

PUBLIC

Code Assessment

of the XChain SSR Oracle

Smart Contracts

September 11, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 12

7 Notes 14

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help SparkDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of XChain SSR Oracle
according to Scope to support you in forming an opinion on their security risks.

SparkDAO implements cross-chain oracles for the Sky Savings Rate where update messages are sent to
L2s from Ethereum Mainnet.

The most critical subjects covered in our audit are functional correctness, access control and message
passing.

The general subjects covered are code complexity and specification.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the XChain SSR Oracle repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1
02 April 2024 01481b10aabb6b8a2c6afacec3cad19

a90ecd7b1
Initial Version

2
05 April 2024 ccd09c8cf122200dc66affee7c07f884

3cb4c684
After Intermediate Report

3
06 April 2024 463e012c51d50cd24d96fc5738e26f7

ca624c94c
Added Base Support

4
24 April 2024 4361224e734be86e5666f49cd238ea

183fa0902d
Added Arbitrum Support

5
03 July 2024 b868f15aca6b69d19f2f3005aa435cb

a9e5aee40
Architecture Changes and Zero max
DSR mode

6
30 July 2024 2228ded849f963dbe90153d6c47ec0

513a3513a1
Additional Event & README changes

7
07 September
2024

8f98580c3c48fdfcc64f65078e04d7d7
0ec291d4

Renaming and minor changes

8
11 September
2024

1938a3dffbb48f34b167541bf35c85b9
5fba61d4

Rename pot to sUSDS

For the solidity smart contracts, the compiler version 0.8.20 was chosen.

The following files were in scope:

src/DSRAuthOracle.sol
src/receivers/DSROracleReceiverOptimism.sol
src/receivers/DSROracleReceiverGnosis.sol
src/adapters/DSRBalancerRateProviderAdapter.sol
src/forwarders/DSROracleForwarderGnosis.sol
src/forwarders/DSROracleForwarderBase.sol
src/forwarders/DSROracleForwarderOptimism.sol
src/forwarders/DSROracleForwarder.sol
src/DSRMainnetOracle.sol
src/DSROracleBase.sol

In Version 4, the following contracts were added to the scope:

src/receivers/DSROracleReceiverArbitrum.sol
src/forwarders/DSROracleForwarderArbitrumOne.sol

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 5

https://github.com/marsfoundation/xchain-ssr-oracle/tree/01481b10aabb6b8a2c6afacec3cad19a90ecd7b1
https://github.com/marsfoundation/xchain-ssr-oracle/tree/01481b10aabb6b8a2c6afacec3cad19a90ecd7b1
https://github.com/marsfoundation/xchain-ssr-oracle/tree/ccd09c8cf122200dc66affee7c07f8843cb4c684
https://github.com/marsfoundation/xchain-ssr-oracle/tree/ccd09c8cf122200dc66affee7c07f8843cb4c684
https://github.com/marsfoundation/xchain-ssr-oracle/tree/463e012c51d50cd24d96fc5738e26f7ca624c94c
https://github.com/marsfoundation/xchain-ssr-oracle/tree/463e012c51d50cd24d96fc5738e26f7ca624c94c
https://github.com/marsfoundation/xchain-ssr-oracle/tree/4361224e734be86e5666f49cd238ea183fa0902d
https://github.com/marsfoundation/xchain-ssr-oracle/tree/4361224e734be86e5666f49cd238ea183fa0902d
https://github.com/marsfoundation/xchain-ssr-oracle/tree/b868f15aca6b69d19f2f3005aa435cba9e5aee40
https://github.com/marsfoundation/xchain-ssr-oracle/tree/b868f15aca6b69d19f2f3005aa435cba9e5aee40
https://github.com/marsfoundation/xchain-ssr-oracle/tree/2228ded849f963dbe90153d6c47ec0513a3513a1
https://github.com/marsfoundation/xchain-ssr-oracle/tree/2228ded849f963dbe90153d6c47ec0513a3513a1
https://github.com/marsfoundation/xchain-ssr-oracle/tree/8f98580c3c48fdfcc64f65078e04d7d70ec291d4
https://github.com/marsfoundation/xchain-ssr-oracle/tree/8f98580c3c48fdfcc64f65078e04d7d70ec291d4
https://github.com/marsfoundation/xchain-ssr-oracle/tree/1938a3dffbb48f34b167541bf35c85b95fba61d4
https://github.com/marsfoundation/xchain-ssr-oracle/tree/1938a3dffbb48f34b167541bf35c85b95fba61d4
https://chainsecurity.com

Note that the following renaming occurred in Version 4:

src/forwarders/DSROracleForwarder.sol -> src/forwarders/DSROracleForwarderBase.sol
src/forwarders/DSROracleForwarderBase.sol -> src/forwarders/DSROracleForwarderBaseChain.sol

In version 5, the following contracts were removed:

src/receivers/DSROracleReceiverOptimism.sol
src/receivers/DSROracleReceiverGnosis.sol
src/receivers/DSROracleReceiverArbitrum.sol

In version 7, the following renamings occurred:

src/DSRAuthOracle.sol -> src/SSRAuthOracle.sol
src/adapters/DSRBalancerRateProviderAdapter.sol -> src/adapters/SSRBalancerRateProviderAdapter.sol
src/forwarders/DSROracleForwarderGnosis.sol -> src/forwarders/SSROracleForwarderGnosis.sol
src/forwarders/DSROracleForwarderOptimism.sol -> src/forwarders/SSROracleForwarderOptimism.sol
src/forwarders/DSROracleForwarderBase.sol -> src/forwarders/SSROracleForwarderBase.sol
src/DSRMainnetOracle.sol -> src/SSRMainnetOracle.sol
src/DSROracleBase.sol -> src/SSROracleBase.sol
src/forwarders/DSROracleForwarderArbitrumOne.sol -> src/forwarders/SSROracleForwarderArbitrum.sol

In version 7, the following contracts were removed:

src/forwarders/DSROracleForwarderBaseChain.sol

2.1.1 Excluded from scope
All other files including tests and helpers. The correctness of the external systems (i.e. bridges) is out of
scope. Of the xchain-helpers, only the functions used have been reviewed.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

SparkDAO offers a framework to report values related to the DAI Savings Rate (DSR) from Ethereum
Mainnet to various chains. The set of contracts consists of forwarders on L1 (Ethereum Mainnet) and
receivers on L2. Currently, Gnosis, Optimism and Base are supported L2s. Oracle contracts are provided
for users to access these cached values.

2.2.1 Oracles
DSROracleMainnetOracle

This oracle is deployed on mainnet and pulls its data directly from the Pot, the DAI Savings Rate contract.
The values cached locally can be updated permissionlessly using the function refresh().

DSRAuthOracle

Authenticated oracle which receives updates from Mainnet through the bridge. Exposes setPotData()
for the cross-chain message receiver to update the data. The oracle only accepts increasing rho values
that are in the past, DSR rates greater than one and less than the upper bound maxDSR which is defined
by governance with setMaxDSR(), and increasing chi values that are upper bounded by a maximum
chi that could have occurred assuming that the DSR never exceeded its maximum. Note that a maxDSR

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

being zero implements a special case where no maximum for the DSR is set so that no maximum value
checks on the DSR and chi are applied.

All Oracle contracts, through inheritance of DSROracleBase, expose the following public functionality to
access the data:

• getPotData(): Returns the struct PotData which consists of: uint96 dsr, the DAI Savings
Rate in per second value (in the unit of ray), uint120 chi, the last computed conversion rate (to
DAI) in ray and rho the timestamp of the last update (computation of chi) in seconds.

• getDSR(): returns the current DSR value stored.

• getChi(): returns the current Chi value stored.

• getRho(): returns the current Rho value stored.

• getAPR(): calculates and returns the Annual Percentage Rate calculated using the stored DSR.

• getConversionRate(): returns the conversion rate at the current timestamp.

• getConversionRate(uint256 timestamp): returns the conversion rate at the given timestamp
(now or in the future).

• getConversionRateBinomialApprox(): returns the binomial approximated conversion rate at
the current timestamp.

• getConversionRateBinomialApprox(uint256 timestamp): returns the binomial
approximated conversion rate that the given timestamp (now or in the future)

• getConversionRateLinearApprox(): returns the linear approximated conversion rate at the
current timestamp.

• getConversionRateLinearApprox(uint256 timestamp): returns the linear approximated
conversion rate at the given timestamp (now or in the future).

All values returned are based on the cached values which might be outdated. Updates must be triggered
when the DSR changes, in between updates of the DSR the current chi can be calculated accurately
based on the cached data. Calculating values for timestamps in the future may be inaccurate if the DSR
changes.

2.2.2 Bridging framework
To publish data to the authorized oracle, cross-chain messages are sent from Ethereum mainnet to the
supported chains. The implemented contracts leverage the xchain-helpers library (its review is part of
another report).

Forwarder contracts are implemented to send messages while Receiver contracts are implemented to
receive messages so that they can call the corresponding DSRAuthOracle.

Forwarders on Mainnet

For each supported chain, a corresponding Forwarder exists. Each exposes refresh(), allowing any
caller to push current data to the respective chain.

Each forwarder leverages the corresponding Forwarder library from xchain-helpers to perform
sending the message. More specifically, the following setup is expected:

1. Gnosis: DSROracleForwarderGnosis uses
AMBForwarder.sendMessageEthereumToGnosisChain

2. Optimism: DSROracleForwarderOptimism uses
OptimismForwarder.sendMessageL1toL2 (with the Optimism cross-domain messenger)

3. Base: DSROracleForwarderBaseChain uses OptimismForwarder.sendMessageL1toL2
(with the Base cross-domain messenger)

4. Arbitrum: DSROracleForwarderArbitrumOne uses
ArbitrumForwarder.sendMessageL1toL2 (note any overhead gas will be burned)

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 7

https://github.com/marsfoundation/xchain-helpers
https://chainsecurity.com

All of them inherit from the base contract DSROracleForwarderBase which handles message packing,
stores the last seen Pot data and emits a corresponding event. It implements functions
getLastSeenPotData(), getLastSeenDSR(), getLastSeenChi() and getLastSeenRho() to
query the respective data. Note that the contract requires that the

Receivers on L2

While the receiver remains undefined in the repository in scope, the receivers intended for use are the
"native" receivers defined in xchain-helpers. These perform bridge-specific access control for the
received message and forward the call to a target contract. In the context of XChain SSR Oracle, it is
expected that the target contract is the authorized oracle. Further, it is expected that the following
contracts a deployed on the respective chains:

1. Gnosis: AMBReceiver

2. Optimism: OptimismReceiver

3. Base: OptimismReceiver

4. Arbitrum: ArbitrumReceiver

2.2.3 Adapter
Furthermore, DSRBalancerRateProviderAdapter is provided which exposes getRate(), a function
returning the value of sDAI in terms of DAI.

2.2.4 Changes in Version 7
In version 7, the codebase has been adapted to work with the new Sky Savings Rate (SSR) instead of
the the Dai Savings Rate (DSR). Ultimately, the codebase is now intended to be used with sUSDS
instead of the Pot and the sDAI contract.

Additionally, the Arbitrum and Optimism forwarders' constructors have been generalized to receive the
cross-domain contract as an argument (e.g. same contract can be used for Optimism and Base now,
however, with different constructor arguments).

2.2.5 Changes in Version 8
In version 8, pot related namings have been updated to sUSDS.

2.3 Trust Model & Roles
• Pot: DAI Savings Rate contract. Fully trusted, source of Data. As of version 7, this contract

corresponds to the sUSDS contract.

• Bridges: Fully trusted. Transmit the message, they must not alter any data nor censor any message.
However, note that there are some limitations put in place to reduce the trust in bridges.

• Governance: Fully trusted. The governance can replace the callers of setPotData() which could
lead to oracle manipulations. As of version 8, this function has been renamed to setSUSDSData().

Receiver contracts update DSRAuthOracle based on received messages, which must originate from
the designated contract on the L1 chain. At the deployment of these receiver contracts, the messaging
contract and L1 origin parameters are initialized, and the correct configuration is essential.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Informational Findings 3

• Code CorrectedOutdated IPot Interface

• Code CorrectedRedundant Getters

• Code CorrectedInconsistencies

6.1 Outdated IPot Interface
Informational Version 7 Code Corrected

CS-XDSR-003

The initial version of the system is expected to work with sDAI, hence the dss.pot contract is used,
where the state variables dsr, chi, and rho are of type uint256. After the rebranding, the new oracle
will integrate with sUSDS, where ssr is uint256 but chi is uint192 and rho is uint64. However, the
interface is not updated and still expects uint256.

Code corrected:

The outdated IPot.sol interface has been replaced by ISUSDS.sol.

6.2 Inconsistencies
Informational Version 1 Code Corrected

CS-XDSR-002

The codebase is inconsistent in style across files and functions. Below is an incomplete list:

1. The DSRAuthOracle explicitly uses 1e27. However, in other places, the ray constant RAY is used.

2. The getConversionRate function does not perform the time-delta computation
timestamp - rho in an unchecked block while getConversionRateLinearApprox() and
getConversionRateBinomialApprox() do.

Code corrected:

The code has been changed accordingly.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6.3 Redundant Getters
Informational Version 1 Code Corrected

CS-XDSR-001

_lastSeenPotData is a public variable and thus has an autogenerated public getter. Nevertheless,
there is a second getter getLastSeenPotData(). Ultimately, both getters return the same since no
complex data types are used in PotData.

Code corrected:

_lastSeenPotData is now private.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Delayed Oracle Consequences
Note Version 1

Users of the crosschain DSR oracle should be aware that the oracles could hold outdated values. They
should ensure that the oracle is kept alive when changes in the DSR occur. Otherwise, the impact of the
scenarios below could be more impactful to their application than expected.

Namely, the following scenarios could occur:

1. The DSR decreased on Mainnet. However, an L2 oracle has not been updated. Consequently, the
L2 oracle will overvalue chi and thus will overvalue sDAI.

2. The DSR increased on Mainnet. However, an L2 oracle has not been updated. Consequently, the
L2 oracle will undervalue chi and thus will undervalue sDAI.

7.2 Oracle Functions May Behave Differently
Note Version 1

Users and integrators of the DSR oracles should be aware that DSR functions getConversionRate(),
getConversionRateLinearApprox() and getConversionRateBinomialApprox() do not differ
only in accuracy but could also differ in terms of reverting behaviour of overflows. For example, there is a
set of numbers for which the third function would revert values whereas the second would not.

SparkDAO - XChain SSR Oracle - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Oracles
	2.2.2 Bridging framework
	2.2.3 Adapter
	2.2.4 Changes in Version 7
	2.2.5 Changes in Version 8

	2.3 Trust Model & Roles

	3 Limitations and use of report
	4 Terminology
	5 Findings
	6 Resolved Findings
	6.1 Outdated IPot Interface
	6.2 Inconsistencies
	6.3 Redundant Getters

	7 Notes
	7.1 Delayed Oracle Consequences
	7.2 Oracle Functions May Behave Differently

