PUBLIC

Code Assessment

of the Spark Vaults
Smart Contracts

January 24, 2025

Produced for

SPARK

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG

10
11
12
13
14
15

https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help SparkDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Spark Vaults according to
Scope to support you in forming an opinion on their security risks.

SparkDAO implements an ERC-4626 USDC Vault wrapping interactions with the PSM and Savings
USDS allowing users to deposit USDC and earn yield from the Sky savings rate.

The most critical subjects covered in our audit are functional correctness, security of the vault's assets,
and the proxy/upgradabilitiy pattern. Security regarding all the aforementioned subjects is high.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EED-Severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Spark Vaults repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V | Date Commit Hash Note

1 | 13 January 49ed49b54e42d68a29a885c2f5fc996¢749b4c9 | Initial Version
2025 7

2 | 17 January 490f4d5d3a99116e8f22dc1b3037b10b6cf6f782 | USDCVaultL2
2025

3 | 23 January 341f49e1f81e4d5bb75a9905a914dcc69642885 | After intermediate report
2025 e

For the solidity smart contracts, the compiler version 0.8.21 were chosen.

The following files are in the scope of this review:

src/ UsdcVaul t . sol
depl oy/ UsdcVaul t Depl oy. sol
depl oy/ UsdcVaul t I nst ance. sol

In the following files have been added:

src/ UsdcVaul t L2. sol
depl oy/ UsdcVaul t L2Depl oy. sol

2.1.1 Excluded from scope

Any file not explicitly listed above as well as third-party libraries are out of the scope of this review.

2.2 System Overview

This system overview describes the latest received version ((Version 2)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

SparkDAO offers a USDC Vault, an ERC-4626 compliant wrapper for interactions with the PSM and
Savings USDS (sUSDS). Users deposit USDC which is converted to sUSDS to earn yield from the Sky
Savings Rate (SSR). In return, users receive "Spark USDC Vault" (sSUSDC) shares representing their
position. Withdrawals reverse this process.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 5

https://github.com/marsfoundation/spark-vaults/tree/49ed49b54e42d68a29a885c2f5fc996c749b4c97
https://github.com/marsfoundation/spark-vaults/tree/49ed49b54e42d68a29a885c2f5fc996c749b4c97
https://github.com/marsfoundation/spark-vaults/tree/490f4d5d3a99116e8f22dc1b3037b10b6cf6f782
https://github.com/marsfoundation/spark-vaults/tree/34ff49e1f81e4d5bb75a9905a914dcc69642885e
https://github.com/marsfoundation/spark-vaults/tree/34ff49e1f81e4d5bb75a9905a914dcc69642885e
https://chainsecurity.com

This ERC-4626 Vault issues vault shares that correspond to sUSDS shares at a 1:1 exchange ratio.
Spark USDC Vault (sUSDC) shares have all the standard ERC-20 functions (transfer,
transf er From appr ove) implemented. The ERC-20 features are extended with ERC-2612 (Permit
Extension) and further ERC-1271 (Standard Signature Validation for Contracts). Two entry points for the
permit functionality are available allowing to pass either the aggregated signature as bytes or v, r and s
separately. Signatures for permits can either be from EOAs or, using ERC-1271, be validated by a
contract that allows contracts to act as they "signed" permits.

An exit hatch, function exi t , is implemented to allow redeeming vault shares for sSUSDS directly at a 1:1
exchange rate. While primarily intended for use when the PSM lacks sufficient liquidity to convert to
USDC, this function is usable at all times.

Two distinct Vault implementations exist for Ethereum Mainnet and Layer 2 networks due to differences
in the PSM used. On Mainnet, the Vault uses the UsdsPsmWrapper to convert USDS to DAI, facilitating
exchanges via the fee-incurring DssLitePsm. On Layer 2 networks, the Vault integrates with the fee-free
PSM3 (Spark-PSM), which allows swapping USDC to sUSDS directly.

2.2.1 Usdc Vaulton L1

This section describes the UsdcVaul t , intended to be deployed on L1.
The state-changing functions compliant with EIP-4626 are:

edeposit (uint256 assets, address receiver): Converts the specified amount of USDC
(assets) into USDS using the PSM, subject to a fee (tin). The resulting USDS is deposited into
Savings USDS, earning sUSDS shares for the vault. Spark USDC Vault shares (sUSDC) equivalent
to the amount of SUSDS are minted and sent to the receiver.

em nt (ui nt 256 shares, address receiver): Determines the amount of USDC (assets)
required to mint the specified number of Spark USDC Vault shares (sUSDC). Transfers the
calculated amount of USDC from the caller, converts it into USDS via the PSM (incurring a fee tin),
and deposits the USDS into Savings USDS to earn sUSDS shares. Mints the specified amount of
sUSDC and assigns it to the receiver.

ew t hdrawm ui nt 256 assets, address receiver, address owner): Withdraws the
specified amount of USDC (assets) to the receiver. Calculates the amount of USDS needed to
exchange for the desired amount of USDC via the PSM, including the fee (tout). Withdraws this
amount of USDS from Savings USDS, burns the corresponding number of sUSDC shares from the
owner, and completes the transfer of USDC. The owner can be the caller or an authorized account
with sufficient allowance.

eredeem(ui nt 256 shares, address receiver, address owner): Redeems the specified
number of Spark USDC Vault shares (sUSDC) into USDC. Converts the corresponding number of
sUSDS shares into USDS, then exchanges the USDS for USDC using the PSM (subject to a fee
tout). Burns the redeemed sUSDC shares and transfers the resulting USDC to the receiver. The
owner can be the caller or an authorized account with sufficient allowance.

Both deposit and mi nt functions support a secondary entry point (non-ERC-4626 specific) with two
additional parameters:

« a referral parameter for marking deposits originating from specific frontends, emitting a Ref err al (
uint16 i ndexed referral, address indexed owner, uint256 assets, uint256 s
har es) event.

* a slippage protection parameter: m nShar es for deposit and maxAsset s for mint.

View functions related to EIP 4626:
e asset () : returns the address of USDC.

etotal Assets(): returns the total assets held by the contract (sUSDS) converted to USDC,
ignoring the fees charged by the PSM.

(S: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

econvert ToShares(ui nt 256 assets): calculates the number of shares the contract would
exchange for the given amount of assets (USDC).

econvert ToAsset s(ui nt 256 shar es) : calculates the amount of assets (USDC) the contract
would exchange for the given number of shares.

* maxDeposi t (addr ess) : returns the maximum amount that can be deposited, limited by the DAI
balance of the PSM. On L1 USDC must first be converted into DAI via the PSM and then into USDS
before being deposited into Savings USDS. Conversion between DAI and USDS is unrestricted.

e previ ewbDeposi t (ui nt 256 asset s) : Returns the number of shares that would be minted for the
given amount of assets (USDC) at the current block.

« maxM nt (addr ess) : returns the maximum amount of shares that can be minted, limited by the DAI
balance of the PSM as USDC must first be converted into DAI via the PSM and then into USDS
before being deposited into Savings USDS. Conversion between DAI and USDS is unrestricted.

e previ ewM nt (ui nt 256 shar es) : calculates the amount of assets (USDC) needed to mint the
specified number of shares at the current block.

« maxW t hdr aw(addr ess owner) : Returns the maximum amount of assets (USDC) the specified
address can withdraw based on its balance. Withdrawals are blocked if the PSM is halted.
Additionally, the available USDC liquidity in the PSM may limit withdrawals.

e previ ewW t hdr aw(ui nt 256 asset s) : returns the exact amount of shares that would be burned
if the caller withdraws this amount of assets (USDC) in this block.

 maxRedeen{ addr ess owner): returns bal anceCf [owner], the maximum number of shares the
specified address can redeem (its current balance). Redemptions are blocked if the PSM is halted.
Additionally, the available USDC liquidity in the PSM may limit redemptions.

e previ ewRedeen{ ui nt 256 shares): returns the amount of assets (USDC) the caller would
receive if he redeems this amount of shares in this block.

Further getters for sUSDS and PSM getters are exposed:
e chi (): returns the rate accumulator of SUSDS
*rho(): returns the timestamp of the last update of the rate accumulator.
e ssr(): returns the sky savings rate.
*tin(): returns the fee when exchanging USDC for USDS in the PSM.
*tout (): returns the fee when exchanging USDS for USDC in the PSM.

222 L2

This section highlights the differences with the L1 version.

On Layer 2, since the SSR is not directly accessible, the rate is queried from a trusted RateProvider. The
PSM is intended to be the PSM3 implementation. This PSM incurs no fee, allows direct swaps between
sUSDS and USDC and provides preview functions for swaps.

The following list describes key differences only:

edeposit (uint256 assets, address receiver): Converts the specified amount of USDC
(assets), transferred from the caller, into SUSDS. Spark USDC Vault shares (sUSDC) equivalent to
the amount of SUSDS received from the PSM swap are minted to the receiver.

em nt (ui nt 256 shares, address receiver): Determines the amount of USDC (assets)
required to mint the specified number of Spark USDC Vault shares (sUSDC) using the preview
function of the PSM. Transfers this amount of USDC from the caller, converts it into sUSDS via the
PSM. Mints the specified amount of SUSDC and assigns it to the receiver.

(S: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

ew t hdrawm ui nt 256 assets, address receiver, address owner): Withdraws the
specified amount of USDC (assets) to the receiver. Queries the PSM to get the amount of sSUSDS
needed to exchange for the desired amount of USDC via the PSM. Burns the corresponding number
of sUSDC shares from the owner. The owner can be the caller or an authorized account with
sufficient allowance.

eredeem(ui nt 256 shares, address receiver, address owner): Redeems the specified
number of Spark USDC Vault shares (sUSDC) into USDC. Converts the corresponding number of
sUSDS shares into USDC using the PSM, the USDC assets are directly transferred to the receiver.
Burns the redeemed sUSDC shares. The owner can be the caller or an authorized account with
sufficient allowance.

 maxDeposi t (addr ess) : returns the maximum amount that can be deposited, limited by the
sUSDS balance of the PSM.

« maxM nt (addr ess) : returns the maximum amount of shares that can be minted, limited by the
sUSDS balance of the PSM.

« maxW t hdr aw(addr ess owner) : Returns the maximum amount of assets (USDC) the specified
address can withdraw. This is limited by the balance of the owner and the available USDC liquidity in
the PSM.

 maxRedeen{ addr ess owner): returns bal anceC [owner], the maximum number of shares the
specified address can redeem (its current balance). Additionally, the available USDC liquidity in the
PSM may limit redemptions.

2.2.3 Upgradeability

UsdcVault inherits from Openzeppelin's UUPSUpgradeable which provides all functionality for UUPS
Proxies implementation contracts to facilitate upgradeability. The implementation overrides
_aut hori zeUpgr ade() adding access control to restrict implementation upgrades by war ds (assumed
to be the Governance Pause proxy exclusively) only. The following permissioned functions, callable by
addresses bearing the war d role, are available to update the wards mapping:

erel y(address usr): Adds an address to the war ds mapping. Emits the Rel y event.

e deny(address usr): Removes an address from the war ds mapping. Emits the Deny event.

Furthermore, getl| npl enentati on() has been added returning the address of the -current
implementation which is retrieved from the defined storage slot.

For the UsdcVault Proxy the widely used OpenZeppelin implementation of ERC1967Proxy is used. All
calls are executed as delegatecall to the implementation contract, the address of the implementation
contract is stored at slot calculated as
byt es32(ui nt 256(keccak256("' ei p1967. proxy. i npl enentation')) - 1).

2.2.4 Deployment

Some EOA deploys the contracts (UsdcVault and a ERC1967Proxy) and switches the owner (adding the
new owner as ward and removing oneself as ward) using the UsdcVaultDeploy/UsdcVaultL2Deploy
scripts. On L1 the addresses of the UsdsPsmWrapper and SUSDS are retrieved from the hardcoded
Chainlog address, on L2 the PSM address is provided as a parameter.

2.2.5 Roles & Trust Model

UsdcVault is expected to be deployed on Ethereum Mainnet with the PSM expected to be an
UsdsPsmWrapper. UsdcVaultL2 is to be used with the PSM3 (Spark-PSM) on Layer 2 networks.

Wards: Privileged roles. Fully trusted. Expected to be the Spark Governance PauseProxy only.
Addresses holding the ward role can update the implementation of the Proxy and hence change the
behavior and state of the contract. Further wards can add/remove more wards.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

Users: Users interacting with the public functions of the system. Untrusted.

Deployer: Executes the deployment scripts deploying the contracts. Untrusted; deployment must be
verified before users interact / the frontend is activated.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CLZ)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
(CL:0)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 0
Informational Findings 2

» Unused Function (LN Ee
* No Fixed Solidity Version (ZCRS o)

6.1 Unused Function

[Informationalj [Version 2]

CS-SPVA-004
UsdcVaul t L2. _di vup is unused and can be removed.
Code corrected:
The unused function has been removed.
6.2 No Fixed Solidity Version
[Informationalj [Version 1] Code Corrected
CS-SPVA-005

SparkDAO uses a floating pragma solidity ~0.8.21. Further, the foundry. tom file does not fix a
compiler version. Contracts should be deployed with the same compiler version and flags that have been
used during testing and audit. Fixing the compiler version helps to ensure that contracts do not
accidentally get deployed using, for example, an outdated compiler version that might introduce bugs that
affect the contract system negatively.

Code corrected:
The compiler version has been fixed to 0.8.21.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
(Informational] [Version 1]

CS-SPVA-001

Gas savings can be made. Namely, psmtin() and psm tout () could be replaced by querying the
dai Psm contract directly. Ultimately, the number of staticcalls could be reduced. Note that this issue
non-comprehensive and other potential optimizations could exist.

7.2 Leftover Tokens
(Informational] [Version 1]

CS-SPVA-002

As documented in the internal helper functions, on L1, small amounts of USDS tokens may remain in the
contract as "dust” due to rounding errors during the execution of _doM nt () and _doRedeen() .

/.3 README

(Informational] [Version 2] (]

CS-SPVA-003

The README.md currently describes the behavior of the UsdcVault for Ethereum Mainnet only, without
any mention or details about UsdcVaultL2, which follows a different logic and utilizes a different PSM.

The original description for L1 is slightly imprecise: "by converting USDC to USDS using dss-lite-psm."
While a minor detail, the Vault actually uses an intermediary USDSPSMWrapper to facilitate conversion
between USDS and DAI, as dss-lite-psm only supports DAI. This operational distinction is worth noting,
as the current phrasing could confuse users who might expect the Vault's PSM to be dss-lite-psm, rather
than a wrapper, based on the README.

Regarding the section on sanity checks: it may be prudent to include a sentence emphasizing the
importance of validating the deployed bytecode itself.

Specification partially changed:
While the README still outlines the L1 version, a high-level description is provided in a separate section.
Additionally, USDSPSMWrapper is now mentioned additionally.

Last, the emphasis on the deployed code is left out.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Deployment Verification

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly.

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control which could lead to unexpected contract implementation
upgrades and hence result in stealing of funds).

Additionally, it is of utmost importance that no allowance is given to unexpected addresses (e.g. SUSDS
approval to arbitrary addresses could have been given in the constructor of the proxy).

8.2 Griefing Users

Given the design of the PSM, a limited amount of funds is available for swapping. Hence, some
transactions could fail if not sufficient funds are available. As a consequence, user transactions could be
griefed by frontrunning them with PSM swaps to make the transactions revert. However, there is no
incentive for a malicious party to create such a DoS due to fees. Nevertheless, users can always exit
safely with exi t ().

8.3 PSM Halting Is Less Strict

Note that a tin == WAD (100% fee) is valid in the Lite PSM implementation. However, in the
USDCVault implementation, this state is treated as halted. This is necessary in the vault to prevent
computations like _psmJsdsQut ToGem nRoundi ngDown() from resulting in a division by zero. Note
that a 100% fee is unrealistic and thus not a relevant consideration.

I:$: SparkDAO - Spark Vaults - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Usdc Vault on L1
	2.2.2 L2
	2.2.3 Upgradeability
	2.2.4 Deployment
	2.2.5 Roles & Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 Unused Function
	6.2 No Fixed Solidity Version

	7 Informational
	7.1 Gas Optimizations
	7.2 Leftover Tokens
	7.3 README

	8 Notes
	8.1 Deployment Verification
	8.2 Griefing Users
	8.3 PSM Halting Is Less Strict

