
 

 

PUBLIC

Code Assessment

of the Spark Vaults V2

Smart Contracts

October 01, 2025

Produced for

by



Contents

1   Executive Summary 3

2   Assessment Overview 5

3   Limitations and use of report 8

4   Terminology 9

5   Open Findings 10

6   Resolved Findings 11

7   Informational 12

8   Notes 15

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com


1   Executive Summary
Dear all,

Thank you for trusting us to help SparkDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Spark Vaults V2 according to
Scope to support you in forming an opinion on their security risks.

SparkDAO implements SparkVault V2, a tokenized vault (ERC-4626) where interest is distributed based
on a manually set Vault Savings Rate (VSR). Whitelisted takers, intended to be the Spark ALM
Controller, can draw on the vault’s funds to invest.

The most critical subjects covered in our audit are functional correctness, asset security, and
implementation integrity. Security regarding all the aforementioned subjects is high, however there are
some informational issues and notes to consider in the report, for example Asset Solvency or Circular
Reinvesting.

The general subjects covered are operational considerations, code complexity and documentation.
ERC-4626 preview functions may revert during low liquidity conditions, which follows standard
interpretation but requires integrator awareness, see ERC-4626 Preview Functions Liquidity Check.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com


1.1   Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com


2   Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

 

2.1   Scope
The assessment was performed on the source code files inside the Spark Vaults V2 repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 22 Aug 2025 8f1442ad5094d1ddd48c95d390dee6cd6c164133 Initial Version

2 08 Sep 2025 7f1f11d2406308dab89ce3b285f9e6d9a8f36277 v1.0.0

3 01 Oct 2025 0a686ba2fcf874bc1542171a323779ba73ac2dc5 v1.0.1

For the solidity smart contracts, the compiler version 0.8.29 was chosen with EVM version set to
cancun.

The files in scope were:

src/
    ISparkVault.sol
    SparkVault.sol

 

2.1.1   Excluded from scope
All other files and all dependencies are out of scope. The underlying tokens are out of scope. The usage
of the contract is out of scope.

 

2.2   System Overview
Version 3This system overview describes the latest received version ( ) of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

SparkDAO implements a tokenized vault (ERC-4626), SparkVault, where interest is distributed based
on a manually set Vault Savings Rate (VSR). Whitelisted takers, intended to be the Spark ALM
Controller, can draw on the vault’s funds to invest. SparkVault is deployed through an ERC-1967 proxy
using the UUPS pattern. Note that the design is similar to Savings USDS (sUSDS).

2.2.1   Spark Vault V2
The SparkVault contract implements an ERC-4626 token where the underlying asset corresponds to a
suitable ERC-20 token. The vault token uses the same decimals as the underlying asset. So-called
takers can then use the balance held by the vault as liquidity.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 5

https://github.com/sparkdotfi/spark-vaults-v2/tree/8f1442ad5094d1ddd48c95d390dee6cd6c164133
https://github.com/sparkdotfi/spark-vaults-v2/tree/7f1f11d2406308dab89ce3b285f9e6d9a8f36277
https://github.com/sparkdotfi/spark-vaults-v2/tree/0a686ba2fcf874bc1542171a323779ba73ac2dc5
https://chainsecurity.com


The vault generates interest for the liquidity providers to incentivize them. Namely, the interest generated
is defined by the vsr and is reflected in the exchange rate chi (shares to underlying in RAY). Thus, chi
is a rate accumulator defined as  where  corresponds to the latest update
timestamp and is defined by rho, and where  corresponds to the current timestamp.

Note that the Vault Savings Rate (VSR) can be updated by anyone through drip. The exchange rate is
automatically refreshed or simulated before any relevant ERC-4626 function is executed.

Note that a global deposit limit, depositCap, exists that limits the total underlying on deposit actions.
That is reflected in both maxDeposit and maxMint. Similarly, withdrawals can be limited. This is due to
the TAKER_ROLE being allowed to access the liquidity held by the vault. Accordingly, maxWithdraw and
maxRedeem take the vault’s current token balance into account.

Additionally, the following functionality is implemented:

• deposit and mint can be called with a referral code.

• assetsOf returns the assets a user would receive according to their current share balance.

• assetsOutstanding returns the assets owed to the contract (i.e. interest payments and taken
amount repayments).

• nowChi simulates an update of chi.

• EIP-2612 is implemented for signed approvals. Additionally, permit is implemented to also allow
passing r,s,v as a packed bytes array.

• getImplementation is a public getter to retrieve the implementation address.

Privileged addresses can call the following functions:

• TAKER_ROLE: Can call take to access the liquidity provided by LPs as outlined above.

• SETTER_ROLE: Can set the vsr. However, the value must be within the bounds set by governance.

• Governance / DEFAULT_ROLE_ADMIN: Can set the VSR bounds with setVsrBounds, assign any
role and can upgrade the contract. Additionally, the role can set the deposit cap with
setDepositCap.

Note that it is expected that no losses are made and that the interest as well as the taken amounts are
eventually sent to the vault.

2.2.2   Changelog
Version 2In , the following changes were introduced compared to prior versions:

• The deposit cap has been introduced.

• The possibilities of circular reinvesting have been partially limited, see Circular Reinvesting.

Version 3Prior to , SparkVault was hardcoded to 18 decimals.

2.3   Trust Model
Below, the relevant roles for SparkVault are defined:

• TAKER_ROLE: Fully trusted. Can fully drain the contract with take.

• SETTER_ROLE: Partially trusted. Expected to set meaningful VSR values. However, restricted to the
bounds set by governance.

• Governance / DEFAULT_ROLE_ADMIN: Fully trusted. Can upgrade the contract arbitrarily and can
perform any action of any other role.

• Users: Untrusted.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com


• Tokens: The underlying token is expected to be a valid token that is non-rebasing, has no fees and
is non-reentrant.

 

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com


3   Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com


4   Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

 

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

 

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

 

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

 

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com


 

5   Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Design : Architectural shortcomings and design inefficiencies

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

 

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com


6   Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedUnbounded Interest Obligations 

 

6.1   Unbounded Interest Obligations
Design Low Version 1 Code Corrected   

CS-SPK-VLTV2-001

The vault owes VSR interest on all deposited funds, including idle funds that haven't been taken by the
taker. With no deposit limits, unexpectedly large deposits can create significant interest obligations for the
Spark ecosystem.

Consider the scenario where a whale deposits 100M USDS, immediately earning 10% VSR (10M USDS
annual interest obligation). The Spark ecosystem (e.g. ALM controller, lending) might not be able to
generate sufficient yield for such large obligations.

Ultimately, the design assumes the broader Spark ecosystem can generate sufficient yield to cover all
vault obligations. However, there's no direct link between vault deposits and yield generation. Without
deposit limits or a direct link between vault deposits and yield generation, the vault can accumulate
interest obligations that the ecosystem must cover regardless of actual yield performance. This issue
compounds over time if the taker cannot deploy funds or the rate setter doesn't adjust the VSR.

Code corrected:

The code has been adjusted to introduce a deposit limit. Now, the combination of VSR and the deposit
cap leads to predictable maximum amounts of interest obligations.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com


7   Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1   Code Consistency
Informational Version 1 

CS-SPK-VLTV2-002

The codebase aims to not duplicate logic. However, maxRedeem unnecessarily duplicates logic where
convertToShares could be reused.

Namely, the function implements

uint256 maxShares  = IERC20(asset).balanceOf(address(this)) * RAY / nowChi();

which would we be equivalent to

uint256 maxShares = convertToShares(IERC20(asset).balanceOf(address(this)))

Note that the similar function, maxWithdraw accordingly reuses the assetsOf function.

To summarize, functionality could be reused to keep the code style more consistent.

 

7.2   Lack of Events
Informational Version 1 

CS-SPK-VLTV2-004

The initialize function sets state variables but does not emit the respective events. Below is a list of
such occurrences where an initial event could be emitted:

1. chi and rho are set to initial values which can be interpreted as the initial Drip.

2. minVsr and maxVsr are set to RAY but VsrBoundsSet is not emitted.

3. vsr is set to RAY but VsrSet is not emitted.

 

7.3   Library Initializers Unused
Informational Version 1 

CS-SPK-VLTV2-005

The internal initializers for AccessControlEnumerableUpgradeable and UUPSUpgradeable are
not used in initializer (e.g. __AccessControlEnumerable_init_unchained). While both are
no-op functions, it is generally recommended to call the functions in case the library is updated and
includes relevant code.

 

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com


7.4   VSR Out-of-Bounds
Informational Version 1 

CS-SPK-VLTV2-006

The VSR can in theory be out-of-bounds. Namely, that is the case when the bounds are adjusted.
Consider the following scenario:

1. setVsrBounds(RAY, MAX_VSR)

2. setVsr(MAX_VSR)

3. setVsrBounds(RAY, RAY)

After step 3, vsr remains at MAX_VSR even though the new bounds only allow RAY, leaving the VSR
out-of-bounds until the next setVsr() call with a value respecting the new limits.

 

7.5   Incomplete Interface Definition
Informational Version 1 Code Partially Corrected  

CS-SPK-VLTV2-003

The ISparkVault interface defines most of the functions implemented by SparkVault. However,
some remain undeclared within the interface, and one function's documentation doesn't match the
implementation. Below is a list of such functions:

1. Functions inherited through contracts where the respective interface is not implemented by the
ISparkVault interface (e.g., IAccessControlEnumerable).

2. Automatically generated getters for constants: MAX_VSR, PERMIT_TYPEHASH, RAY,
SETTER_ROLE, TAKER_ROLE.

3. Automatically generated getters for storage variables: maxVsr, minVsr.

4. Governance setter functions: setVsrBounds.

5. Convenience functions defined within the contract: assetsOf, assetsOutstanding,
getImplementation, nowChi, permit (with signature as bytes).

6. Initializer: initialize.

Additionally, the interface documentation for chi() is misleading. The documentation describes it as
returning "the current rate accumulator", but the implementation actually returns the storage variable
chi, which represents the rate accumulator at the last drip time (rho). The current rate accumulator is
calculated by the nowChi() function, which applies the time-based growth since the last drip. Note that
the interface does not necessarily need to provide all functions. However, a more complete interface
could simplify scripts and integrations.

Code partially corrected:

1. Corrected.

2. None added to the interface.

3. None added to the interface.

4. Corrected.

5. Partially corrected. Only nowChi was added.

6. Not added.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com


To summarize, the functionality not added consists of automatically generated getters and convenience
functionality.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com


8   Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1   Asset Solvency
Note Version 1 

SparkVault might hold insufficient funds to allow for complete share redemptions. Namely, that is due
to:

• Funds being taken but not returned by takers (e.g. losses, taker becoming malicious).

• Interest payments not being provided to the vault.

As a consequence, the vault might not be solvent to return funds to all users. Thus, the following might
occur:

• Bank runs

• Depegging of the vault tokens

Ultimately, takers and governance are trusted to return funds to the users as promised. To prevent
problems, they should aim to keep a ratio of funds within the vault to ensure that withdrawals are typically
possible.

 

8.2   Circular Reinvesting
Note Version 1 

Funds withdrawn via take() are intended for deployment into external yield strategies, not for systems
that would eventually reinvest back into this vault. The vault assumes the TAKER_ROLE is trusted not to
create circular reinvestment loops.

If a taker were to withdraw and redeposit funds (directly or indirectly through another system), it would
create artificial deposit growth without new external capital. The vault treats all deposits equally and
accrues yield based on total supply, potentially creating unsustainable yield obligations.

This design relies on the assumption that:

• Takers are trusted entities that will not create circular flows

• Withdrawn funds flow to genuine external yield opportunities

• Any system receiving funds via take() does not reinvest back into this vault

Governance should ensure takers understand these constraints and monitor for any unexpected circular
patterns.

Version 2Note that as of , the taker cannot be provider of funds or the receiver of shares. Note that the
check does not prevent circular reinvesting since it can be always bypassed. However, the check can
prevent human error in well-defined contracts (e.g. ALM controller where the recipient is the ALM proxy
and also the taker) but might limit the potential integration possibilities of takers.

 

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com


8.3   ERC-4626 Deposit Blacklist
Note Version 2 

EIP-4626 states the following about the maxDeposit and maxMint functions:

MUST factor in both global and user-specific limits

Note that _mint implements a blacklist:

1. address(0) as the receiver.

2. address(this) as the receiver.

3. TAKER_ROLE as the recipient.

4. TAKER_ROLE as the msg.sender.

Note that blacklists can be interpreted as a deposit limit of 0. However, common practice (e.g. OZ
ERC4626.sol) does not consider blacklists as deposit limits.

To summarize, integrators should be aware that it the maxMint and the maxDeposit function do not
reflect that special addresses cannot cannot deposit or mint.

 

8.4   ERC-4626 Preview Functions Liquidity Check
Note Version 1 

The previewRedeem and previewWithdraw functions revert when the vault lacks sufficient liquidity.
The ERC-4626 standard states these functions "MUST NOT revert due to vault specific user/global
limits" but "MAY revert due to other conditions."

The current implementation treats liquidity as an "other condition" rather than a vault limit. This
interpretation is reasonable since:

• Insufficient liquidity would cause the actual withdraw/redeem to revert

• The check prevents preview functions from returning misleading values

• Liquidity is a transient state, not a configured limit

This follows common practice, but integrators should be aware these preview functions can revert on low
liquidity.

 

8.5   Exceeding Deposit Limits
Note Version 2 

Note that deposit limits can be exceeded in multiple ways:

• setDepositCap(x) for x < totalAssets().

• Interest generated leads to exceeding the deposit cap.

Nonetheless, in both cases the maximum interest obligation is predictable.

 

8.6   Extreme Supply Values
Note Version 2 

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 16

https://eips.ethereum.org/EIPS/eip-4626
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/extensions/ERC4626.sol
https://chainsecurity.com


Governance should be aware that under extreme conditions (that are considered unlikely / are not
expected to occur when the vault is configured with a legitimate asset) computations can revert and can
lead to DoS scenarios within the contract.

The multiplication of chi and totalSupply (shares) affects critical operations including drip() and
hence share redemption. Below are some considerations:

• Too high chi: chi is at most ~1024*RAY after 10 years and ~1.05e6*RAY after 20 years at
maximum VSR. This would still allow for share supplies that, for example, fit into uint128 (see
below for more details).

• Too high total supply of shares: The vault's totalSupply (shares) depends on deposits of the
underlying asset. Overflow occurs when totalSupply * chi > type(uint256).max. With
chi = 1024*RAY (10 years), max safe totalSupply ≈ 10**47 share tokens. Given that shares are
minted 1:1 or less relative to deposited assets (as chi grows), this far exceeds any legitimate
underlying token supply (e.g. USDC, USDS).

While other computations involving shares * chi or assets * RAY could also overflow (e.g., in
convertToAssets, mint, previewMint), the drip() and redemption operations are the most critical
as they affect core vault functionality and could trap existing positions.

Further, note that as part of the limitations related to the total supply, the following considerations
regarding the depositCap can be made:

• The depositCap could be set so that even with tokens with large supplies reverts cannot occur due
to the deposit cap (exception is due to chi becoming too large).

• Note that the deposit cap, the total supply and chi considerations could hypothetically lead to
unexpected behaviour related to maxMint and maxDeposit. For example,
depositCap = uint256.max/RAY+1 could hold so that maxMint returns the magic value
uint256.max. Assuming that the supply is non-zero there is technically a limit. However, given the
considerations above related to the supply, such scenarios seem unlikely.

 

8.7   Repayments
Note Version 1 

Repayments are simply transfers of the underlying token to this contract. Anyone can repay, there is no
restriction that only the taker can repay. Any donations or accidental transfers are treated as repayments
and reduce the outstanding debt. Governance/VSR setter should take this into account.

SparkDAO - Spark Vaults V2 - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope

	2.2   System Overview
	2.2.1   Spark Vault V2
	2.2.2   Changelog

	2.3   Trust Model

	3   Limitations and use of report
	4   Terminology
	5   Open Findings
	6   Resolved Findings
	6.1   Unbounded Interest Obligations

	7   Informational
	7.1   Code Consistency
	7.2   Lack of Events
	7.3   Library Initializers Unused
	7.4   VSR Out-of-Bounds
	7.5   Incomplete Interface Definition

	8   Notes
	8.1   Asset Solvency
	8.2   Circular Reinvesting
	8.3   ERC-4626 Deposit Blacklist
	8.4   ERC-4626 Preview Functions Liquidity Check
	8.5   Exceeding Deposit Limits
	8.6   Extreme Supply Values
	8.7   Repayments


