

PUBLIC

Code Assessment

of the Arrakis Modular

Smart Contracts

July 5, 2024

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 13

4 Terminology 14

5 Findings 15

6 Resolved Findings 20

7 Informational 30

8 Notes 33

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Spacing Guild team,

Thank you for trusting us to help Spacing Guild with this security audit. Our executive summary provides
an overview of subjects covered in our audit of the latest reviewed contracts of Arrakis Modular according
to Scope to support you in forming an opinion on their security risks.

Spacing Guild implements an ecosystem of private and public vaults with strategies managed by the
Arrakis backend. The vaults use so-called modules to integrate with a third-party system to implement
the strategies. Currently, the only available module is an integration with Valantis HOT.

The most critical subjects covered in our audit are asset solvency, functional correctness and precision of
arithmetic operations. Security regarding all the aforementioned subjects is good.

The general subjects covered are code complexity, gas efficiency, testing, and trustworthiness. Security
regarding all the aformentioned subjects is satisfactory. However, the review brought to light the lack of
thorough and meaningful testing, basic unit tests are done, but some of the bugs uncovered during the
review could have been caught by proper end-to-end testing, see Rebasing Tokens Can Cripple the
Functionality of Vaults and RouterSwapExecutor Cannot Swap to Native Token. We encourage Spacing
Guild to implement a more complete test suite.

In summary, we find that the codebase provides a satisfactory level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 13

• Code Corrected 10

• Specification Changed 2

• Risk Accepted 1

Low -Severity Findings 15

• Code Corrected 8

• Code Partially Corrected 1

• Risk Accepted 2

• Acknowledged 4

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Arrakis Modular repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V
Date Commit Hash Note

1 08 Apr
2024

7aaba73a4f3f19f024baba4eb898c152d6e8d4f6 Initial Version

2 04 Jul
2024

98d2e2641aecd75e0dd6feb245e2294c083886b
7

Version with fixes

3 05 Jul
2024

892c5588ee0f6544f6b35350796086b60b471bf2 Version with allowance fixes

Version 2For the solidity smart contracts, the compiler version 0.8.22 was chosen. After , the compiler
version is 0.8.19.

The following files are in the scope of the review:

ArrakisMetaVaultFactory.sol
ArrakisMetaVaultPrivate.sol
ArrakisMetaVaultPublic.sol
ArrakisPublicVaultRouter.sol
ArrakisStandardManager.sol
CreationCodePrivateVault.sol
CreationCodePublicVault.sol
Guardian.sol
ModulePrivateRegistry.sol
ModulePublicRegistry.sol
PALMVaultNFT.sol
RouterSwapExecutor.sol
TimeLock.sol
abstracts:
 ArrakisMetaVault.sol
 ModuleRegistry.sol
 ValantisSOTModule.sol
constants:
 CArrakis.sol
interfaces:
 AggregatorV3Interface.sol
 IArrakisLPModule.sol
 IArrakisLPModulePrivate.sol
 IArrakisLPModulePublic.sol
 IArrakisMetaVault.sol
 IArrakisMetaVaultFactory.sol
 IArrakisMetaVaultPrivate.sol

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

 IArrakisMetaVaultPublic.sol
 IArrakisPublicVaultRouter.sol
 IArrakisStandardManager.sol
 ICreationCode.sol
 IGuardian.sol
 IManager.sol
 IModulePrivateRegistry.sol
 IModulePublicRegistry.sol
 IModuleRegistry.sol
 IOracleWrapper.sol
 IOwnable.sol
 IPALMVaultNFT.sol
 IPermit2.sol
 IRouterSwapExecutor.sol
 ISOT.sol
 ISOTOracle.sol
 ISovereignPool.sol
 ITimeLock.sol
 IValantisSOTModule.sol
 IWETH9.sol
modules:
 SOTOracleWrapper.sol
 ValantisSOTModulePrivate.sol
 ValantisSOTModulePublic.sol
structs:
 SManager.sol
 SPermit2.sol
 SRouter.sol

Version 2After , the following changes have been made:

Deleted:

interfaces:
 ISOT.sol
 ISOTOracle.sol

Added:

structs:
 SValantis.sol

SOT has been renamed HOT.

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. Furthermore, the
external protocols and contracts with which the system integrates (Permit2, Valantis), as well as the
third-party libraries employed in the source code (OpenZeppelin, Solady, Create3, UniswapV3 helpers)
are out of the scope of this review and are expected to work always according to specification.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Spacing Guild implements an on-chain ecosystem comprising an ensemble of asset vaults and the
infrastructure needed to deploy them, integrate them with external protocols, and manage their funds.
Vaults come in two distinct flavors - public and private - although both types share the characteristics of
being essentially bound to one pair of tokens, and of being all managed by the same central fully-trusted
entity (acting through a dedicated manager contract), which decides on the investment strategy to put in
place using the provided assets, for a fee.

A public vault, as the name suggests, is open for anyone to contribute to, in exchange for vault shares,
themselves tradable ERC-20 tokens, that can be redeemed against the appropriate fraction of the
underlying assets.
The typical, and simplest example of a public vault is one that holds an LP position on some DEX, in a
pool containing the vault's two tokens: the position is expanded/contracted as users proportionally
deposit to/withdraw from the vault, and is rebalanced by the central manager in response to price
movements, in order to keep it active and maximize the yield from trading fees. Said yield (minus the
manager fee) becomes part of the redeemable assets, leading to the shares appreciating in value,
according to the effectiveness of the manager's market-making strategy.

A private vault, on the other hand, is mainly conceived for new projects or token issuers who need to
bootstrap the provision of their token to AMMs: the central manager frees them from the hassle of having
to constantly rebalance for themselves the positions on the various DEXs as the price fluctuates.
For this use case, there is no need for open access to the vault, nor for shares representing one's
contribution: the vault has an owner (the token issuer) who decides on a whitelist of addresses which are
allowed to deposit and withdraw. Unlike for public vaults, deposits can be made at arbitrary ratios
between the two tokens, independently of the ratio of the current vault's reserves.

In what follows, we expand on the architecture and the functionality of the on-chain system of smart
contracts.

2.2.1 Modules

In order to integrate with external protocols, the system needs bespoke adaptors (known as modules in
Arrakis parlance) exposing a standardized façade to the vaults for depositing and withdrawing funds.
Public modules - i.e. modules connecting public vaults with external protocols - expose a slightly different
interface from private modules - used by private vaults: the function
IArrakisLPModulePublic.deposit() just takes a proportion parameter, representing the
desired "expansion factor" on the current reserves (therefore the token1/token0 ratio is preserved),
whereas the function IArrakisLpModulePrivate.fund() accepts token transfers at any ratio. The
rest of the interface is common to the two, including the withdraw() function (which, like deposit(),
preserves the token ratio), and declared in IArrakisLPModule.

Modules also typically expose rebalancing functions to the central manager, but they are not
standardized in the interface: some modules might have more than one, with varying semantics, some
others might have none (e.g. an adaptor for UniswapV2); the manager is aware of the details of each
module, and is able to call any of its functions with arbitrary granularity.
The functions to query and to withdraw the current outstanding manager fees, and to set the fee rate, are
standardized. The same goes for the function validateRebalance(), used by the manager to check
the current state (e.g. the spot price) against an oracle, before and after rebalancing.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

Modules are deployed behind beacon proxies, to facilitate deployment and upgrades of multiple
instances of the same logic with different parametrizations (e.g. token addresses). Each module instance
is immutably linked to one and only one vault.
The beacons are critical components of the system, as they provide (and possibly change) the
implementation addresses to the proxies; therefore, they need to be whitelisted for proxy use by a central
admin of the system, who ensures their correctness and non-maliciousness (see Module registry for
more).
Modules can be paused - except for the withdraw() function - by the central "guardian" of the system
(see Guardian for more).

2.2.2 Valantis modules

At the current stage of the project, the only external integration of the system is with Valantis, a novel
DEX design with a focus on modularity (notice that a security review of Valantis is out of scope for this
audit). Of the many possible configurations that a Valantis pool can take, Arrakis chooses to only support
one specific type, which we briefly outline below.

The SovereignPool is the contract actually holding the token reserves, and exposing the swap and
flash-loan functionality. However, it is completely agnostic to the concrete swap logic chosen:
implementing the mathematics of the reserves curve, by keeping track of state variables (like the current
liquidity) and deciding on output amounts for swaps, is delegated to a second contract, the ALM (or
liquidity module). The ALM is also the only address which can deposit/withdraw liquidity. The pool also
recognizes a poolManager address, who is entitled to a cut of the swap fees; in the context of Arrakis'
integration, the poolManager is the module instance.
The SOT (acronym for Solver Order Type) is a second contract, that acts as the ALM to the
SovereignPool. The swap maths it implements is much akin to that of UniswapV3, but the LP logic has
the notable peculiarity of only allowing a single position by a single liquidityProvider: in the context
of Arrakis' integration, this address is the module instance, the same acting as poolManager to the pool.
The position is only one, but can be rebalanced at will; deposits and withdrawals are allowed at any token
ratio: the active liquidity is then set to the maximum attainable, and the excess reserves are considered
as "passive" and do not take part in swaps.

The integration with Valantis is provided by two modules: ValantisSOTModulePublic and
ValantisSOTModulePrivate, both of which inherit from the abstract ValantisSOTModule. The
abstract contract implements most of the functions, while the two specialized ones implement the
functions deposit() and fund(), respectively.
The main functions implemented in the abstract contract are:

• withdraw(): only callable by the Arrakis vault linked to the module. It withdraws the specified
proportion of the two tokens from the pool (through the SOT), and then it forwards the tokens to the
specified receiver.

• withdrawManagerBalance(): callable by anyone. Forwards the outstanding manager fees to the
manager contract.

• swap(): only callable by the manager contract. This is one of the two rebalancing functions: it
withdraws everything from the pool, then partially swaps one of the two tokens for the other, on a
specified, arbitrary trading venue (e.g 1inch router), and finally re-deposits everything. This has the
effect of leaving the position's price bounds and the pool's spot price unaltered, while adjusting the
pool's active liquidity and passive reserves: it can be used, for example, if there is too much excess
of one token, to swap part of that excess for an "equivalent" amount of the other token, so that the
pool liquidity can increase.

• setPriceBounds(): only callable by the manager contract. This is the second of the two
rebalancing functions: it simply sets a new price range for the Valantis position. This also causes the
active liquidity and passive reserves to adjust according to the new bounds.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

• validateRebalance(): called by the manager contract before and after rebalancing. Reverts if
the pool's current spot price deviates by more than a specified threshold from the price given by the
specified oracle.

The two specialized functions are:

• ValantisSOTModulePublic.deposit(): only callable by the vault linked to the module. Only
allows depositing at the same token1/token0 ratio as the current pool reserves (active + passive).
On first deposit, when both reserves are 0, an initial ratio of init1/init0 is enforced, where
init0 and init1 are defined at module initialization time.

• ValantisSOTModulePrivate.fund(): only callable by the vault linked to the module. Allows
depositing at any ratio.

2.2.3 Vaults

Vaults are the users' entry points into the system, exposing an interface to deposit and withdraw, which
maps onto the functions of the underlying module. Notably, vaults provide no rebalancing functions: the
manager contract directly calls the module to perform its actions.
Public and private vaults are implemented in the ArrakisMetaVaultPublic and
ArrakisMetaVaultPrivate contracts, respectively; their common functionality is implemented in the
abstract ArrakisMetaVault contract, which we describe here.

At any given time, a vault is linked to one and only one module instance, called the active module.
However, it also has a whitelist of other module instances that it can link to: it is up to the manager
contract to call the setModule() function in order to switch from the current active module to another in
the whitelist.
All vaults have an owner (see Public vaults and Private vaults for more details), that can add and remove
modules from the whitelist. Adding a module actually deploys a new instance attached to the specified
beacon (using the createModule() function in Module registry), permanently links it to the vault in
question, and then adds it to the vault's whitelist. The vault's first active module is deployed and
whitelisted at vault creation time (see Factory for more details).

2.2.4 Private vaults

The owner of a private vault is arbitrarily assigned at creation time by the deployer, and in typical
scenarios will be an address belonging to the new project / token issuer. Ownership is transferrable, and
tracked by a dedicated ERC-721 contract called PALMVaultNFT.
On top of the abstract vault logic, private vaults implement little more than a thin wrapper around the
active module's fund() and withdraw() functions. Funding and withdrawing is restricted to a whitelist
of depositors, that is decided upon by the owner.

2.2.5 Public vaults

The owner of a public vault is set at construction time to be a freshly-deployed Arrakis-controlled
Timelock contract: ownership of the vault cannot be transferred or renounced.
The mint() and burn() functions implement a somewhat-standard tokenized vault behavior, as the
vault itself is an ERC-20 contract. They take a desired number of shares as parameter, they compute the
corresponding fraction of the total supply, and they use that as the proportion parameter for the active
module's deposit() or withdraw() function, respectively. Thus, token deposits and withdrawals are
always made at the current reserves ratio. Mitigations are also in place to thwart common inflation
attacks.

2.2.6 Factory

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

The ArrakisMetaVaultFactory is the contract used to deploy public and private vaults. It is owned
by the Arrakis admin. It is pausable by the owner, who can thus freeze deployment of new vaults. The
owner also decides on a whitelist of deployers, who are the only ones who can deploy public vaults.
The contract keeps two sets with the public and the private vaults that it has deployed: these sets can be
queried for inclusion using the convenience functions isPublicVault() and isPrivateVault().
The deployment functions are:

• deployPublicVault(): only callable by a whitelisted deployer. It creates a new Timelock contract
that will be the owner of the public vault: all the privileges (propose, cancel, execute, admin) on the
Timelock are given to a deployer-provided address, which is assumed to be an Arrakis admin.
Through the Module Registry, it also creates a new dedicated module instance out of the specified
beacon. The vault is bound to the timelock and the module, the provided token addresses, as well as
other context addresses (e.g. the manager and module registry), and is added to the set of public
vaults. The manager contract is informed of this newly-created vault, through the
initManagement() function (see Standard manager for more).

• deployPrivateVaults(): callable by anyone. Ownership of the vault is assigned to the provided
arbitrary address, through the PALMVaultNFT.mint() function. As for the public vaults, a
dedicated module instance is created, the vault is appropriately parametrized, and the manager
contract is informed about the new vault.

2.2.7 Module registry

A module registry is in charge of the deployment of module instances (i.e. beacon proxies), and of
keeping a whitelist of allowed beacons. It has an owner (an Arrakis admin), who decides on the whitelist
of beacons.
There are two deployed registries: a ModulePublicRegistry and a ModulePrivateRegistry,
although most of the functionality is common and implemented in the abstract ModuleRegistry. The
only notable difference between the two is the concrete set of beacons they will end up whitelisting.
The main functions are:

• createModule(): deploys a proxy attached to the supplied beacon (provided it's whitelisted), and
initializes it with the supplied opaque payload. Notice that one cannot anticipate the specifics of
every future module that will be developed, therefore the initialization payload cannot but be an
opaque byte array for the registry, and needs to be crafted appropriately by the vault deployer.
However, as a "safety net" to catch some mistakes, this function checks, after initialization, that the
module correctly recognizes the vault it is bound to, and the Guardian that can pause it.

• whitelistBeacons(): only callable by the owner, whitelists the supplied beacons. As was
mentioned, beacons are critical components of the system, because they provide the address that
will be delegatecalled by the module instances, therefore they need to be thoroughly evaluated by
the system admins before being whitelisted. As a safety net, protecting against some accidental
mistakes, this function checks that beacons recognize a pre-defined Arrakis address as their
owner().

• blacklistBeacons(): only callable by the owner, blacklists the supplied beacons.

2.2.8 Standard manager

This contract acts as a go-between for the Arrakis backend engine to interact with vaults and modules: it
is the only address that is authorized to switch modules on a vault, to change a module's manager fee
(fee increases are subject to a time-lock of one week through proposals that cannot be overridden during
this time, this may results in an additional week delay if any error/typo is made), and to rebalance
modules.
It is deployed behind a "regular" proxy, whose admin is an Arrakis address. It has an owner (also an
Arrakis address), who can call it to set the manager fee on any vault's active module. It is pausable by the
Guardian.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

Its main functions are:

• withdrawManagerBalance(): calls the homonymous function on the active module of the
specified vault (which transfers the manager fees to this contract), then forwards the tokens to the
correct receiver (the owner can choose, through a dedicated setReceiverByToken() function, an
appropriate receiver address for each token).

• initManagement(): only callable by the factory. Informs this contract about the creation of a new
vault, so that it can start managing it. initializes the manager fee on the vault's active module.

• updateVaultInfo: only callable by the vault's owner. Sets important parameters that constrain the
manager's room for maneuver, namely an executor address (the only one who can rebalance()
that vault), an oracle, a maximum slippage, and a maximum deviation (used to validate rebalances),
and a minimum cooldown period that has to elapse between subsequent rebalances.

• rebalance(): only callable by the executor previously chosen by the vault's owner. Performs a
series of low-level calls into the vault's active module, with opaque byte-array payloads crafted by
the Arrakis backend to properly encode the right function calls into the module-specific methods,
conveying the desired rebalancing strategy. Before and after this batch of rebalancing operations,
the module's validateRebalance() function is called (using as parameters the oracle and
maximum deviation chosen by the vault's owner) as a measure against state manipulation of the
integrated system. Additionally, the total value stored in the vault is gauged before and after the
rebalance, and explicitly checked not to have varied by more than a threshold (the maximum
slippage set by the vault's owner in updateVaultInfo()).

2.2.9 Guardian

This contract exposes the function pauser(), queried by many contracts in the system to know the
address that (currently) can pause them. This address can be changed using the setPauser()
function, reserved to the contract's owner (an Arrakis admin).

2.2.10 Public vault router

An untrusted helper contract, used to facilitate deposits and withdrawals for public vaults, and to add
further safety checks to guard against slippage and/or manipulation.
The rationale is that the functions mint() and burn() exposed by public vaults, besides possibly being
unintuitive for the end-user, offer no protection against manipulation of the underlying reserves, thus
leaving the user exposed to the risk of depositing/withdrawing at skewed ratios. To solve these problems,
the router exposes the function addLiquidity(), which enforces the specified minimum and maximum
deposit amounts for the two tokens, as well as a minimum number of shares received, when minting. The
function removeLiquidity() likewise enforces the desired minimum amounts withdrawn, when
burning shares.
The contract also defines a wealth of variants of these two helpers - mainly addLiquidity() - to
further ease the user experience. There are versions wrapping the received native token before minting
(so as to support ETH from users), swapping part of the tokens provided (thus allowing "imbalanced"
contributions from the user), and integrating with Permit2 (removing the need to set a token allowance
for the router).

2.2.11 Changes in V2

• The flow of setModule() was updated to have a mandatory call to the new
initializePosition() function in the modules.

2.3 Trust model and assumptions

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

The administration of the system is mostly centralized: apart from private vaults, which are managed
independently by their owners, all privileged operations are restricted to Arrakis-controlled addresses
(although many are time-locked). Therefore, the system owner needs to be fully trusted by the users.

We assume the admins to parametrize the system correctly upon deployment.
Likewise, we assume the semantics of the EVM operations implemented by the targeted blockchains to
be comparable to Ethereum Mainnet. Should there be significant discrepancies among them (e.g.
uneven adoption of EIPs), the contracts' bytecode should be ensured to be uniformly supported across
all targeted chains.
We consider every supported token to be trustworthy, meaning it cannot jeopardize the system's
integrity. Tokens that implement transfer fees are typical examples of unsupported tokens.

The following roles can be identified in the system:

• users: fully untrusted.

• owner of the registries: trusted to whitelist beacons that are trusted. Expected to be Arrakis.

• beacon proxy owner: trusted to set and update the beacons to implementations that have been
reviewed and are not malicious towards the users. Expected to be Arrakis.

• public vaults owners and executors: trusted to set the parameters and execute rebalancing in a
non-adversarial way towards the users. Expected to be Arrakis.

• private vaults owners and executors: fully untrusted. We still expected the owner to trust the
executor.

• guardian: trusted to pause/unpause the modules, factory, and standard manager in a
non-adversarial way. Expected to be Arrakis.

Supported tokens: ERC-777, tokens with fees on transfer, and tokens with 0 decimals are not supported.
We expect Spacing Guild to carefully review any token pairs that will be used with the oracle in
accordance with Integer Representation of Price Has Low Precision.

New modules: we assume new modules will implement the following rules/invariants:

1. Cannot update manager

2. Cannot update metaVault

3. Modules must be able to handle funds depending on the Vault.setModule function.

4. Should be careful with exact balances checks for rebasing tokens

5. Only manager can update manager fee. Only function to change manager fee must be
setManagerFeePIPS.

6. totalUnderlying cannot be manipulated, critical for read-only reentrancy. If the integrated
system exposes unsafe functions, totalUnderlying should have a reentrancy lock.

7. Public modules should detect first deposit with supply==0 to align with the vault’s definition of an
empty strategy

8. Modules need to revert on withdrawing proportion == 0

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• Risk AcceptedRegistries Initialization Can Be Frontrun

Low -Severity Findings 7

• Risk AcceptedBurn Does Not Revert on a Zero Proportion

• AcknowledgedDecreasing Manager Fee Can Lead to Status Quo

• Code Partially CorrectedDuplicated Code

• Risk AcceptedMissing Input Sanitization

• AcknowledgedSwitching From an Empty Module to a Valantis Module Will DOS the Public Vault

• AcknowledgedUnnecessary Low-Level Call

• AcknowledgedUnused Code

5.1 Registries Initialization Can Be Frontrun
Design Medium Version 1 Risk Accepted

CS-ARRAKISMOD-007

The module registries have an initialize() function to set the factory. The call to the function can be
frontrun by an attacker to set an arbitrary address. This will force Spacing Guild to redeploy the system,
incurring some gas costs.

Risk accepted:

Spacing Guild responded:

The deployment script will detect if someone has frontrun and then stop the deployment.

5.2 Burn Does Not Revert on a Zero Proportion
Design Low Version 1 Risk Accepted

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

CS-ARRAKISMOD-013

The burn method of ArrakisMetaVaultPublic does not revert when the proportion is zero. This
results in a user burning shares without receiving any of the underlying tokens.

Risk accepted:

Spacing Guild responded:

Module is already checking if the proportion is 0.

The module that is currently implemented (ValantisModulePublic) implements a check and will
revert if proportion = 0. Spacing Guild is expected to make sure new modules also follow that
pattern. Spacing Guild said:

every future modules should be consistent by itself and have this check.

5.3 Decreasing Manager Fee Can Lead to Status
Quo
Design Low Version 1 Acknowledged

CS-ARRAKISMOD-016

The function ArrakisStandardManager.decreaseManagerFeePIPS() checks that the fee is
strictly smaller than the current one in PIPS, but the actual applied fee is in BIPS for Valantis pools. It is
then possible to call ArrakisStandardManager.decreaseManagerFeePIPS() with a value slightly
smaller than the current fee, and the pool still having the same fee value.

Acknowledged:

Spacing Guild responded:

We are ok with it. We want to have PIPS precision on fees to be compatible with uniswap v4.

5.4 Duplicated Code
Design Low Version 1 Code Partially Corrected

CS-ARRAKISMOD-017

Some functionalities are duplicated throughout the codebase. For gas cost, codebase maintenance and
general understandability, it is good practice to avoid code duplication. Here is a non-exhaustive list of
duplicated functionalities:

1. The manager check in ValantisSOTModule.setManagerFeePIPS is implemented by the
onlyManager() modifier.

2. The functionality of ArrakisPublicVaultRouter._permi2SwapAndAdd and
ArrakisPublicVaultRouter._permit2Add are similar and could be merged into one
function.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

3. The function ArrakisMetaVaultFactory.getTokenSymbol() can use the dedicated function
_append() to build the symbol string.

4. The code blocks to send back tokens at the end of
ArrakisPublicVaultRouter.wrapAndSwapAndAddLiquidityPermit2() and
ArrakisPublicVaultRouter.wrapAndSwapAndAddLiquidity() are the same.

5. In ValantisSOTModule.initialize(), TEN_PERCENT can be used in place of PIPS / 10.

6. The 1 ether in ArrakisMetaVaultPublic.mint() and
ArrakisPublicVaultRouter._getMintAmounts() could be replaced by BASE.

7. Some of the checks and procedures done in ArrakisMetaVaultRouter can be extracted as
modifiers or helper functions.

Code partially corrected:

1. onlyManager() modifier is now used.

2. Spacing Guild responded:

we are ok with the current implementation.

3. _append() is now used.

4. Spacing Guild responded:

we are ok with the current implementation.

5. TEN_PERCENT is now used.

6. BASE is now used

7. Spacing Guild responded:

we are ok with the current implementation.

5.5 Missing Input Sanitization
Design Low Version 1 Risk Accepted

CS-ARRAKISMOD-021

Some functions in the codebase are missing proper input sanitization. Here is a non-exhaustive list:

1. The defaultFeePIPS_ in the constructor of ArrakisStandardManager. A value that is too
low/high could be problematic, and even block the vaults deployment if
defaultFeePIPS > PIPS.

2. The function ArrakisStandardManager._updateParamsChecks() does not sanitize
maxDeviation, executor, and stratAnnouncer. For example, if maxDeviation is set to a
value that is too low, rebalancing is likely to fail.

3. In the function ArrakisStandardManager._updateParamsChecks(), if maxSlippagePIPS
is set to 0, rebalancing is likely to fail.

4. In the initialize() function of ValantisModule, if maxSlippagePIPS is set to 0,
_checkMinReturn() is likely to fail.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5. In ValantisSOTModule.setALMAndManagerFees(), additional checks could be made to
ensure that the tokens in the module and the ALM match. If possible, this check should also be
done for the oracle to avoid any misconfiguration.

6. In ValantisSOTModule.setALMAndManagerFees(), an additional check could be made to
ensure the module is the ALM's liquidity provider.

7. The function ArrakisPublicVaultRouter.getMintAmounts() is missing the empty max
amounts checks.

Risk accepted:

Spacing Guild responded:

We are ok with these specific missing sanitizations.

5.6 Switching From an Empty Module to a
Valantis Module Will DOS the Public Vault
Correctness Low Version 1 Acknowledged

CS-ARRAKISMOD-014

The contract ValantisHOTModulePublic has a flag called notFirstDeposit, that starts out as
false and is then set to true after the first deposit. This flag controls whether the pre-determined initial
values (init0, init1) should be used in lieu of the current pool reserves, as a base to compute the
proportional amounts to be paid by the depositor.
To correctly carry this information over, across module switches, the function
ValantisHOTModulePublic::initializePosition() sets this flag to true. However, it does so
unconditionally, irrespective of the state of the previous module; in particular, it does not check whether
the previous module has ever been deposited to. Therefore, in cases where a public vault's module is
immediately switched out of, before anyone could make a deposit (this can happen if the devs find the
module to be buggy right after deployment), the new module will have the flag set to true, but the pool
reserves will be empty.
If the pool's tokens are rebasing, this allows the first depositor to first make a small donation to the pool at
an arbitrary ratio, and then deposit at that ratio: this is because Valantis pools do not cache reserves of
rebasing tokens. In the case of non-rebasing tokens, the cached reserves will be used, which will always
be 0: this will effectively make it impossible to deposit any money into the module, as the deposit()
function will never pull any tokens.
The only remedies to such a situation would be to change the implementation in the module's beacon,
switch to a new module (with a different logic), or re-deploy the public vault.

Acknowledged

Spacing Guild responded:

in this case we will just deploy a new freshly public vault.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

5.7 Unnecessary Low-Level Call
Design Low Version 1 Acknowledged

CS-ARRAKISMOD-024

The function ArrakisMetaVaultPublic._deposit() calls the deposit() selector of
IArrakisLPModulePublic, but in this case there is no need to add this complexity, as the selector is
fixed and can be called directly.

The same is true for ArrakisMetaVaultPrivate._fund().

Acknowledged:

Spacing Guild acknowledged and answered:

We want to use functionCallWithValue of Address.

5.8 Unused Code
Design Low Version 1 Acknowledged

CS-ARRAKISMOD-025

For codebase maintainability and comprehension, unused code should be removed. The constant
CArrakis.NATIVE_COIN, for example, is never used.

Acknowledged:

Spacing Guild replied:

We decide to keep it, because it's used on the test folder and it will be used on future modules

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 12

• Code CorrectedDust in Allowance Can DOS the System

• Code CorrectedDeposited Amounts Can Be Less Than proportion

• Code CorrectedInitial Ratio Can Be Bypassed for Rebasing Tokens

• Specification ChangedInteger Representation of Price Has Low Precision

• Code CorrectedMinted Shares and Tokens Amounts Discrepancies

• Specification ChangedRead-only Reentrancy

• Code CorrectedRebasing Tokens Can Cripple the Functionality of Vaults

• Code CorrectedShares Are Too Cheap

• Code CorrectedSolidity Version Is Not Multichain Compatible

• Code CorrectedWrong Token Flow on setModule

• Code CorrectedISOTOracle Interface Is Wrong

• Code CorrectedRouterSwapExecutor Cannot Swap to Native Token

Low -Severity Findings 8

• Code CorrectedCannot Reset to Default Receiver

• Code CorrectedInconsistent Definition of Empty Strategy

• Code CorrectedInherited Contracts Not Initialized

• Code CorrectedInitializer Not Disabled in the Implementations

• Code CorrectedRemaining TODOs

• Code CorrectedTimelock Minimum Delay May Be Too Short

• Code CorrectedUsing Floating Pragma Solidity ^0.8.20

• Code CorrectedPALMVaultNFT Doesn'T Use the _safeMint Function to Mint

Informational Findings 1

• Code CorrectedWrong Natspec

6.1 Dust in Allowance Can DOS the System
Design Medium Version 2 Code Corrected

CS-ARRAKISMOD-033

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

Version 2In , the version of OpenZeppelin libraries was downgraded from v5.0.1 to v4.9.5. In the event of
a rebasing token having the same behavior as USDT on approval (i.e., the allowance must be set to 0
before setting any new amount), the router, the vaults and the modules could stop working for that token
because of potential dust in the allowance. The version 4.9.5 of OpenZeppelin's SafeERC20 for
safeIncreaseAllowance() does not reset the allowance to 0 before setting a new amount.

Code corrected:

The calls to safeIncreaseAllowance() have been replace by calls to forceApprove().

6.2 Deposited Amounts Can Be Less Than
proportion
Design Medium Version 1 Code Corrected

CS-ARRAKISMOD-001

In the function ValantisModulePublic.deposit(), the amount0/1 are rounded down and could
represent a ratio that is smaller than proportion when compared to _amt0/1. This is bad for the
protocol as it is making the vault shares cheaper than they should be, since proportion represents the
ratio of new shares, when used during a ArrakisMetaVaultPublic.mint() call. This issue is made
worse as the token decimals are low.

Code corrected:

amount0/1 are now rounded up using mulDivRoundingUp.

6.3 Initial Ratio Can Be Bypassed for Rebasing
Tokens
Design Medium Version 1 Code Corrected

CS-ARRAKISMOD-002

The initial ratio init0/init1 can be bypassed if at least one of the tokens in the SovereignPool is
rebasing. This is due to the pool relying on its balance for rebasing tokens, instead of its internal
accounting. An attacker could front run the first deposit in the pool by sending a small amount of rebasing
token, skewing the first deposit. To recover from this, the vault manager has to rebalance the liquidity.

Code corrected:

A flag has been added to indicate whether a deposit will be the first. If the flag is true, the module will first
remove any liquidity from the pool and send it to the ArrakisStandardManager, and then proceed to
add the tokens in the init0/init1 ratio.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.4 Integer Representation of Price Has Low
Precision
Design Medium Version 1 Specification Changed

CS-ARRAKISMOD-003

The function getPrice0() calculates price0, which is essentially a quote for 1 whole token0
(10**decimals0 wei) expressed in weis of token1; it does so starting from priceX96, a standard
Q64.96 representation of the square-root price of token0/token1, coming from an oracle. However, while
priceX96 has enough precision to adequately represent any value observable in practice, price0 does
not, because the quote is rounded down to an integer. This incurs severe rounding errors whenever the
price is very low; in the worst cases, it is rounded down to 0. Consider for example token0 to be SHIB
(value of $0.00002343 as of this writing) and token1 to be GUSD (a stablecoin with only two decimals):
clearly, an amount of one token0 is worth less than one wei of token1 (i.e. one cent), therefore the output
of getPrice0() will be 0.
This makes price0 unsuited for use as an equivalent representation of the token0/token1 price.
However, the function ArrakisStandardManager.rebalance() uses it to calculate a quote on
amount0, the amount of token0 held by the vault, in terms of token1; it does this to gauge the total value
held in the pool, and ensure that it does not decrease too much as a result of rebalancing. Moreover, the
function ValantisSOTModule.validateRebalance() applies the same quoting logic to the current
spot price, and compares the result with the output of getPrice0(), to ensure that the spot price is not
manipulated. Both these crucial checks are therefore broken; in the aforementioned SHIB/GUSD case,
these functions will almost never detect any abnormal deviation, as they will be comparing 0 with 0.

Specification changed:

The project will not support token pairs exhibiting such poor price-rounding behaviour.

Spacing Guild responded:

We will not support token pair having this type of precision.

6.5 Minted Shares and Tokens Amounts
Discrepancies
Correctness Medium Version 1 Code Corrected

CS-ARRAKISMOD-004

The way the minted shares and corresponding token amounts are calculated are different in the
ArrakisPublicVaultRouter, ArrakisMetaVaultPublic, and ValantisSOTModule. This
discrepancy has multiple causes and effects listed below, ranging from not giving enough shares to the
user to blocking the router.

1. When minting the first shares, the ArrakisMetaVaultPublic removes MINIMUM_LIQUIDITY
from the shares distributed to the first LP. In comparison, when ArrakisPublicVaultRouter
computes _getMintAmounts, the MINIMUM_LIQUIDITY is not removed from the shares for the
first LP. This means that for the first user of a vault, the slippage protection implemented by the
ArrakisPublicVaultRouter may succeed, but the final user could get less shares than the
specified amountSharesMin.

2. The precision used in the contracts differs, one is PIPS, the others are BASE. This has the same
impact as the issue described below.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

3. The way the proportion is computed differs across the contracts. In the router, it is based on the
token amounts, in the vault it is based on the shares. This means that going from
amount->proportion->shares->proportion'->amount' can yield
proportion != proportion' and thus amount != amount'. This has the effect of blocking
all the helper functions for providing liquidity in the router under certain conditions, as the
ValantisSOTModulePublic may pull more or less than expected, making the transaction revert.

Code corrected:

1. Spacing Guild responded:

it's the wanted behaviour and we are ok with the current implementation.

2. The precision has been updated in ArrakisPublicVaultRouter to be BASE. BASE is now used
everywhere some shares or proportions are computed.

3. The steps from the ArrakisMetaVaultPublic have been replicated in
ArrakisPublicVaultRouter. Except for the first deposit, the values _getMintAmounts()
outputs are now the same as in ArrakisMetaVaultPublic.mint() and
ValantisSOTModulePublic.deposit().

6.6 Read-only Reentrancy
Design Medium Version 1 Specification Changed

CS-ARRAKISMOD-005

In the case of a token is reentrant (e.g., ERC777), depending on the system integrated by the module,
there is a possible read-only reentrancy in the totalUnderlying function, as shares are burned
already some of the tokens are still in the pool.

The issue arises when the integrated system sends the tokens before fully updating its state. As the
shares have been burned already, the value of a vault's share can be over-evaluated.

Version 1As in , the only implemented integration is Valantis SOT, this holds only if a pair contains at least
one token that is reentrant and rebasing.

Specification changed:

Reentrant tokens will not be supported in the project.

Spacing Guild responded:

Will not support ERC777.

6.7 Rebasing Tokens Can Cripple the
Functionality of Vaults
Design Medium Version 1 Code Corrected

CS-ARRAKISMOD-006

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

Rebasing tokens, which are meant to be supported by Arrakis Modular, break common assumptions
about the behavior of the functions they expose: the root cause is that the amount of tokens transferred
does not necessarily equate the resulting balance difference, at either the sending or the receiving end.
Some parts of the source code employ such wrong assumptions to perform important calculations and
safety checks: as a result, much of the system's functionality is gravely impaired.
Below is a list of functions affected:

1. ArrakisMetaVault.setModule(): the assertion that the old module is completely empty might
fail. This is because, for many rebasing tokens, transferring out one's entire balance (as happens
when withdrawing from the old module) may still leave some "dust" behind.

2. ValantisSOTModule.swap(): the final assertions are not guaranteed to succeed. The reason is
a generalization of the previous point: transferring out balanceOf(this) - initBalance
(which is how the amounts to deposit into the ALM are computed) is not guaranteed to bring the
balance back to initBalance.

3. ArrakisPublicVaultRouter: the functions
_swapAndAddLiquiditySendBackLeftOver(), wrapAndSwapAndAddLiquidity(), and
wrapAndSwapAndAddLiquidityPermit2 all include (duplicated) logic for sending back leftover
tokens. The formulas computing the amounts to send back, however, may cause the
safeTransfer() to revert for insufficient balance.

4. ArrakisPublicVaultRouter._addLiquidity(): the final assertions may fail, as the
transferred amount is not guaranteed to be equal to the balance difference.

For completeness, note that several functions in the code (e.g., mint() and burn() in
ArrakisMetaVaultPublic) emit events to log the deposited / withdrawn amounts: it is worth
mentioning that these amounts do not exactly reflect the resulting differences in token balances.

Code corrected:

1. The assertion has been removed.

2. The assertions block has been removed.

3. Any leftover tokens (contract's balance) are now sent back to the user.

4. The assertion has been removed.

6.8 Shares Are Too Cheap
Design Medium Version 1 Code Corrected

CS-ARRAKISMOD-008

When computing the proportion in ArrakisMetaVaultPublic.mint(), the value that represents
what the vault will get (proportion) is rounded down, while the true proportion of the minted shares is
not. Because of rounding errors, it may happen that the proportion is off by 1 wei, i.e.

. This is unsafe for the protocol since it will get less value than it should.

Code corrected:

ArrakisMetaVaultPublic.mint() is now using mulDivRoundingUp to compute the proportion.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

6.9 Solidity Version Is Not Multichain Compatible
Design Medium Version 1 Code Corrected

CS-ARRAKISMOD-009

The chosen Solidity version, 0.8.22, already implements the PUSH0 opcode. This opcode is not
supported on all the chains yet and could prevent deployment, or prevent use of the system after
deployment.

Code corrected:

The Solidity version has been downgraded to 0.8.19.

6.10 Wrong Token Flow on setModule
Correctness Medium Version 1 Code Corrected

CS-ARRAKISMOD-010

In the function ArrakisMetaVault.setModule(), the old module sends the tokens to the new
module via the withdraw() function, but the new module does not necessarily expect to hold tokens.
With the current implementation of the Valantis integration there could be one of the following cases
(non-exhaustive):

1. setModule is called with an empty payload: the funds will be stuck in the module until the beacon
admin updates the implementation to unlock the funds.

2. setModule is called with a payload that does not consider the transferred funds: the funds will be
stuck in the module until the beacon admin updates the implementation to unlock the funds.

3. setModule is called with a payload to deposit the transferred funds in the new module: the call will
revert as the module cannot transfer the tokens from the caller.

Code corrected:

A new function IArrakisLPModule.initializePosition() has been added, in the current
implementation (ValatisHOTModule), it deposits the balances of token0/token1 in the Valantis
ALM. The flow for setModule() has been updated as follows: the old module still withdraws everything
and sends all the tokens to the new module, but now the flow forces a call to initializePosition().

6.11 ISOTOracle Interface Is Wrong
Correctness Medium Version 1 Code Corrected

CS-ARRAKISMOD-011

The interface ISOTOracle exposes functions that are not implemented in the SOTOracle contract. This
could lead to calls reverting as the called function does not exist, breaking a functionality of the system,
or the system itself. In the current implementation of Arrakis Modular, only functions that are implemented
in the SOTOracle are called. To avoid this, it is good practice to import or reuse the interfaces provided
by the integrated systems.

Code corrected:

This interface isn't used anymore and was removed.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.12 RouterSwapExecutor Cannot Swap to
Native Token
Correctness Medium Version 1 Code Corrected

CS-ARRAKISMOD-012

The contract RouterSwapExecutor, which is a generic swap executor, cannot receive native tokens
from a swap due to the lack of receive or fallback function. This will cause swaps to the native token
to fail.

Code corrected: A receive() function has been added to the contract.

6.13 Cannot Reset to Default Receiver
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-015

In ArrakisStandardManager.setReceiverByToken, once a token receiver is set, the default
receiver cannot be used anymore for that token. To be precise, one can set the token receiver to be the
current default one, but there is no way to unset it and have it then always track the default receiver as it
changes. This is because the receiver_ parameter of this function cannot be zero.

Code corrected:

The function ArrakisStandardManager.setReceiverByToken() has been updated and now
allows to set the receiver to address(0) to reset it to the default receiver.

6.14 Inconsistent Definition of Empty Strategy
Correctness Low Version 1 Code Corrected

CS-ARRAKISMOD-018

The ArrakisPublicVaultRouter / ValantisSOTModulePublic and ArrakisMetaVault have
different ways to detect whether a deposit is the first. The first one checks if both underlying tokens'
balances are zero, and the second one relies on the total supply. In the case of the Valantis
integration, the two solutions are not equivalent as they will not yield the same result in the case of
rebasing tokens, as one can manipulate the rebasing tokens balances by sending some to the pool.

A secondary effect of this issue is the temporary DOS of the router for that vault for the first deposit, as
the supply will be zero but amount0/1 will not. This can be resolved by depositing through the vault
directly.

Code corrected:

The check for the empty strategy is now based on the supply in ArrakisPublicVaultRouter and
ArrakisMetaVault. A flag has been added in ValantisSOTModulePublic to indicate the empty
strategy.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

6.15 Inherited Contracts Not Initialized
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-019

The contract ValantisSOTModule extends PausableUpgradeable and
ReentrancyGuardUpgradeable, which are Initializable. But the function
ValantisSOTModule.initialize() is not initializing the two inherited contracts.

Code corrected:

The constructor has been updated to call __Pausable_init() and __ReentrancyGuard_init().

6.16 Initializer Not Disabled in the
Implementations
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-020

The proxied contracts ValantisModule and ArrakisStandardManager allow their implementations
to be initialized after deployment. Even though we could not find any issue related to initializing the
implementation of those contracts, it is usually a good practice to disable the initializers on the
implementation.

Code corrected:

A call to _disableInitializers() has been added in both ValantisModule and
ArrakisStandardManager to disable the initializers within the constructor.

6.17 Remaining TODOs
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-022

There are remaining TODOs in the codebase that should be resolved before deployment.

Code corrected:

TODOs have been removed from the codebase.

6.18 Timelock Minimum Delay May Be Too Short
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-023

The currently set minimum timelock delay for the public vaults owners is 1 minute. This may be a too
short time frame for users to react to the change.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

Code corrected:

The minimum delay has been updated to 2 days.

6.19 Using Floating Pragma Solidity ^0.8.20
Security Low Version 1 Code Corrected

CS-ARRAKISMOD-026

Contracts should be deployed with the same compiler version that has been used during testing and
audit. Locking the pragma helps to ensure that contracts do not accidentally get deployed using, for
example, an outdated compiler version that might introduce bugs that affect the contract system
negatively.

Code corrected:

0.8.19 is used now.

6.20 PALMVaultNFT Doesn'T Use the _safeMint
Function to Mint
Design Low Version 1 Code Corrected

CS-ARRAKISMOD-027

Usage of the _safeMint function is recommended over the _mint function to prevent the minting of
NFTs to contracts that are not compatible with the ERC721 standard. The _safeMint function checks if
the recipient of the NFT is a contract and if it supports the ERC721Receiver interface. If the recipient is a
contract and does not support the ERC721Receiver interface, the minting operation will fail.

The OZ library specifies:

WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible

Code corrected:

_safeMint is now used instead of _mint in the mint function of the PALMVaultNFT contract.

6.21 Wrong Natspec
Informational Version 1 Code Corrected

CS-ARRAKISMOD-031

The following natspec are incorrect:

1. In ValantisModule.swap and IArrakisLPModule.swap, the @param router_ is described
to be the address of the RouterSwapExecutor, but it should be arbitrary routers except the
RouterSwapExecutor.

2. In ArrakisMetaVaultFactory.blacklistDeployer and
IArrakisMetaVaultFactory.blacklistDeployer, the @param deployers_ is described
to be the list of addresses that the owner wants to grant permission to deploy. However, in this
case, we want to revoke permission to deploy for the given addresses.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

3. In ValantisModule.withdraw and IArrakisLPModule.withdraw, the
@param proportion_ is described to be the number of shares needed to be withdrawn, but it
should be the proportion of the position.

4. interest mistyped iPnterest in the natspec of
ArrakisPublicVaultRouter.addLiquidity,
ArrakisPublicVaultRouter.wrapAndAddLiquidity,
IArrakisPublicVaultRouter.addLiquidity and
IArrakisPublicVaultRouter.wrapAndAddLiquidity.

Code corrected:

All the points above have been addressed.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Gas Optimizations
Informational Version 1 Acknowledged

CS-ARRAKISMOD-028

The following gas inefficiencies can be improved:

1. Redundant modifier whenNotPaused in pause() and whenPaused in unpause() functions.
This modifier is already used in the underlying Pausable or PausableUpgradeable contract, so
it is redundant and can be removed in the following contracts:
ValantisSOTModule, ArrakisMetaVaultFactory, ArrakisPublicVaultRouter, and
ArrakisStandardManager.

2. The pattern EnumerableSet.contains() followed by EnumerableSet.add()/remove()
can be optimized as add/remove returns whether the element was part of the set already or not.

3. The structs VaultInfo and FeeIncrease can use smaller data types for the time-related fields
and leverage storage packing.

4. The storage variable admin in ModuleRegistry can be immutable.

5. The storage variable manager in ArrakisMetaVault can be immutable.

6. In the functions ArrakisPublicVaultRouter.wrapAndAddLiquidity() and
ArrakisPublicVaultRouter.wrapAndSwapAndAddLiquidity(), only one of the tokens will
not be WETH, so the logic where the second token is transferred to the router can be an if-else
block instead of if-if.

7. Some computations with the pattern if(a > b) { ... (a-b) ... (a-b)} can cache the
result of (a-b) and execute the operation in an unchecked block to save gas. Example:
ArrakisPublicVaultRouter.wrapAndSwapAndAddLiquidity(),
ArrakisPublicVaultRouter.wrapAndAddLiquidityPermit2()

8. In the functions ArrakisPublicVaultRouter._permit2Add() and
ArrakisPublicVaultRouter._permit2SwapAndAdd(), the tokenPermission.token can
only be either token0 or token1 so the if-if block in the for loop can be if-elif-else.

9. The function initializeTokens in ArrakisMetaVault could be merged with the constructor,
allowing token0 and token1 to be immutable and removing the initialization test
(token0 != address(0) || token1 != address(0)).

10. Parameters sanitization checks done in initializeTokens (in ArrakisMetaVault) could be
reduced from 4 to 2.

11. ArrakisMetaVaultPublic.burn has no need to check if shares_ > supply since it will
revert later if one tries to burn more than his balance. Avoid repetitive checks for others.

12. The check _checkVaultNotAddressZero(vault_) is redundant with
factory.isPrivateVault(vault_) in ModulePrivateRegistry. This is also applicable to
ModulePublicRegistry.

13. In ArrakisPublicVaultRouter._swapAndAddLiquiditySendBackLeftOver, since the
router is not expected to hold any balance between two transactions, the contract balance could be
returned instead of computing the exact amount.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

14. For proxies, the CBOR metadata represents a good part of the deployed bytecode. The CBOR
metadata, or only the metadata hash, can be disabled to reduce the gas cost on deployment.

15. Some checks can be moved earlier in the functions to revert early and save gas. Examples: zero
address check in ArrakisMetaVaultPublic.mint and ArrakisMetaVaultPublic.burn

16. In ArrakisPublicVaultRouter there are early wrappings that should be deferred until after the
checks. Additionally, when adding liquidity without a swap, it is more efficient to wrap only the exact
computed amount to avoid the need to unwrap any surplus.

17. The functions getUnderlying() and totalUnderlyingAtPrice() from
ValantisSOTModule initialize the values amount0 and amount0 but never use them

Acknowledged:

Spacing Guild corrected some of the inefficiencies and acknowledged the rest.

1. The redundant modifier was removed.

2. Not implemented.

3. Not implemented.

4. admin is now immutable.

5. manager is now immutable.

6. Not implemented.

7. An unchecked block was added.

8. Not implemented.

9. initializeTokens was merged.

10. Not implemented.

11. The check was removed.

12. Not implemented.

13. Returns the contract balance.

14. Not implemented.

15. Not implemented.

16. Not implemented.

17. Corrected.

7.2 Inconsistent Error Naming
Informational Version 1 Acknowledged

CS-ARRAKISMOD-029

Inconsistent error naming in ArrakisPublicVaultRouter.swapAndAddLiquidity. The
msg.value is checked to be different from the amountMax and if it is, the execution context reverts with
NotEnoughNativeTokenSent. However, if the msg.value is greater than the amountMax, not
enough native tokens have been sent, but the context still reverts with the same error.

Acknowledged:

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

Spacing Guild acknowledged and is aware of the issue.

7.3 Multi-chain Compatibility
Informational Version 1 Acknowledged

CS-ARRAKISMOD-030

The project aims to be a multi-chain compatible platform, but there are some inconsistencies in
ArrakisPublicVaultRouter:

1. The weth address, which represents the wrapped version of the native token of the chain, is
expected to implement the IWETH9 interface, which may not be the case on all chains. Spacing
Guild must carefully choose the chains Arrakis Modular will be deployed to, as any integration with
the native token may break if its wrapped version does not implement IWETH9.

2. Some functions can revert with NoWethToken which is not really appropriate for multi-chain.

7.4 solady Is Experimental
Informational Version 1 Risk Accepted

CS-ARRAKISMOD-032

The codebase uses the solady contracts and library extensively. It is important to note that the code is
still experimental, as the README file in the project highlights:

This is **experimental software** and is provided on an "as is" and "as available" basis.

We **do not give any warranties** and **will not be liable for any loss** incurred through any use of this codebase.

Risk accepted:

Spacing Guild accepted the risk and is aware of this potential issue.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Users Should Use the Router for Slippage
Protection
Note Version 1

ArrakisPublicVaultRouter does not only provide an easy way for the user to interact with Arrakis
with a higher level of abstraction but also provides a slippage protection mechanism. This mechanism is
implemented through hard limit checks on the minimal (and maximal) amount of tokens that the user will
receive.

This also limits the effect of sandwich attacks, as the router will revert the transaction if the slippage is too
high. This also applies to the amount of minted shares.

Spacing Guild - Arrakis Modular - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Modules
	2.2.2 Valantis modules
	2.2.3 Vaults
	2.2.4 Private vaults
	2.2.5 Public vaults
	2.2.6 Factory
	2.2.7 Module registry
	2.2.8 Standard manager
	2.2.9 Guardian
	2.2.10 Public vault router
	2.2.11 Changes in V2

	2.3 Trust model and assumptions

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Registries Initialization Can Be Frontrun
	5.2 Burn Does Not Revert on a Zero Proportion
	5.3 Decreasing Manager Fee Can Lead to Status Quo
	5.4 Duplicated Code
	5.5 Missing Input Sanitization
	5.6 Switching From an Empty Module to a Valantis Module Will DOS the Public Vault
	5.7 Unnecessary Low-Level Call
	5.8 Unused Code

	6 Resolved Findings
	6.1 Dust in Allowance Can DOS the System
	6.2 Deposited Amounts Can Be Less Than proportion
	6.3 Initial Ratio Can Be Bypassed for Rebasing Tokens
	6.4 Integer Representation of Price Has Low Precision
	6.5 Minted Shares and Tokens Amounts Discrepancies
	6.6 Read-only Reentrancy
	6.7 Rebasing Tokens Can Cripple the Functionality of Vaults
	6.8 Shares Are Too Cheap
	6.9 Solidity Version Is Not Multichain Compatible
	6.10 Wrong Token Flow on setModule
	6.11 ISOTOracle Interface Is Wrong
	6.12 RouterSwapExecutor Cannot Swap to Native Token
	6.13 Cannot Reset to Default Receiver
	6.14 Inconsistent Definition of Empty Strategy
	6.15 Inherited Contracts Not Initialized
	6.16 Initializer Not Disabled in the Implementations
	6.17 Remaining TODOs
	6.18 Timelock Minimum Delay May Be Too Short
	6.19 Using Floating Pragma Solidity ^0.8.20
	6.20 PALMVaultNFT Doesn'T Use the _safeMint Function to Mint
	6.21 Wrong Natspec

	7 Informational
	7.1 Gas Optimizations
	7.2 Inconsistent Error Naming
	7.3 Multi-chain Compatibility
	7.4 solady Is Experimental

	8 Notes
	8.1 Users Should Use the Router for Slippage Protection

