PUBLIC

Code Assessment

of the Kill Switch
Smart Contracts

March 18, 2024

Produced for

by

N Maker

@EHAINSEEURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Findings

o O A W N P

Resolved Findings

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG

© 0 N 01 W

10

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Sparklend with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Kill Switch according to
Scope to support you in forming an opinion on their security risks.

Sparklend implements a switch allowing arbitrary addresses to disable borrowing in case of a depeg of a
pegged asset.

The most critical subjects covered in our audit are functional correctness, access control and integration
with the core protocol. Security regarding all the aforementioned subjects is high.

The general subjects covered are testing and documentation. Security regarding all the aforementioned
subjects is high. However, testing could be improved to test the ability to repay and to top-up.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

()-Severity Findings

(Medium)-Severity Findings

¥ Code Corrected

(Low)-Severity Findings

¥ Code Corrected

¥ Specification Changed

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Kill Switch repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Date Commit Hash Note
Vv
11 March 0788632748f0faf7eaf3fsa7721fble4d0f443ed Initial Version
1| 2024
15 March 0fObe3f7aleaf41a04abfocfc3b50a2315184262 After Intermediate Report
2| 2024
18 March 1acd6901379bff6f7a59e63b0129d416a9f7161c Change in trigger logic
3| 2024

For the solidity smart contracts, the compiler version 0. 8. 20 was chosen.

The following contracts are in the scope of this review:

IKill Swi tchOr acl e. sol
Kill SwitchGOracl e. sol

2.1.1 Excluded from scope

The Sparklend protocol and all files not explicitly listed above are out of the scope of this review.

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sparklend implements a switch, disabling further borrowing, that can be triggered by arbitrary users if a
registered asset depegs.

Namely, the Ki | | Swi t chOr acl e implements the following functionality:

1.set O acl e() : Allows the owner to register a price feed of a pegged asset and the base asset
(e.g. ETH and stETH). A threshold is specified below which tri gger () will be executable (e.g.
0.95 stETH/ETH as a depeg scenario). Further, it allows for updating the threshold for the oracle.

2. di sabl eOracl e() : Allows the owner to disable the oracle.

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

3.trigger(): An arbitrary user can set the LTV of each collateral token to 0 to disable borrowing if
an oracle indicates a depeg. However, the function can be called only once and a reset () is
required to allow calling it again.

4.reset () : The owner can reactivates the possibility to trigger the switch again.

Further, the contract has ownership-transfer functionality and getter functions to access the set of oracles
and the threshold.

2.2.1 Changes in version 2

In version 2, borrowing is disabled by setting the corresponding flag in the config. Hence, the LTV
remains untouched and borrow-only reserves are not frozen.

2.2.2 Changes in version 3

In version 3, the trigger can be executed as long as an oracle is below the execution threshold or if the
trigger has been executed previously (without a reset). Thus, a trigger can now be executed multiple
times (in contrast to previous versions). As a consequence, r eset () now disables calling t ri gger ()
again if no oracle threshold has been reached.

2.2.3 Trust Model & Roles

« Owner: Trusted. Can add oracles that could trigger the kill switch. Can further disable further
borrowing on Spark Lend. Expected to be trusted to not unnecessarily hinder the protocol's
operation, expected to be set to the Spark SUbDAO Proxy.

« Users: Untrusted: Can call tri gger () to disable borrowing on the core. However, that is only
possible under certain circumstances.

Note that it is expected that an address exists that will call the tri gger () function when needed.
Namely, in case a pegged token depegs or in case a governance action adds a new asset or similar (see
the resolved issue Pending Governance Spells for further details on possible scenarios). Further, it is
expected that the Ki I | Swi t chOr acl e holds the needed roles in the core, so that it can operate.

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

5 Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o CEEED): Architectural shortcomings and design inefficiencies

o (ENTTED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(C2)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

(E)-Severity Findings 0

(CL:0)-Severity Findings 0

(Medium)-Severity Findings 1
» Disable Borrowing

(Low)-Severity Findings 2

» Pending Governance Spells (LERSUEE
* Specification Mismatch el N ENFET

6.1 Disable Borrowing
CITD) (Viedium) (Version 1) (CXIY ST

The main intention of Kill Switch is to put SparkLend into a lockdown mode preventing further borrowing
but still allow users to top up collateral and repay/withdraw. While this can be achieved with the current
design setting LTV to zero for assets being used as collateral and freezing borrow only assets,
SparkLend offers a more direct way to achieve this by simply using set Bor r owEnabl e() to disable
borrowing for each asset.

CS-SKW-002

Compared to setting LTV for each collateral to zero the differences are:

Val i dati onLogi c. val i dat eAut omat i cUseAsCol | at er al will return f al se in case LTV=0 since
Val i dati onLogi c. val i dat eUseAsCol | at er al will return the same. This has effects in for example
Suppl yLogi c. execut eSuppl y. Namely, if i sFirstSupply is true, the newly supplied token
cannot be used as collateral. Hence, top ups can only be done with used collateral tokens. In contrast,
set Borr owi ngEnabl ed(asset, fal se) does not have this behaviour and allows for topups where
the collateral token is new for the user.

Code corrected:

set Bor r owEnabl e() is now used.

6.2 Pending Governance Spells

(D) (Cow) (Version 1) CETYTEED

The Kill SwitchOracl e iterates over all markets to perform the required operations to disable
borrowing. However, in case governance has plotted a plan in the DSPause e.g. to add a new asset to
the Sparklend lending market or to change the LTV of an existing asset, a market could be activated after

CS-SKW-003

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

the trigger has been called due to the permissionless DSPause. exec() function. Ultimately, borrowing
for such an asset could be enabled.

Governance should be aware that such scenarios could occur.

Code corrected:

The code has been adjusted so that t ri gger () can be called repeatedly as long as r eset () has not
been called.

6.3 Specification Mismatch

[Low] [Version 1) Specification Changed

The READVE specifies the following:

CS-SKW-001

[...]
anyone can perm ssionlessly trigger to set SparkLend into | ockdown node in which all collateral
assets have their LTVs set to O and all borrowabl e assets are frozen.

[...]

However, note that not all borrowable assets are frozen but only the borrow-only assets are frozen (also
documented in the comments in code).

The NatSpec description of function r eset () incorrectly states:
Resets the contract, clearing all set oracles and threshol ds

The implementation of r eset () only resets the contract.

Specification changed:

1. The specification now specifies that:
[...] lockdown node [...] prevents new borrows on all assets.

which is consistent with the changes implemented in (Version 2),

2. The NatSpec of r eset () was corrected and now reads:

Resets the trigger, allowing the kill switch to be triggered again.

@ Sparklend - Kill Switch - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Changes in version 2
	2.2.2 Changes in version 3
	2.2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Disable Borrowing
	6.2 Pending Governance Spells
	6.3 Specification Mismatch

