity Findings 0

(Medium)-Severity Findings 0

(Low)-Severity Findings 1
+ Read-only Reentrancy (=~)

5.1 Read-only Reentrancy
[Low] [Version 1)[]

It can be possible to construct examples where certain properties of the SV mismatch reality. For
example, during reallocations, a temporary devaluation of SVTs occurs due to SSTs being released. Due
to reentrancy possibilities, certain values retrieved could be inaccurate (e.g. SV valuation).

CS-Spoolv2-024

Acknowledged:

While the read-only reentrancy does directly affect on the protocaol, it could affect third parties. Spool
replied:

The nentioned view functions are not intended to be used while the
reallocation is in progress.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings 1
y g

« Lack of Access Control in recoverPendingDeposits()

CIZ)-Severity Findings 7

+ DOS Synchronization by Dividing With Zero Redeemed Shares
+ DOS on Deposit Synchronization

» Donation Attack on SST Minting

» Donation Attack on SVT Minting

» Flushing Into Ongoing DHW Leading to Loss of Funds

+ No Deposit Due to Reentrancy Into redeemFast()

» Wrong Slippage Parameter in Curve Deposit

(Medium)-Severity Findings 5

« Curve LP Token Value Calculation Can Be Manipulated
» Deposits to Vault With Only Ghost Strategies Possible
» Ghost Strategy Disables Functionality

» Inconsistent Compound Strategy Value

« Strategy Value Manipulation

(Low)-Severity Findings 19

» Distribution to Ghost Strategy

» Lack of Access Control for Setting Extra Rewards
 Wrong Error IdleStrategy.beforeRedeemalCheck()

» Access Control Not Central to Access Control Contract
» Asset Decimal in Price Feed

« Bad Event Emissions

» Broken Conditions on Whether Deposits Have Occurred
» Deposit Deviation Can Be Higher Than Expected

» Inconsistent Handling of Funds on Strategy Removal

» Misleading Constant Name

« Missing Access Control in Swapper

« Missing Event Fields

+ No Sanity Checks on Slippage Type

* Precision Loss in Notional Finance Strategy

* Redemption Executor (LRI Er

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

« State Inconsistencies Possible (@l elITg:ld=N:

* Unused Functions (eI T=r]

* Unused Variable (LERSI{EEEL
* Validation of Specification (lERSI{EEl

Informational Findings 9

* Reverts Due to Management Fee (SRS

« Simplifying Performance Fees

» Strategy Removal for an SV Possible That Does Not Use It
« Errors in NatSpec

» Distinct Array Lengths

« Gas Optimizations

« Nameless ERC20

* NFT IDs

* Tokens Can Be Enabled Twice ([elJ{=IL:E]

6.1 Lack of Access Control in
recover Pendi ngDeposi ts()

Code Correcte

Deposi t Manager . r ecover Pendi ngDeposi ts() has no access control (instead of being only
callable by the SV manager). Thus, it allows arbitrary users to freely specify the arguments passed to the
function. Ultimately, funds from the master wallet can be stolen.

CS-Spoolv2-039

Code corrected:
Access control was added. Now, only ROLE_SMART_VAULT_MANAGER can access the function.

6.2 DOS Synchronization by Dividing With Zero
Redeemed Shares

(Sccurity | High CEERBY Code Corrected

_shar esRedeened describes the SSTs redeemed by an SV. That value could be zero due to rounding.
Hence,

CS-Spoolv2-001

ui nt 256 wi t hdr awnAsset s
_asset sWthdrawn[strategy] [dhwl ndex] [j] strategyShares[i] _sharesRedeened| st rat egy] [dhwl ndex] ;

could be a division by zero.
Consider the following scenario:

1. Many deposits are made to an SV.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

2. The attacker makes a 1 SVT wei withdrawal.
3. The attacker flushes the SV.

4. The redeemed SSTs are computes as
strategyWthdrawal s[i] = strategyShares * withdrawals / total Vaul t Shares.
st r at egyShar es corresponds to the shares held by the SV. Hence if the SV's balance of SSTs is
lower than the total supply of SSTs (recall, the withdrawal is 1), the shares to be withdrawn is 0.

5. The withdrawal manager passes it to the strategy registry which then stores these values in
_shar esRedeened.

6. No other SV tries to withdraw.

7. The division reverts on synchronization.

Ultimately, funds will be locked and SVs could be DOSed.

Code corrected:

Now, in every iteration of the loop in StrategyRegistry.clai mWthdrawal s(), it is checked
whether the strategy shares to be withdrawn from the SV (st r at egyShar es) are non-zero. In the case
of st r at egyShar es being zero, the iteration is skipped. If not the case, _shar esRedeened > 0 will
hold. That is because it is the sum of all SV withdrawals. In other words,
strategyShares_SV > 0 => _sharesRedeened > 0.

6.3 DOS on Deposit Synchronization
(Security [High NEZIBY] Code Corrected

After the DHW of an SV's to-sync flush cycle, the SV must be synced. The deposit manager decides,
based on the value of the deposits at DHW, how many of the minted SSTs will be claimable by the SV. It
is computed as follows:

CS-Spoolv2-002

result.sstShares[i] at Dhw. sharesM nt ed deposi t edUsd| 0] deposi t edUsd[1] ;

The deposi t edUsd has the total deposit of the vault in USD at index zero while at index 1 the total
deposits of all SVs are aggregated.

To calculate resul t . sst Shares[i] the following condition should be met:

deposits 0 at Dhw. sharesM nt ed 0

which means that the first asset in the asset group had to be deposited and that at least one SST had to
be minted. Given very small values and front-running DHWs with donations that could be achieved.
Ultimately, a division-by-zero could DOS the synchronization.

Consider the following scenario:
1. Only withdrawals occur on a given strategy.
2. An attacker sees a DHW incoming for that strategy.

3. The attacker frontruns the transaction and makes a minor deposit so that deposits > 0 holds.
Additionally, the asset ToUsdCust onPri ceBul k() should return O which is possible due to
rounding. See the following code in UsdPr i ceFeedManager . asset ToUsdCust onPri ce:

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

asset Anount price assetMul tiplier[asset];

Under the condition that asset Amount * price is less than assetMul tiplier (e.g. 1 wei at 0.1
USD for a token with 18 decimals), that will return O.

4. Additionally, the attacker donates an amount so that St r at egy. doHar dWor k() so that 1 wei SST
will be minted (note that the Strategy mints based on the balances and does not receive the
amount that were deposited).

5. Finally, DHW is entered and succeeds with 1 minted share.

6. The vault must sync. However, it reverts due to deposi t edUsd[1] being calculated as 0.

Ultimately, an attacker could cheaply attack multiple SVs under certain conditions.

Code corrected:

deposits > 0 has been replaced by checking whether there are any deposits made to any of the
underlying assets. Additionally, a condition skips the computation (and some surrounding ones) in case
the deposited value is zero.

6.4 Donation Attack on SST Minting
Security | High \ZZZX2BY Code Corrected)

The SSTs are minted on DHW and based on the existing value. However, it is possible to donate (e.g.
aTokens to the Aave strategy) to strategies so that deposits are minting no shares.

CS-Spoolv2-003

A simple attack may cause a loss in funds. Consider the following scenario:
1. A new strategy is deployed.
2. 1M USD is present for the DHW (value was zero since it is a new strategy).
3. An attacker donates 1 USD in underlying of the strategy (e.g. aToken).

4. DHW on the strategies happens. usdWorth[0]"" will be non-zero. Hence, the
deposi t Shar eEqui val ent will be computed using multiplication with total supply which is 0.
Ultimately, no shares will be minted.

Ultimately, funds could be lost.
An attacker could improve on the attack for profit.
1. A new strategy is deployed.
. An attacker achieves to mint some shares.
. The attacker redeems the shares fast so that only 1 SST exists.
. Now, others deposit 1M USD.
. The attacker donates 1M + 1 USD in yield-bearing tokens to the strategy.

o O~ WDN

. No shares are minted due to rounding issues since the deposi t Shar esEqui val ent and the
wi t hdr awnShar es are zero.

The deposits will increase the value of the strategy so that the attacker profits.

Ultimately, funds could be stolen.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

Code corrected:

While the total supply of SSTs is less than | NI TI AL_LOCKED_SHARES, the shares are minted at a fixed
rate. | NI TI AL_LCCKED_SHARES are minted to the address Oxdead so that a minimum amount of
shares is enforced. That makes such attacks much more expensive.

6.5 Donation Attack on SVT Minting
(Security JHigh {CZZEETRY] Code Corrected)

The SVTs that are minted on synchronization are minted based on the existing value at the flush.
However, it is possible to donate to SVs so that deposits are minting no shares.

CS-Spoolv2-004

A simple attack may cause a loss in funds. Consider the following scenario:
1. Anew SV is deployed.
2. IM USD is flushed (value was zero since it is a new vault).

3. An attacker, holding some SSTs (potentially received through platform fees), donates 1 USD in
SSTs (increases the vault value to 1 USD). Frontruns DHW.

4. DHW on the strategies happens.

5.The SV gets synced. The synchronization does not enter the branch of
if (total Usd[1] == 0) since the value is 1 USD. The SVTs are minted based on the total
supply of SVTs which is zero. Hence, zero shares will be minted.

6. The depositors of the fund receive no SVTSs.

Ultimately, funds could be lost.
An attacker could improve on the attack for profit.
1. A new SV is deployed.
. An attacker achieves to mint some shares.
. The attacker redeems the shares fast so that only 1 SVT exists.
. Now, others deposit 1M USD, and the deposits are flushed.
. The attacker donates 1M + 1 USD in SSTs to the strategy.

o O~ W DN

. Assume there are no fees for the SV for simplicity. Synchronization happens. The shares minted for
the deposits willbe equalto1 * 1M USD / (1M + 1 USD) which rounds down to zero.

The deposits will increase the value of the vault so that the attacker profits.

Finally, consider that an attack could technically also donate to the strategy before the DHW so that
t ot al Strat egyVal ue is pumped.

Code corrected:

While the total supply of SSTs is less than | NI TI AL_LOCKED_SHARES, the shares are minted at a fixed
rate. | NI TI AL_LOCKED SHARES are minted to the address Oxdead so that a minimum amount of
shares is enforced. That makes such attacks much more expensive.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.6 Flushing Into Ongoing DHW Leading to Loss
of Funds

D) G (Version 1) RN

The DHW could be reentrant due to the underlying protocols allowing for reentrancy or the swaps being
reentrant. That reentrancy potential may allow an attacker to manipulate the perceived deposit value in
Strat egy. doHar dWor k() .

Consider the following scenario:

CS-Spoolv2-005

1. DHW is being executed for a strategy. The deposits are 1M USD. Assume that for example the best
off-chain computed path is taken for swaps. An intermediary token is reentrant.

2. The strategy registry communicated the provided funds and the withdrawn shares for the DHW
index to the strategy.

3. Funds are swapped.

4. The attacker reenters a vault that uses the strategy and flushes 1M USD. Hence, the funds to
deposit and shares to redeem for the DHW changed even though the DHW is already running.

5. The funds will be lost. However, the loss is split among all SVs.

6. However, the next DHW will treat the assets as deposits made by SVs. An attacker could maximize
his profit by depositing a huge amount and flushing to the DHW index where the donation will be
applied. Additionally, he could try flushing all other SVs with small amounts. The withdrawn shares
will be just lost.

To summarize, flushing could be reentered to manipulate the outcome of DHW due to bad inputs coming
from the strategy registry.

Code corrected:

Reentrancy protection has been added for this case.

6.7 No Deposit Due to Reentrancy Into
redeentast ()
(Security | High [(ZZIZBY Code Corrected

The DHW could be reentrant due to the underlying protocols allowing for reentrancy or the swaps being
reentrant. That reentrancy potential may allow an attacker to manipulate the perceived deposit value in
Strat egy. doHar dWor k() .

Consider the following scenario:

CS-Spoolv2-006

1. DHW is executed for a strategy. The deposits are 1M USD. Assume that for example the best
off-chain computed path is taken for swaps. An intermediary token is reentrant.

. DHW checks the value of the strategy, which is 2M USD and fully controlled by the attacker's SV.
. The DHW swaps the incoming assets. The attacker takes control of the execution.
. The attacker redeems 1M USD with r edeentast () . The strategy's value drops to 1M USD.

. DHW proceeds, a good swap is made and the funds are deposited into the protocol.

o O~ W N

. DHW retrieves the new strategy value which is now 2M USD.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7. The perceived deposit is now 0 USD due to 2. and 6. However, the actual deposit was 1M USD.

Ultimately, the deposit made is treated as a donation to the attacker since zero shares are minted.
Similarly, such attacks are possible when redeeming SSTs with r edeentt r at egyShar es() .

Also, the attack could occur in regular protocol interactions if the underlying protocol has reentrancy
possibilities (e.g. protocol itself has a swapping mechanism). In such cases, the reallocation could be
vulnerable due to similar reasons in deposi t Fast () .

Code corrected:
Reentrancy protection has been added for this case.

6.8 Wrong Slippage Parameter in Curve Deposit
(Correctness | HigH JNEETTI Code Corrected)

Cur ve3Coi nPool Base. _deposi t ToProt ocol () calculates an offset for the given sl i ppage array.
This offset is then passed - without the actual array - into the function _deposit ToCurve(). The
add_Il i quidity() function of the Curve pool is then called with this offset parameter, setting the
slippage to always either 7 or 10:

CS-Spoolv2-007

ui nt 256 sl i ppage;
it (slippages|O] 0) {
sl i ppage 10;
} else if (slippages|O] 2) {
sl i ppage 7;
} else {
revert CurveDepositSlippagesFailed();

}

_deposi t ToCurve(tokens, anmounts, slippage);

pool . add_Ii qui dity(curveAnmounts, slippage);

DHW calls can be frontrun to extract almost all value of this call.

Code corrected:

Cur ve3Coi nPool Base. _deposi t ToProt ocol () now passes the correct value of the sl i ppages
array to _deposi t ToCurve().

6.9 Curve LP Token Value Calculation Can Be

Manipulated
D (Viedium) (Version 1) (XS

CS-Spoolv2-008

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Cur ve3Coi nPool Base. _get UsdWort h() and ConvexAl usdStrat egy. _get TokenWbrt h()
calculate the value of available LP tokens in the following way:

for (uint256 i; i t okens. | engt h; i) {
usdWort h pri ceFeedManager . asset ToUsdCust onPri ce(
tokens[i], _bal ances(asset Mapping.get(i)) | pTokenBal ance | pTokenTot al Suppl y, exchangeRates|i]

DE
}

This is problematic as the pool exchanges tokens based on a curve (even though it is mostly flat).
Consider the following scenario (simplified for 2 tokens):

* The pool's current A value is 2000.

* The pool holds 100M of each token.

* The total LP value according to the given calculation is 200M USD.

* A big trade (200M) changes the holdings of the pool in the following way:

* 300M A token
* ~160 B token

 The total LP value according to the given calculation is now ~300M USD.

A sandwich attack on Strat egyRegi stry. doHar dWbr k() could potentially skew the value of a
strategy dramatically (although an enormous amount of tokens would be required due to the flat curve of
the StableSwap pool). This would, in turn, decrease the number of shares all deposits in this DHW cycle
receive, shifting some of this value to the existing depositors.

All in all, an attacker must hold a large position on the strategy, identify a DHW that contains a large
deposit to the strategy and then sandwich attack it with a large amount of tokens. The attack is therefore
rather unlikely but has a critical impact.

Code corrected:

The Curve and Convex strategies now contain additional slippage checks for the given Curve pool's
token balances (and also the Metapool's balances in the case of ConvexAl usdStrategy) in
bef or eDeposi t Check. As this function is always called in doHar dWor k, the aforementioned sandwich
attack can effectively be mitigated by correctly set slippages. It is worth noting that these slippages can
be set loosely (to prevent the transaction from failing) as some less extreme fluctuations cannot be
exploited due to the functionality of the underlying Curve 3pool.

6.10 Deposits to Vault With Only Ghost Strategies
Possible

(Medium] [Version 1] Code Corrected

Governance can remove strategies from vaults. It happens by replacing the strategy with the ghost
strategy. However, if an SV has only ghost strategies, deposits to it are still possible (checking the
deposit ratio always works since the ideal deposit ratio is O or due to the "one-token" mechanics).
However, flushing would revert. User funds could unnecessarily be lost. Similarly, redemptions would be
possible. Additionally, synchronization could occur if the ghost strategy is registered (which should not be
the case).

CS-Spoolv2-009

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

Code corrected:

The case was disallowed by making a call to the newly implemented function _nonGhost Vaul t, which
also gets called when redeeming and flushing. Hence, depositing to, redeeming and flushing from a
ghost vault is disabled.

6.11 Ghost Strategy Disables Functionality
(Correctness (TSI NVIETIRY Code Corrected)

Governance can remove strategies from SVs by replacing them with the ghost strategy. This may break
redeenfast () on SVs due to Strat egyRegi stry. redeenfast () trying to call r edeenfast () on
the ghost strategy.

CS-Spoolv2-010

Code corrected:

The iteration is skipped in case the current strategy is the ghost strategy. Hence, the function is not called
on the ghost strategy anymore.

6.12 Inconsistent Compound Strategy Value

[Medium] [Version 1] Code Corrected

ConpoundV2St r at egy calculates the yield of the last DHW epoch with exchangeRat eCurrent ()
which returns the supply index up until the current block:

CS-Spoolv2-011

ui nt 256 exchangeRat eCurr ent cToken. exchangeRat eCurrent () ;

baseYi el dPer cent age _cal cul at eYi el dPercent age(_I| ast ExchangeRat e, exchangeRateCurrent);
_last ExchangeRat e exchangeRat eCurrent ;

On the other hand, _get UsdWort h() calculates the value of the whole strategy based on the output of
_get cTokenVal ue() which in turn calls Compound's exchangeRat eSt or ed() :

i f (cTokenAnount 0) {
return O;

}

return (cToken. exchangeRat eSt ored() cTokenAmount) MANTI SSA;

This behavior has been acknowledged with a comment in the code. However, it can become problematic
in the following scenario:

» The compound protocol did not have interaction over a longer period.
* A user has deposited into a Smar t Vaul t that contains the ConpoundV2St r at egy.
« In the doHar dWor k() call, the strategy's _conpound function does not deposit to the protocol (i.e.
the index is not updated in Compound). This can happen in the following cases:
* No COMP rewards have been accrued since the last DHW.

«The ROLE_DO HARD WORKER role has not supplied a Swapl nfo to the strategy's
_conpound function.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

In this case, the following line in St r at egy. doHar dWor k(') relies on outdated data:
usdwWort h[0] _get UsdWor t h(dhwPar ans. exchangeRat es, dhwPar ans. pri ceFeedManager) ;

usdWor t h[0] is then used to determine the number of shares minted for the depositors of this DHW
epoch:

ni nt edShar es usdwWor t hDeposi t ed t ot al Suppl y() usdwort h[0] ;

Since some interest is missing from this value, the depositors receive more shares than they are eligible
for, giving them instant gain.

Code corrected:
_get cTokenVal ue() now retrieves the current exchange rate instead of the stale one.

6.13 Strategy Value Manipulation
D) (Viedium) (Version 1) (CXSIZE)

Smar t Vaul t Manager . r edeenfast () allows users to directly redeem their holdings on the underlying
protocols of the strategies in a vault. The function calls to Strat egy. redeenfast () in which the
t ot al UsdVal ue of the respective strategy is updated.

CS-Spoolv2-043

This value can be manipulated in several ways:

* If the given Chainlink oracle for one of the assets is not returning a correct value, the user can
provide exchangeRat eSl i ppages that would allow these false exchange rates to be used.

« If the strategy's correct value calculation depends on slippage values to be non-manipulatable, the
strategy's value can be changed with a sandwich attack as there is no possibility to enforce correct
behavior (see, for example, Curve LP token value calculation can be manipulated). Furthermore, this
sandwich attack is particularly easy to perform as the user is in control of the call that has to be
sandwiched (i.e., all calls can be performed in one transaction).

A manipulated strategy value is problematic for Smart Vaul t Manager . real | ocat e() because the
t ot al UsdVal ue is used to compute how much value is moved/matched between strategies.

Note: This issue was disclosed by the Spool team during the review process of this report.

Code corrected:

real | ocat e() now computes the value of strategies directly, rather than relying on t ot al UsdVal ue
(which is now completely removed from the codebase),

6.14 Distribution to Ghost Strategy
XTI (Low) (Version 4) (XIS

Deposi t Manager. _di stri but eDeposit Si ngl eAsset assigns all dust to the first strategy in the
given array. There are no checks present to ensure that this strategy is not the Ghost strategy.

CS-Spoolv2-040

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

Code corrected:
The code has been adjusted to add dust to the first strategy with a deposit.

6.15 Lack of Access Control for Setting Extra
Rewards

(Coreectness YOI Code Corrected)

set Ext r aRewar ds() has no access control. However, an attacker could set the extra rewards to false
for a long time. Then, after their SV's first deposit to the strategy, could set it to true, so that they receive
more compounded yield than they should have received.

CS-Spoolv2-041

Code corrected:

The code has been corrected.

6.16 Wrong Error
| dl eStrat egy. bef or eRedeenal Check()

D (Low)(Version 3) TN

The range-check in I dl eSt rat egy. bef or eRedeenal Check() reverts with the
| dl eBef or eDeposi t CheckFai | ed error. However, | dl eBef or eRedeemnal CheckFai | ed would be
the suiting error.

CS-Spoolv2-028

Code corrected:

The correct error is used.

6.17 Access Control Not Central to Access
Control Contract

[Low] [Version 1] Specification Changed

The specification defines that access control should be centralized in Spool AccessContr ol :

CS-Spoolv2-012

Al'l access control is handled centrally via Spool AccessControl . sol.

However, the factory as an Upgradeabl eBeacon implements access control for changing
implementation which does not use the central access control contract.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Specification changed:
The documentation has been clarified:
Access control is managed on three separate |evels:
- Al privileged access pertaining to usage of the platformis handl ed
t hrough Spool AccessControl .sol, which is based on OpenZeppelin’s

AccessControl smart contract

- Core smart contracts upgradeability is controlled through
OpenZeppel in’ s ProxyAdm n. sol

- SmartVault upgradeability is controlled using OpenZeppelin's
Upgr adeabl eBeacon smart contract

Hence, the access control for upgrading the beacons is now accordingly documented.

6.18 Asset Decimal in Price Feed

(D (Low) (Version 1) ISR

The asset decimals are given as an input parameter in set Asset (). Although being cheaper than
directly querying ERC20. deci mal s(), it is more prone to errors. Fetching the asset decimals through
the ERC20 interface could reduce such risks.

CS-Spoolv2-013

Code corrected:

ERC20. deci nal s() is now called to fetch the underlying asset decimals.

6.19 Bad Event Emissions

(Correctness JICEETTRY Code Corrected)

In StrategyRegi stry. redeenfast (), the StrategyShar esFast Redeened() is emitted. The
asset sWt hdrawn parameter of the event will be set to wi t hdr awnAsset s on every loop iteration.
However, that does not correspond to the assets withdrawn from a strategy but corresponds to the
assets withdrawn up to the strategy i .

CS-Spoolv2-014

Code corrected:

The event takes now st r at egyW t hdr awnAsset s as a parameter.

6.20 Broken Conditions on Whether Deposits
Have Occurred

(Corvectness JETIEETBY Code Corrected)

CS-Spoolv2-015

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

In Deposi t Manager . fl ushSmart Vaul t (), the condition
_vaul t Deposi ts[smartVaul t][flushl ndex][0] == 0 checks whether at least one wei of the
first token in the asset group has been deposited. However, the condition may be imprecise as it could
technically be possible to create deposits such that the deposit of the first asset could be zero while the
others are non-zero. A similar check is present in Deposi t Manager . syncDeposi t sSi mul at e()
during deposit synchronization.

Note that this would lead to deposits not being flushed and synchronized (ultimately ignoring them).
While the user will receive no SVTs for very small deposits in general, the deposits here would be
completely ignored. Further, this behavior becomes more problematic for rather large asset groups
(given the checkDeposi t Rati o() definition).

Code corrected:

The checks have been improved to consider the summation of
_vaul t Deposi ts[smart Vaul t][fl ushl ndex] to all assets rather than only considering the first
asset in the group.

6.21 Deposit Deviation Can Be Higher Than
Expected

(D (Cow) (Version 1) CRIEEIEED)

The deviation of deposits could be higher than expected due to the potentially exponential dropping
relation between the first and last assets. Note that the maximum deviation is the one from the minimum
ideal-to-deposit ratio to the maximum ideal-to-deposit ratio. Ultimately, given the current implementation,
this maximum deviation could be violated.

CS-Spoolv2-016

Code corrected:

The following mechanism has been implemented. First, a reference asset is found with an ideal weight
non-zero (first one found). Then, other assets are compared to that asset. Ultimately, each ratio is in the
range of the reference asset.

6.22 Inconsistent Handling of Funds on Strategy
Removal

(Design (EOZRY] Code Corrected

When a strategy is removed from the strategy registry, the unclaimed assets by SVs are sent to the
emergency wallet. However, the funds flushed and unflushed underlying tokens are not (similarly the
minted shares are not).

CS-Spoolv2-018

Code corrected:

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

Consistency was reevaluated. The corner case of an SV with non-flushed deposited assets was handled
by introducing a recovery function, namely Deposi t Manager . r ecover Pendi ngDeposi ts(). The
other cases were specified as intended.

6.23 Misleading Constant Name

(D (Low) (Version 1) ST
CS-Spoolv2-019

In Sf r xEt hHol di ngSt r at egy the constant CURVE_ETH_POOL_SFRXETH _| NDEX is used to determine
the coin ID in an ETH/frxETH Curve pool. Since the pool trades frxETH instead of sfrxETH, the naming of
the constant is misleading.

Code corrected:
Spool has changed CURVE_ETH_POOL_SFRXETH | NDEX to CURVE_ETH_POOL_FRXETH_| NDEX.

6.24 Missing Access Control in Swapper

D (Low) (Version 1) CXIEIRED

The Swapper . swap() function can be called by anyone. If a user accidentally sends funds to the
swapper or if it was called with a misconfigured Swapl nf o struct, the remaining funds can be sent to an
arbitrary address by anyone.

CS-Spoolv2-020

Code corrected:

Spool has introduced a new function _isAllowedToSwap, which checks if the caller to
Swapper. swap() holds ROLE_STRATEGY or ROLE_SWAPPER role. ROLE_SWAPPER must now
additionally be assigned to the Deposi t Swap contract.

6.25 Missing Event Fields
7D (Low) (Version 1) (CXSIZET)

The events Pool Root Added and Pool Root Updat ed of | Rewar dPool do not include added root (and
previous root in the case of Pool Root Updat ed).

CS-Spoolv2-021

Code corrected:

The code has been adapted to include the added root.

6.26 No Sanity Checks on Slippage Type
D (Low) (Version 1) (CIYIED)

CS-Spoolv2-022

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

Some functions do not verify the value in slippages[0]. Some examples are:
1.1dl eStrategy. _enmergencyWthdraw npl does not check if sl i ppages[0] ==
2.1dl eStrategy. _conpound does not check if sl i ppages[0] < 2.

Code corrected:

All relevant functions now check that sl i ppages[0] has the expected value and revert otherwise.

6.27 Precision Loss in Notional Finance Strategy

(Correctness JICTEEETBY Code Corrected)

Not i onal Fi nanceStrat egy. get NTokenVal ue() calculates the value of the strategy's nToken
balance in the following way:

CS-Spoolv2-023

(nTokenAnount ui nt 256(nToken. get Pr esent Val ueUnder | yi ngDenom nat ed()) nToken. t ot al Supply())
under | yi ngDeci mal sMul ti plier NTOKEN_DECI MALS_MULTI PLI ER;

nToken. get Present Val ueUnder | yi ngDenomi nat ed() returns values similar or notably smaller
than nToken. t ot al Supply. On smaller amounts of nToken balances, precision is lost in this
calculation.

Code corrected:

The implementation of _get NTokenVal ue() has been changed to the following:

(nTokenAnount ui nt 256(nToken. get Pr esent Val ueUnder | yi ngDenoni nat ed()) _under | yi ngDeci mal sMul tiplier)
nToken. t ot al Suppl y() NTOKEN_DECI MALS_MULTI PLI ER,

All divisions are now performed after multiplications, ensuring that precision loss is kept to a minimum.

6.28 Redemption Executor

(Correctness JETWEZZTR] Code Corrected

Redemptions will enter W t hdr awal Manager . _val i dat eRedeen() that will run Wt hdr awal guards
with the redeemer as the executor. However, when called through
Smar t Vaul t Manager . r edeentor () the actual executor is a user with
ROLE_SMART_VAULT_ALLOw REDEEM This address is neither sent through RedeenBag nor
RedeenExtras. In this case, Wt hdr awal Manager . _val i dat eRedeemn() runs the guards with the
executor being set as the redeemer.

CS-Spoolv2-025

Code corrected:

The executor is now more accurately handled.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6.29 State Inconsistencies Possible

(Coreectness JIEETTRY Code Corrected)

Smar t Vaul t Manager . r edeenfast () allows users to redeem their holdings directly from underlying
protocols. In contrast to StrategyRegi stry. doHar dWork(), users can set the slippages for
withdrawals themselves which could potentially lead to users setting slippages that do not benefit them.

CS-Spoolv2-042

This is problematic because the amount of shares actually redeemed in the underlying protocol is not
accounted for. Since some protocols redeem on a best-effort basis, fewer shares may be redeemed than
requested (this is, for example, the case in the Year nV2St r at egy). If this happens, and the user sets
wrong slippages, the protocol burns all SVTs the user requested but does not redeem all the respective
shares of the underlying protocol leading to an inconsistency that unexpectedly increases the value of the
remaining SVTs.

Code corrected:
The code for the Yearn V2 strategy has been adapted to check for full redeemals.

6.30 Unused Functions

(Design {(EEERY] Code Corrected

The following functions of Mast er Wl | et are not used:

CS-Spoolv2-026

1. approve
2.reset Approve

Code corrected:

These functions have been removed.

6.31 Unused Variable
7D (Low) (Version 1) (XS

1. Deposi t Swap. swapAndDeposit () takes an input array of Swapl nfo, which contains
anount | n. This function however takes an input array of i nAnount s.

CS-Spoolv2-044

2. The mapping DepositManager. flushShares is defined as internal and its subfield
fl ushSvt Suppl y is never read.

3. Wt hdrawal Manager. pri ceFeedManager is set but never used.

Code corrected:

The code has been adapted to remove the unused variables.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

6.32 Validation of Specification
D) (Low) (Version 1) (XTI

The specification of an SV is validated to ensure that the SV works as the deployer would expect it.
However, some checks could be missing. Examples of such potentially missing checks are:

CS-Spoolv2-027

1. Request type validation for actions: Only allow valid request types for action (some request types
are not used for some actions).

2. If static allocations are used, specifying a risk provider, a risk tolerance or an allocation provider
may not be meaningful as they are not stored. Similarly, if only one strategy is used it could be
meaningful to enforce a static allocation.

3. Static allocations do not enforce the 100% rule that the allocation providers enforce. For
consistency, such a property could be enforced.

Code corrected:

The code has been adapted to enforce stronger properties on the specification.

6.33 Distinct Array Lengths
(Informational] [Version 1]

Some arrays that are iterated over jointly can have distinct lengths which lead to potentially unused
values and a result different from what was expected due to human error or a revert.

CS-Spoolv2-029

Examples of a lack of array length checks in the specification when deploying an SV through the factory
are:

1.actions and acti onRequest Types in Acti onManager. set Acti ons() may have distinct
length. Some request-type values may remain unused.

2. Similarly, this holds for guards.

3. In the strategy registry's doHar dWr k() , the base yields array could be longer than the strategies
array.

4. In asset ToUsdCust onPri ceBul k() the array lengths could differ. When used internally, that will
not be the case while when used externally that could be the case. The semantics of this are
unclear.

5.cal cul ateDepositRati o() and cal cul ateFl ushFactors() in DepositMnager are
similar to 4.

Code corrected:

The missing checks in 1-3 have been added. However, for 4-5 which are view functions, Spool decided
to keep as is.

6.34 Errors in NatSpec
(Informational] [Version 1]

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

CS-Spoolv2-030

At several locations, the NatSpec is incomplete or missing. The following is an incomplete list of

examples:
1. I Guar dvanager . Request Cont ext : not all members of the struct are documented.
2.1 Guar dManager . Guar dPar anilype: not all items of the enumare documented.
3. _st at eAt Dhwhas no NatSpec.
4.1 Deposi t Manager . Si nul at eDeposi t Parans: documentation line of bag mentions

ol dTot al SVTs along with f | ush i ndex and | ast DhwSyncedTi nest anp.

.StrategyRegi stry. _dhwAsset Rati os: is a mapping to the asset ratios, as the name

suggests; however, the spec mentions exchange rate.

. StrategyRegi stry. _updat eDhwyi el dAndApy() : it only updates APY and not the yield for a

given dhwi ndex and st r at egy.

. Rewar dManager . addToken(): callable only by either DEFAULT_ADM N ROLE or

ROLE_SMART_VAULT_ADM N of an SV and not "reward distributor® as mentioned in the
specification.

Specification changed:

The NatSpec was improved. Naming of StrategyRegi stry. updat eDhwyi el dAndApy() was
changed to _updat eApy() .

6.35 Gas Optimizations

(Informational] [Version 1]

CS-Spoolv2-031

Some parts of the code could be optimized in terms of gas usage. Reducing gas costs may improve user
experience. Below is an incomplete list of potential gas inefficiencies:

1.

cl ai mBmart Vaul t Tokens() could early quit if the claimed NFT IDs are claimed. Especially, that
may be relevant in cases in the redeem functions where a user can specify W-NFTs to be
withdrawn.

. The Fl ushShar es struct has a member f | ushSvt Suppl y that is written when an SV is flushed.

However, that value is never used and hence the storage write could be removed to reduce gas
consumption.

. swapAndDeposi t () queries the token out amounts with bal anceCf (). Swapper. swap()

returns the amounts. However, the return value is unused.

. Rewar dManager () inherits from ReentrancyGuar dUpgr adeabl e. It further is initializable,

initializing only the reentrancy guard state. However, reentrancy locks are not used.

. The constructor of Smar t Vaul t Fact or y checks whether the implementation is 0x0. However, in

Upgr adeabl eBeacon ani sContract () check is made.

. In redeenfast () the length of the NFT IDs and amounts is ensured to be equal. However, in

Deposi t Manager . cl ai nSmart Vaul t Tokens() the same check is made.

.In the internal function Smart Vaul t Manager. redeen{(), the public method

flushSmart Vaul t () is used. The _onl yRegi st eredSmart Vaul t () check will be performed
twice.

.| Strategy. doHar dwor k() could return the asset Rati o() with the DHW info so that a

staticcallto | St rat egy. asset Rati o() in Strat egyRegi stry. doHar dwor k() is not needed.

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

.In _val i dat eRedeen() the balance of the redeemer is checked. However, that check is made

when the SVTs are transferred to the SV.
The input argument vaul t Narme__in Smart Vaul t. i ni ti al i ze can be defined as calldata.

Smart Vaul t. transf er FronSpender () gets called only by Wthdrawal Manager with
spender equalto from

Smart Vaul t . bur nNFT() checks that the owner has enough balance to burn. The same condition
is later checked as it calls into _bur nBat ch.

The struct Smart Vaul t Speci fi cati on in Smart Vaul t Fact ory has an inefficient ordering of
elements. For example, by moving al | owRedeentor below al | ocati onPr ovi der its storage
layout decreases by one slot.

The struct | Guar dManager . Guar dDef i ni ti on shows an inefficient ordering.

Where Real | ocati onLi b. doReal | ocati on() computes sharesToRedeem it can replace
total s[0] - total s[1] withtotal Unmat chedW t hdr awal s.

Smar t Vaul t Manager . _si nmul at eSync() increments the memory variable
f1 ushl ndex. t o0Sync which is neither used later nor returned as a return value.

Smart Vaul t Manager. _redeemn() calls fl ushSmart Vaul t. However, the internal function
_flushSmart Vaul t could directly be called.

Smart Vaul t Manager . _redeem() accesses the storage variable
_flushl ndexes|[bag. snart Vaul t] twice. It could be cached and reused once.
Strat egyRegi stry. doHar dWr k() reads _asset sDeposi t ed[strat egy] [dhwi ndex] [k]

twice. Similar to the issue above, it could be cached.
UsdPri ceFeedManager . asset ToUsdCust onPri ceBul k() could be defined as external.

W t hdr awal Manager . cl ai MWW t hdr awal () can be defined as an external function.

Rewar dvanager . f or ceRemoveRewar d() eventually removes
rewar dConfiguration[snartVaul t][token], which is already removed in
_renmoveRewar d() .

Rewar dPool . cl ai n() can simply set
rewar dsd ai med[nsg. sender][data[i].smartVault][data[i].token] to

data[i].rewardsTotal.

Smart Vaul t Manager . _si mul at eSyncW t hBurn() can fetch f ees after checking all DHWs
are completed.

Strategies are calling Asset G- oupRegi stry. | i st Asset G oup in multiple functions. The token
addresses could instead be cached in the strategy the avoid additional external calls.

REt hHol di ngStrat egy. _ener gencyW t hdr awl npl () reverts if sl i ppages[0] != 3. This
check can be accomplished at the very beginning of the function.

REt hHol di ngStrat egy. _depositlnternal () can have an early return if
anount s[0] < 0. 01 ETH. It is mentioned in its documentations, that the smallest deposit value
should be 0. 01 ETH

The input parameter st rat egyNanme_ of SfrxEt hHol di ngStrategy.initialize() can be
defined as calldata.

Strategy calls swapAssets and then loads the balances of each token again. Since
_swapAsset s is not used in all of the strategies, the subsequent bal anceCf calls by checking if
_swapAsset s actually performed any actions.

Code corrected:

S

Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 39

https://docs.rocketpool.net/guides/staking/overview.html#how-ethereum-staking-works
https://chainsecurity.com

While not every improvement has been implemented, gas consumption has been reduced.

6.36 NFT IDs
[Informational] [Version 1]

The NFT IDs are in the following ranges:
*D-NFTs: [1, 2**255 - 2]
* W-NFTs: [2¥*255 + 1, 2**256 - 2]

CS-Spoolv2-032

Note that the ranges could be technically increased. Further, in theory, there could be many more
withdrawals than deposits. The sizes do not reflect that. However, in practice, a scenario with such a
large number of redemptions does not seen to be realistic. Additionally, get Met aDat a() will return
deposit meta data for ID 0 and 2**255 - 1. However, these are not valid deposit NFT IDs. Similarly,
the function returns metadata for invalid withdrawal NFTs. However, these remain empty. Last,
technically one could input such IDs for burn (using 0 shares burn). Similarly, one could burn others'
NFTs (0 amounts).

Ultimately, the effects of this may create confusion.

Code corrected:

The range of valid NFT-IDs has been increased.

6.37 Nameless ERC20
(Informational] [Version 1]

The SVT ERC-20 does not have a name. Specifying a hame may help third-party front-ends (e.g.
Etherscan) to display useful information to users for a better user experience.

CS-Spoolv2-033

Code corrected:
The SVT now has a name and symbol for its ERC-20. Additionally, the ERC-1155 has a URI now.

6.38 Reverts Due to Management Fee

[Informationalj [Version 1]

An SV can have a management fee that is computed as

CS-Spoolv2-035
tot al Usd[1] par anet ers. f ees. managenent FeePct (resul t. dhwTi mest anp par armet ers. bag[1])
SECONDS | N_YEAR / FULL_PERCENT;

It could be the case that more than one year has passed between the two timestamps. Ultimately the
condition

par anet ers. f ees. managenent FeePct (resul t.dhwTi mestanp - paraneters. bag[1]) SECONDS_| N_YEAR * FULL_PERCENT

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

could hold if at least around 20 years have passed. That would make the fee greater than the total value.

Ultimately,
result.feeSVTs | ocal Vari abl es. svt Suppl y f ees (total Usd[1] fees);

could revert.

Code corrected:

The code was corrected by limiting the dilution of SVTs so that the subtraction cannot revert.

6.39 Simplifying Performance Fees

(Informational) (Version 1)

The performance fees could further be simplified to

CS-Spoolv2-036

strategyUSD * interinViel dPct (1 i nterinmiel dPct (1-total Pl atfornfFees))

which is equivalent to the rather complicated computations made in the current implementation.

Code improved:
The readability of the code has been improved by simplifying the computation.

6.40 Strategy Removal for an SV Possible That
Does Not Use It
[Informational] [Version 1]

The event St r at egyRenpovedFr onVaul t s gets emitted for a strategy even if the SV does not use the
strategy.

CS-Spoolv2-037

Code corrected:

The event is now emitted per vault that uses the strategy. Furthermore, the name of this event has been
changed to St r at egyRenovedFr onVaul t .

6.41 Tokens Can Be Enabled Twice
[Informational] [Version 1]

In Asset G oupRegi st ry, the same token can be allowed multiple times. Although it does not make
any difference, regarding the internal state, it emits an event of TokenAl | owed again.

CS-Spoolv2-038

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

Code corrected:

The event is not emitted anymore in such cases.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG

42

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Packed Arrays With Too Big Values Could
DOS the Contract
[Informational] [Version 1]

The packed array libraries could technically DOS the system due to reverts on too high values. For
storing DHW indexes this is rather unlikely given the expectation that it will be only called every day or
two (would generally require many DHWS). It is also expected that the withdrawn strategy shares will be
less than or equal to ui nt 128. max. Though theoretically speaking DOS on flush is possible, the
conditions on the practical example are very unlikely.

CS-Spoolv2-034

Risk accepted:
Spool replied:

We agree that theoretically packed arrays could overfl ow and revert, however,
we did sone cal culations and this should never happen in practice.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bricked Smart Vaults

Some Smart Vaults may be broken when they are deployed.

An example of such broken SVs could be that a malicious SV owner could deploy a specification with
guards that allow deposits but disallow withdrawals (e.g. claiming SVT). Moreover, the owner may deploy
a specification that is seemingly safe from the user's perspective while then maliciously changing the
behaviour of the guard (e.g. removing from the allow list, upgrading the guard).

Another example could be where transfers between users could be allowed while the recipient could be
blocked from redemption.

Similarly, actions or other addresses could be broken.

Users, before interacting with an SV, should be very carefully studying the specification. Similarly,
deployers should be knowledgeable about the system so that they can create proper specifications to not
create bricked vaults by mistake.

8.2 Curve Asset Ratio Slippage

Curve strategies return the current balances of the pool in their asset Rati o() functions. These ratios
are cached once at the end of each DHW. For all deposits occurring during the next DHW epoch, the
same ratios are used although the ratios on the pool might change during that period. It is therefore
possible, that the final deposit to the protocol incurs a slight slippage loss.

Given the size and parameters of the pools, this cost should be negligible in most cases.

8.3 DOS Potential for DHWs Due to External
Protocols

DHWs could be blocked in case external protocols cannot accept or return funds. For example, if Aave
v2 or Compound v2 have 100% utilization, DHWSs could be blocked if withdrawals are necessary. This
can in turn prolong the time until deposits earn interest and become withdrawable again.

8.4 ERC-1155 bal anceO ()

The bal anceOF () function of the SV's ERC-1155 returns 1 if the user has any balance. The standard
defines that the function should return the balance which in this case is defined as the "fractional

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

balance". Depending on the interpretation of EIP-1155, this could still match the standard. However, such
a deviation from the "norm" could break integrations.

8.5 Management Fee Considerations

(D) (Version 1

Users should be aware that the management fee is not taken based on the vault value at the beginning of
the flush cycle but at the end of it (hence, including the potential yield of strategies, however not including
fresh deposits).

8.6 Ordering of Swaps in Reallocations and
Swaps

(D) (Version 1)

The privileged user doing reallocation or swaps (e.g. the one holding ROLE_DO_HARD WORKER) should
take an optimal path when performing the swaps, as depositing to/withdrawing from a strategy changes
its value.

Also, note that some strategies could be affected more by bad trades due to the swaps being performed
in the order of the strategies. For example:

1. deposi t Fast () to the first strategy happens. The swap changes the price in the DEX.

2. deposi t Fast () to the second strategy happens. The swap works at a worse price than the first
strategy.

Ultimately, some deposits could have worse slippage.

8.7 Price Aggregators With More Than 18
Decimals

Setting price aggregators with more than 18 decimals will revert in
UsdPri ceFeedManager . set Asset () . Such are not supported by the system.

8.8 Public Getter Functions

Users should be aware that some public getters provide only meaningful results with the correct input
values (e.g. get d ai medVaul t TokensPr evi ew()). When used internally, it is ensured that the inputs
are set such that the results are meaningful.

8.9 Reentrancy Potential

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

While reentrancy protection was implemented in of the code, some potential for
reentrancy-based attacks may still exist. However, it highly depends on the underlying strategies. Future
unknown strategies could introduce vulnerable scenarios.

An example could be a strategy that swaps both on compounding and on deposits in DHW. If it is
possible to manipulate the USD value oracle of the strategy (e.g. similar to Curve), then one could
effectively generate a scenario that creates 0-deposits or "bypasses" the pre-deposit/redeemal checks.

8.10 Reward Pool Updates
(D) (Version 1

The ROLE_REWARD_POOL_ADM N should be very careful, when updating the root of a previous cycle (if
necessary), as it could break the contract for certain users.

8.11 Slippage Loss in alUSD Strategy
(D) (Version 1

ConvexAl usdSt r at egy never invests alUSD into the corresponding Curve pool. This can result in a
slight slippage loss due to unbalanced deposits. Both deposits and withdrawals are subject to this
problem.

The loss is negligible up to a certain amount of value deposited/withdrawn. After that, there is no limit
though. At the time this report was written, a withdrawal of 10M LP tokens to 3CRV incurs a loss of
roughly 25%.

8.12 Special Case: Compound COMP Market
(D) (Version 1

Compound v2 currently has an active market for the COMP token. In this case, deposits to the
ConpoundV2St r at egy would be absorbed by the _conpound() function if a conpoundSwapl nf o
has been set for the strategy. The correct handling is therefore completely dependent on the role
RCOLE_DO HARD WORKER and is not enforced on-chain.

8.13 Unsupported Markets
(D) (Version 1

Some markets of the supported protocols in Spool V2's strategies might be problematic:

» Aave markets in which the aToken has different decimals than the underlying. While this is not the
case for any aToken currently deployed, Aave does not guarantee that this will be the case in the
future.

» Compound supports fee-taking tokens. If such a market would be integrated into Spool V2, it could
be problematic as the ConpoundV2Str at egy. _deposit ToConpoundPr ot ocol () does not
account for the return value of Compound's m nt () function.

» Compound's cETH market is unsupported due to it requiring support for native ETH and hence
having a different interface than other cTokens.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

8.14 Value of the alUSD Strategy's Metapool LP
Token Overvalued

(D) (Version 1)

The Curve metapool that is used in the ConvexAl usdStr at egy allows to determine the value of LP
tokens, if only one of the 2 wunderlying tokens is withdrawn, with the function
cal c_wi t hdraw_one_coi n() . This is used in the strategy to determine the value of one token which
is then scaled up by the actual LP token amount.

The function, however, does not linearly scale with the amount of LP tokens due to possible slippage loss
with higher amounts. The LP tokens are therefore overvalued.

@ Spool - Spool V2 - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Smart Vaults
	2.2.2 Strategies
	2.2.3 Strategy
	2.2.3.1 Curve
	2.2.3.2 Convex
	2.2.3.3 Aave V2
	2.2.3.4 Compound V2
	2.2.3.5 Idle
	2.2.3.6 Morpho
	2.2.3.7 Notional
	2.2.3.8 Rocket Pool
	2.2.3.9 Frax
	2.2.3.10 Lido
	2.2.3.11 Yearn

	2.2.4 Guards
	2.2.5 Actions
	2.2.6 Asset Group Registry
	2.2.7 Risk Manager
	2.2.8 Allocation Provider
	2.2.8.1 Uniform Allocation Provider
	2.2.8.2 Linear Allocation Provider
	2.2.8.3 Exponential Allocation Provider

	2.2.9 USD Price Feed Manager
	2.2.10 Master Wallet
	2.2.11 Access Control
	2.2.12 Swapper
	2.2.13 Deposit Swap
	2.2.14 Rewards
	2.2.15 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Read-only Reentrancy

	6 Resolved Findings
	6.1 Lack of Access Control in recoverPendingDeposits()
	6.2 DOS Synchronization by Dividing With Zero Redeemed Shares
	6.3 DOS on Deposit Synchronization
	6.4 Donation Attack on SST Minting
	6.5 Donation Attack on SVT Minting
	6.6 Flushing Into Ongoing DHW Leading to Loss of Funds
	6.7 No Deposit Due to Reentrancy Into redeemFast()
	6.8 Wrong Slippage Parameter in Curve Deposit
	6.9 Curve LP Token Value Calculation Can Be Manipulated
	6.10 Deposits to Vault With Only Ghost Strategies Possible
	6.11 Ghost Strategy Disables Functionality
	6.12 Inconsistent Compound Strategy Value
	6.13 Strategy Value Manipulation
	6.14 Distribution to Ghost Strategy
	6.15 Lack of Access Control for Setting Extra Rewards
	6.16 Wrong Error IdleStrategy.beforeRedeemalCheck()
	6.17 Access Control Not Central to Access Control Contract
	6.18 Asset Decimal in Price Feed
	6.19 Bad Event Emissions
	6.20 Broken Conditions on Whether Deposits Have Occurred
	6.21 Deposit Deviation Can Be Higher Than Expected
	6.22 Inconsistent Handling of Funds on Strategy Removal
	6.23 Misleading Constant Name
	6.24 Missing Access Control in Swapper
	6.25 Missing Event Fields
	6.26 No Sanity Checks on Slippage Type
	6.27 Precision Loss in Notional Finance Strategy
	6.28 Redemption Executor
	6.29 State Inconsistencies Possible
	6.30 Unused Functions
	6.31 Unused Variable
	6.32 Validation of Specification
	6.33 Distinct Array Lengths
	6.34 Errors in NatSpec
	6.35 Gas Optimizations
	6.36 NFT IDs
	6.37 Nameless ERC20
	6.38 Reverts Due to Management Fee
	6.39 Simplifying Performance Fees
	6.40 Strategy Removal for an SV Possible That Does Not Use It
	6.41 Tokens Can Be Enabled Twice

	7 Informational
	7.1 Packed Arrays With Too Big Values Could DOS the Contract

	8 Notes
	8.1 Bricked Smart Vaults
	8.2 Curve Asset Ratio Slippage
	8.3 DOS Potential for DHWs Due to External Protocols
	8.4 ERC-1155 balanceOf()
	8.5 Management Fee Considerations
	8.6 Ordering of Swaps in Reallocations and Swaps
	8.7 Price Aggregators With More Than 18 Decimals
	8.8 Public Getter Functions
	8.9 Reentrancy Potential
	8.10 Reward Pool Updates
	8.11 Slippage Loss in alUSD Strategy
	8.12 Special Case: Compound COMP Market
	8.13 Unsupported Markets
	8.14 Value of the alUSD Strategy's Metapool LP Token Overvalued

