

PUBLIC

Code Assessment

of the SparkLend Advanced

Smart Contracts

December 06, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 9

4 Terminology 10

5 Findings 11

6 Resolved Findings 13

7 Informational 15

8 Notes 16

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help SparkDAO with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of SparkLend Advanced
according to Scope to support you in forming an opinion on their security risks.

SparkDAO has implemented five new price oracles to be used within the SparkLend protocol: a fixed
price oracle, an oracle with a capped price, a wstETH oracle, a rETH oracle, and a weETH oracle.
Additionally, a MorphoUpgradableOracle has been introduced for use in MorphoBlue. Furthermore two
interest rate strategies have been implemented. One sets the base rate using a rate source, while the
other targets a specific rate at optimal utilization. In the latest iteration, a capped fallback rate source has
been added.

The most critical subjects covered in our audit are functional correctness and precision of arithmetic
operations. Security regarding all the aforementioned subjects is high.

It is known that the weETH oracle introduced in the newest iteration can be prone to manipulation.
However, it is deemed that there is no practical risk with the intended configuration. For more information,
please refer to issue weETH oracle manipulation

Note that the oracles for wstETH, rETH and weETH may fail to provide accurate results in case of an
LST/LRT depeg, see the note ETH oracle is used for LST pricing.

The general subjects covered are specification, gas efficiency, and trustworthiness. Security regarding all
the aforementioned subjects is high.

In summary, we find that the codebase provides a good level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 2

• Code Corrected 1

• Risk Accepted 1

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the SparkLend Advanced repository
based on the documentation files. The table below indicates the code versions relevant to this report and
when they were received.

V Date Commit Hash Note

1 11 Dec
2023

2980932a2bed29387eaa9f43cda06c458ffd5e50 Initial Version

2 19 Dec
2023

2835e3f09efe4f2dcf880e23427b5318fbc5a2d0 Extended Scope

3 03 Jan
2024

277ea9d9ad7faf330b88198c9c6de979a2fad561 Fixes

4 04 Mar
2024

40df4afd20028e4ec4cd5be8382934727bb85e06 stETH and rETH Oracles

5 26 May
2024

4d44ee23adf28e59f5405c2a3837b19ab1a84d31 weETH and Morpho Oracles

6 10 Jun
2024

4b3e93869b061123ba86e602466f879817315011 CappedFallbackRateSource

7 11 Jun
2024

57b437239050b3b4862db91cde4568b7b38b7f2e Fixes

8 29 Nov
2024

58d74302020f07811e79d077b6126c8557d9d310 SUSDS Rate Source

For the solidity smart contracts, the compiler version 0.8.20 was chosen.

The following contracts are in the scope of this review:

CappedOracle.sol
FixedPriceOracle.sol

Starting with Version 2, the scope has been extended to include the following contracts:

interfaces/IRateSource.sol
PotRateSource.sol
RateTargetBaseInterestRateStrategy.sol
RateTargetKinkInterestRateStrategy.sol
VariableBorrowInterestRateStrategy.sol

Starting with Version 4, the scope has been extended to include the following contracts:

RETHExchangeRateOracle.sol
WSTETHExchangeRateOracle.sol
interfaces/IPriceSource.sol

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 5

https://github.com/marsfoundation/sparklend-advanced/tree/2980932a2bed29387eaa9f43cda06c458ffd5e50
https://github.com/marsfoundation/sparklend-advanced/tree/2835e3f09efe4f2dcf880e23427b5318fbc5a2d0
https://github.com/marsfoundation/sparklend-advanced/tree/277ea9d9ad7faf330b88198c9c6de979a2fad561
https://github.com/marsfoundation/sparklend-advanced/tree/40df4afd20028e4ec4cd5be8382934727bb85e06
https://github.com/marsfoundation/sparklend-advanced/tree/4d44ee23adf28e59f5405c2a3837b19ab1a84d31
https://github.com/marsfoundation/sparklend-advanced/tree/4b3e93869b061123ba86e602466f879817315011
https://github.com/marsfoundation/sparklend-advanced/tree/57b437239050b3b4862db91cde4568b7b38b7f2e
https://github.com/marsfoundation/sparklend-advanced/tree/58d74302020f07811e79d077b6126c8557d9d310
https://chainsecurity.com

Starting with Version 5, the scope has been extended to include the following contracts:

WEETHExchangeRateOracle.sol
MorphoUpgradableOracle.sol
interfaces/AggregatorV3Interface.sol

Starting with Version 6, the scope has been extended to include the following contract:

CappedFallbackRateSource.sol

Starting with Version 8, the scope has been extended to include the following contract:

SSRRateSource.sol

2.1.1 Excluded from scope
Any file not explicitly listed above as well as third-party libraries are out of the scope of this review.

2.2 System Overview
In the findings section, we have added a version icon to each of the findings to increase the readability of
the report.

SparkLend Advanced offers a suite of features enhancing security and streamlining the automation of
governance processes.

2.2.1 SparkLend Oracles
The contracts described in this section are oracles intended to be used within the SparkLend protocol.
The oracles have the following interface:

interface IOracle {
 function latestAnswer() external view returns (int256);
 function decimals() external pure returns(uint8);
}

The price returned is an integer.

Capped Oracle

This oracle returns the minimum price with 8 decimals between a maxPrice set during deployment and
the price returned by the source, which is assumed to have 8 decimals. The price can be queried with
latestAnswer(). Note that the consumer of this price feed should be able to handle negative prices.

Fixed Price Oracle

This oracle returns a constant price set during deployment with 8 decimals. The price can be queried with
latestAnswer().

wstETH Oracle

Version 4In , an oracle for wstETH is introduced. Namely, latestAnswer() provides a price that is the
product of the ETH price (Chainlink ETH/USD oracle) and Lido's getPooledEthByShares() (amount
of ETH per share) function. Note that the result is scaled to have 8 decimals. In case, either price feed
used returns a number smaller or equal to zero, zero is returned.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

rETH Oracle

Version 4In , an oracle for rETH is introduced. Namely, latestAnswer() provides a price that is the
product of the ETH price (Chainlink ETH/USD oracle) and Rocket Pool's getExchangeRate() (amount
of ETH per rETH) function. Note that the result is scaled to have 8 decimals. In case, either price feed
used returns a number smaller or equal to zero, zero is returned.

weETH Oracle

Version 5In , an oracle for weETH is introduced. Namely, latestAnswer() provides a price that is the
product of the ETH price (Chainlink ETH/USD oracle) and EtherFi's getRate() (amount of ETH per
weETH) function. Note that the result is scaled to have 8 decimals. In case, either price feed used returns
a number smaller or equal to zero, zero is returned.

2.2.2 Morpho Oracles
The contracts described in this section are oracles intended to be used within the Morpho protocol.
These oracles are intended to be used by MorphoChainlinkOracleV2 (deployed through corresponding
factory) so that it can be used within Morpho Blue. To be compatible with the oracle usage defined in
Morpho's ChainlinkDataFeedLib, the oracles implement the functions

1. latestRoundData

2. decimals

Morpho Upgradeable Oracle

Version 5In , an upgradeable oracle has been introduced. Note that the interface functions wrap the
underlying Chainlink price feed's corresponding functions. However, latestRoundData only returns the
reported answer along with zeros for the other return values. Further, note that the underlying price feed
can be updated with setSource() by the owner of the oracle.

2.2.3 Rate Sources
PotRateSource

This adapter converts the DSR (DAI Savings Rate, per-second compound interest factor in RAY)
querried from the POT into APR (Annual Percentage Rate in RAY).

CappedFallbackRateSource

Version 6In , a capped fallback rate source has been introduced. This source, intended for ETH markets,
wraps another rate source. It implements upper and lower bounds to cap the rate and includes a fallback
mechanism to return a default rate if the primary source query fails. Note that the expected failure to
occur is that the source unwhitelists the rate source (leading to reverts).

2.2.4 Custom Interest Rate Strategies
VariableBorrowInterestRateStrategy

Modified version of Aave's DefaultReserveInterestRateStrategy with the stable borrow logic
removed.

The assumption made is that the stable borrow functionality remains inactive and therefore, its
associated functions are not expected to be used. The majority of features connected to the stable
borrow functionality have been effectively deactivated by always returning a value of zero. An exception
exists for getBaseStableBorrowRate(). In order to align closely with the default version, this function
returns the value corresponding to variable slope 1.

calculateInterestRates() implements the calculation of the interest rates depending on the
passed reserve state. The function returns the liquidityRate (the supplyRate), the
stableBorrowRate (present due to the requirements of the interface, always zero since this
functionality has been removed) and the variableBorrowRate.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 7

https://github.com/morpho-org/morpho-blue-oracles/blob/07a9a6988b0e1b316ac2fa97ec62ad485fbd0041/src/morpho-chainlink/MorphoChainlinkOracleV2.sol
https://github.com/morpho-org/morpho-blue-oracles/blob/07a9a6988b0e1b316ac2fa97ec62ad485fbd0041/src/morpho-chainlink/libraries/ChainlinkDataFeedLib.sol
https://chainsecurity.com

The currentVariableBorrowRate is determined based on the borrow usage ratio and the 2-slope
interest rate model which adjusts the rate depending on whether the borrow usage ratio exceeds the
optimal usage ratio.

The currentLiquidityRate in this function depends on the current variable borrow rate, the supply
usage ratio, and the reserve factor of the protocol.

RateTargetBaseInterestRateStrategy

Derives from the VariableBorrowInterestRateStrategy and modifies
_getBaseVariableBorrowRate() to align with an external rate source (Rate_source.getAPR()),
with the addition of a constant spread. This strategy is expected to be used for the DAI market, with the
external rate source being the annualized DSR.

Version 4In , getBaseVariableBorrowRateSpread() has been added as a getter for the constant
spread.

RateTargetKinkInterestRateStrategy

Derives from the VariableBorrowInterestRateStrategy and modifies
_getVariableRateSlope1() to set the variable slope 1 rate to match an external rate source
(Rate_source.getAPR()) and a constant spread. This strategy is expected to be used for ETH, it is
expected to track the staked ETH yield minus some spread.

Version 4In , getVariableRateSlope1Spread() has been added as a getter for the constant spread.

Version 8In , the SSRRateSource has been added. Similar to the PotRateSource, it converts the SSR
(SUSDS Savings Rate, per-second compound interest factor in RAY) querried from the SUSDS into APR
(Annual Percentage Rate in RAY).

2.2.5 Trust Model
There is no privileged role in these contracts. The origin of the information (pricing, rates), namely the
base oracle or the Pot (and SUSDS added in version 8) are completely trusted.

In version 5, the Morpho upgradeable oracle was introduced which has an owner. The owner of the
oracle is expected to be the governance and is fully trusted as it could set arbitrary contracts as price
sources on the managed Morpho markets.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Risk AcceptedweETH Oracle Manipulation

Medium -Severity Findings 0

Low -Severity Findings 0

5.1 weETH Oracle Manipulation
Security High Version 1 Risk Accepted

CS-SPRKADV-001

The weETH oracle can be manipulated upwards by burning eETH. Ultimately, such manipulations may
lead to draining the protocol.

Consider that EtherFi will compute the weETH/eETH rate as

function amountForShare(uint256 _share) public view returns (uint256) {
 uint256 totalShares = eETH.totalShares();
 if (totalShares == 0) {
 return 0;
 }
 return (_share * getTotalPooledEther()) / totalShares;
}

where _share is 10**18. Note that totalShares() can be reduced by arbitrary users by burning
eETH:

function burnShares(address _user, uint256 _share) external {
 require(msg.sender == address(liquidityPool) || msg.sender == _user, "Incorrect Caller");
 ...
 totalShares -= _share;
 ...

Consequently, the rate can be increased by decreasing the total shares.

Consider now a scenario where a user borrows 1M USD worth in weETH with 1.5M USD worth in ETH
collateral. If the borrower managed to increase the rate by a factor of 2, his position would immediately
become unhealthy. Ultimately, that would generate bad debt for Spark.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

Note that such an attack requires a donation to EtherFi and could be made more profitable by leveraging
high-value positions, especially those that are highly leveraged.

Risk Accepted:

Spark acknowledged the issue but deems it no practical risk given the LTV parameters for weETH
Collateral on Sparklend Mainnet and borrowing being disabled. The oracle may be replaced in the future
if deemed necessary for higher LTV configurations.

The intended configuration on Github.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 12

https://github.com/makerdao/community/blob/64dc4378ec8c0ac42502f2f5ac39c95ccb642beb/governance/polls/SparkLend%20Ethereum%20-%20Onboard%20weETH%20to%20SparkLend%20-%20June%203%2C%202024.md
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedDecimals Mismatch in CappedOracle

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedTry-Catch Error Validation

Informational Findings 1

• Code CorrectedGas Optimizations

6.1 Decimals Mismatch in CappedOracle
Correctness High Version 5 Code Corrected

CS-SPRKADV-005

The function CappedOracle.decimals returns 8 regardless of the decimals of the source, that is
expected to be a Chainlink price oracle. This creates a decimals mismatch when the source is an ETH
pair. For example, the Chainlink price oracle for stETH/ETH has 18 decimals
(https://etherscan.io/address/0x86392dc19c0b719886221c78ab11eb8cf5c52812#readContract#F3). If
the price of an ETH pair is computed with the decimals of the CappedOracle, the price will be either
heavily over-evaluated if maxPrice has 18 decimals, or always capped to maxPrice if it has 8
decimals.

Code corrected:

The oracle is designed to work with source oracles that have 8 decimals. An additional check has been
added to the constructor to enforce this 8-decimal precision in the source oracle, preventing possible
misconfiguration and resulting decimal mismatch.

6.2 Try-Catch Error Validation
Design Low Version 6 Code Corrected

CS-SPRKADV-004

The CappedFallbackRateSource falls back to a default rate when the static call getAPR in
unsuccessful. The fallback works by wrapping getAPR in a try-catch block as follows:

try source.getAPR() returns (uint256 rate) {
 ...

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 13

https://etherscan.io/address/0x86392dc19c0b719886221c78ab11eb8cf5c52812#readContract#F3
https://chainsecurity.com

 return rate;
} catch {
 return defaultRate;
}

Note that getAPR may revert due to errors raised (e.g. pause of source) or due to out-of-gas scenarios.
Note that the code above does not distinguish the scenarios. Thus, out-of-gas is treated as a regular
failure. However, note that such scenarios are triggerable by arbitrary addresses.

In general, such a scenario is unlikely. However, the execution flow might be provoked to enter such a
path. That will leave the rest of the computation with 1/64th of the gas available before the static call. The
remaining gas might be sufficient in some scenarios to complete the call. Namely, if the source can run
out of gas with 63x gas, then x gas will be available for the remainder of the execution. If x is high
enough, the capped rate source may be manipulated. Note that such attacks are non-trivial and not
necessarily feasible. An attacker could prewarm storage slots and addresses to reduce the cost of the
remainder of the execution. Further, gas costs might change and lead to potentially dangerous scenarios.

Last, while we expect getAPR to only revert in reasonable scenarios, it might be possible that there are
manipulations on source that will lead to reverts and thus to defaultRate.

Ultimately, regular reverts are not distinguished from out-of-gas scenarios. That may lead to the
possibility of returning the default rate incorrectly.

Code corrected:

A check was introduced to validate that the error message has a length greater than zero. While that may
also include other scenarios, these other scenarios are not expected to occur in the source.

6.3 Gas Optimizations
Informational Version 1 Code Corrected

CS-SPRKADV-003

1. The vars.totalDebt = params.totalStableDebt + params.totalVariableDebt;
computation can ignore the total stable debt, as it should always be 0.

Code corrected:

totalDebt has been removed and instead params.totalVariableDebt is now used directly.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Inconsistent setSource() Event Emission
Informational Version 5

CS-SPRKADV-002

setSource() emits the SourceChanged event before performing the state change which is
inconsistent with the constructor's behavior where the state change occurs first. Additionally,
setSource() emits the event even when setting the source to its current address, which can be
confusing due to the event's name SourceChanged.

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 ETH Oracle Is Used for LST Pricing
Note Version 1

Users should be aware that the oracles for LSTs (e.g. rETH and wstETH) and LRTs (e.g. weETH) will not
handle depeg scenarios by design.

More specifically, the oracles use the ETH/USD price feed for estimating the value of the tokens.
However, the LSTs could depeg so that the market may offer the LSTs/LRTs at a discount (e.g. due to
long waiting times for withdrawals).

Consequently, pricing the LSTs and LRTs with a ETH/USD oracle may introduce a systematic risk. For
example, some users may not be liquidated which could lead to protocol losses.

While severe depegs are rather unlikely, they may happen under extreme conditions. Ultimately, the
ETH/USD oracle could lead to inaccuracies.

8.2 Morpho Upgradeable Oracle
Note Version 5

MorphoUpgradeableOracle follows the assumptions made on Chainlink oracles in Morpho (e.g. no
staleness). Essentially, no checks on the data provided by Chainlink are made which may introduce
some risk to the managed markets. Governance is expected to be able to react quickly on Morpho
markets.

Further, the only meaningful data returned by latestRoundData is the answer. All other values are
not meaningful (zero values).

SparkDAO - SparkLend Advanced - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 SparkLend Oracles
	2.2.2 Morpho Oracles
	2.2.3 Rate Sources
	2.2.4 Custom Interest Rate Strategies
	2.2.5 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 weETH Oracle Manipulation

	6 Resolved Findings
	6.1 Decimals Mismatch in CappedOracle
	6.2 Try-Catch Error Validation
	6.3 Gas Optimizations

	7 Informational
	7.1 Inconsistent setSource() Event Emission

	8 Notes
	8.1 ETH Oracle Is Used for LST Pricing
	8.2 Morpho Upgradeable Oracle

