

PUBLIC

Code Assessment

of the Snapshot X

Smart Contracts

July 3, 2023

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 11

4 Terminology 12

5 Findings 13

6 Resolved Findings 15

7 Notes 26

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Snapshot team,

Thank you for trusting us to help Snapshot with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Snapshot X according to
Scope to support you in forming an opinion on their security risks.

Snapshot implements a configurable voting protocol for systems with decentralized governance. It allows
users to create proposals which can then be voted on and potentially executed. There are a variety of
contracts which allow the system to choose which users can vote, which can create proposals, how the
votes are counted, and how the proposals are executed.

The most critical subjects covered in our audit are functional correctness, access control, trustworthiness
and reentrancies. Several issues regarding these topics have been remedied. Access control is handled
correctly throughout. Potential reentrancy vulnerabilities have been addressed. The risk of an
implementation contract SELFDESTRUCT was addressed. Several risk-free issues have been
acknowledged and are by design, see Systemic bias towards accepting proposals, Proposal can be
updated just before voting starts, Same proposal status for queued, executed or vetoed proposals.

The general subjects covered are upgradeability, gas efficiency and documentation. Security regarding
these subjects is high. Some steps were taken to improve gas efficiency, which overall is decent. The
level of documentation is satisfactory, however, some peculiarities highlighted in the Notes section could
be more explicitly documented.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 1

• Code Corrected 1

Medium -Severity Findings 7

• Code Corrected 6

• Acknowledged 1

Low -Severity Findings 18

• Code Corrected 15

• Specification Changed 1

• Acknowledged 2

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Snapshot X repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

V Date Commit Hash Note

1 19 May 2023 d43240f17edeaeffff2ae8c67367d09754d31063 Initial Version

2 20 Jun 2023 9f5f1fe49bb10c3b63f15ffd892ba0a578d67a43 Version 2

3 03 Jul 2023 6c7830f9466ad4f6324afa6b4e02fc3818791162 Version 3

For the solidity smart contracts, the compiler version 0.8.18 was chosen.

The following files were in scope:

• ProxyFactory.sol

• Space.sol

• types.sol

• authenticators/Authenticator.sol

• authenticators/EthSigAuthenticator.sol

• authenticators/EthTxAuthenticator.sol

• authenticators/VanillaAuthenticator.sol

• execution-strategies/AvatarExecutionStrategy.sol

• execution-strategies/EmergencyQuorumStrategy.sol

• execution-strategies/OptimisticQuorumExecutionStrategy.sol

• execution-strategies/SimpleQuorumExecutionStrategy.sol

• execution-strategies/VanillaExecutionStrategy.sol

• execution-strategies/timelocks/CompTimelockCompatibleExecutionStrategy.sol

• execution-strategies/timelocks/TimelockExecutionStrategy.sol

• execution-strategies/timelocks/OptimisticCompTimelockCompatibleExecutionStrategy.sol

• execution-strategies/timelocks/OptimisticTimelockExecutionStrategy.sol

• proposal-validation-strategies/ActiveProposalsLimiterProposalValidationStrategy.sol

• proposal-validation-strategies/PropositionPowerAndActiveProposalsLimiterValidationStrategy.sol

• proposal-validation-strategies/PropositionPowerProposalValidationStrategy.sol

• proposal-validation-strategies/VanillaProposalValidationStrategy.sol

• utils/ActiveProposalsLimiter.sol

• utils/BitPacker.sol

• utils/PropositionPower.sol

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

• utils/SignatureVerifier.sol

• utils/SpaceManager.sol

• utils/SXHash.sol

• utils/SXUtils.sol

• utils/TimestampResolver.sol (removed in later versions)

• voting-strategies/CompVotingStrategy.sol

• voting-strategies/OZVotesVotingStrategy.sol

• voting-strategies/VanillaVotingStrategy.sol

• voting-strategies/WhitelistVotingStrategy.sol

2.1.1 Excluded from scope
Third-party dependencies, testing files, and any other files not listed above are outside the scope of this
review.

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Snapshot introduces Snapshot X, a framework for on-chain governance. The framework is designed to
be modular, flexible, and upgradeable, making it capable of adapting to a wide range of governance
use-cases. It includes several components to handle proposal creation, voting, and execution, all of
which work together to form a robust governance mechanism.

2.3 System architecture
Every Snapshot X governance system revolves around a main component called Space. DAOs that
implement their governance mechanism through Snapshot X deploy their Space, which coordinates the
governance mechanism. Governance operates through the creation of proposals, their voting, and their
execution. Users interact with a Space through authenticators, which ensure that the caller has the right
to perform the desired operation.

A proposal consists of an execution strategy and a payload. Users create proposals through the Space
propose function. Every Space is configured with a Proposal validation strategy, an external contract
which enforces rules on who is allowed to create new proposals. After a proposal is created, a waiting
time of votingDelay allows members of the DAO to properly evaluate the proposal, before voting
starts, and the proposal creator can update the proposal during this period. After the voting delay has
passed, users can vote For, Against, or Abstain, on a proposal, through the vote function of the Space.
The voting power of a user is evaluated through one or many voting strategies, which are external
contracts configured in the Space. The voting lasts between minVotingDuration and
maxVotingDuration seconds. It can finish early if an early quorum is reached. If the proposal is
accepted, the proposal can be executed. Execution of a proposal is triggered by a user calling the
execute function of the Space. The execution strategy of the proposal is then called, with the proposal
payload as argument. The execution strategy is an external contract, which validates whether a proposal
has passed, and defines how the proposal is executed. Generally, execution strategies hold special
rights on the systems controlled by the DAO, and are allowed to perform privileged operations on them. A

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

Space has a controller, which can call a few privileged operations on the Space. These operations are
cancel(), which cancels a proposal which has not yet been executed, upgradeTo(), which allows to
upgrade the implementation contract for a Space deployed through an upgradeable proxy, and
updateSettings(), which changes the configuration on a Space. The configuration of the Space is
defined by the following parameters:

1. votingDelay, the time before voting starts after a proposal is created.

2. minVotingDuration, the minimum duration of a voting period.

3. maxVotingDuration, the maximum duration of a voting period.

4. proposalValidationStrategy, the contract that is queried to check if a user can create a
proposal.

5. votingStrategies, the contracts that can be used by a voter to collect their voting power.

6. authenticators, the contracts that are allowed to call the Space's vote(), propose(),
and execute() functions on behalf of users.

A proposal, once created, can be in one of the following states:

1. VotingDelay: the vote is not open yet, the proposer can edit the proposal.

2. VotingPeriod: the vote is ongoing.

3. VotingPeriodAccepted: the minVotingDuration has elapsed, and the vote is accepted
although voting is still open.

4. Accepted: maxVotingDuration has elapsed, the vote is closed and it has reached the
acceptance conditions defined by the execution strategy.

5. Executed: the execute method of the execution strategy has successfully been called for the
proposal.

6. Rejected: The voting period is finished, and the acceptance conditions defined by the execution
strategy have not been met.

7. Cancelled: The owner of the Space has cancelled the proposal before its execution.

2.4 Authenticators
Users of a Space do not directly call the Space vote(), updateProposal(), and propose()
functions. Instead, the Space only allows a small set of Authenticator contracts to call these functions,
which accept the proposal author or voter as first argument, on behalf of users. This indirection layer
allows the creation of new trusted ways of authenticating votes. Currently, two authenticator contracts are
implemented: EthSigAuthenticator and EthTxAuthenticator.

2.4.1 EthTxAuthenticator
EthTxAuthenticator implements the trivial authentication mechanism of forwarding a call to the Space
only if the msg.sender matches the author or voter address.

2.4.2 EthSigAuthenticator
EthSigAuthenticator implements EIP-712 signature verification to call the Space functions on behalf of
users that have cryptographically signed a digest of their voting or proposal creation intentions but are
not themselves directly interacting with the blockchain.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

2.5 Proposal Validation Strategies
Proposal creation in a Space is controlled by a Proposal Validation Strategy. This is an external contract
that is queried to validate if the author of a proposal is allowed to create a new proposal in the Space.
Configuration parameters for the proposal validation strategies are stored in the Space. The same
Proposal Validation Strategy contracts can be shared between different Spaces. Three Proposal
Validation Strategies are currently implemented: ActiveProposalsLimiterProposalValidationStrategy,
PropositionPowerProposalValidationStrategy, and
PropositionPowerAndActiveProposalsLimiterValidationStrategy.

2.5.1 ActiveProposalsLimiterProposalValidationStrategy
This proposal validation strategy implements a counter that keeps track of the number of proposals that a
user has created, only allowing new proposals if the counter is below a certain threshold. If the user has
created no new proposals after a cooldown period since the last creation, the counter is reset to zero.
This contract can be shared between several Spaces. Space segregation is performed, so the counters
of different Spaces do not interact.

2.5.2 PropositionPowerProposalValidationStrategy
This proposal validation strategy queries a list of configured voting strategies to gather the voting power
of the proposal creator. If the voting power is above a certain threshold, the proposal creation is allowed.

2.5.3 Combination of the previous two
The PropositionPowerAndActiveProposalsLimiterValidationStrategy proposal validation strategy
combines the logic of the other two, accepting a proposal creation only if the active proposals are few
enough, and the voting power of the proposer is beyond a threshold.

2.6 Voting Strategies
A Space configures one or more Voting Strategies. Voting Strategies gather the voting power of a voter
at a certain point in time through the getVotingPower function. They are queried when the vote
function is called, and in proposal validation strategies that validate the proposer's voting power. Several
can be active in a Space at the same time, and the voter calls vote() with a list of indices as argument.
These indices specify which of the up to 255 voting strategies in a Space should be used to gather their
voting power. A voter can specify fewer than the active ones in the Space if they want to save gas by not
querying voting strategies where they do not hold voting power. Three voting strategies are implemented:
CompVotingStrategy, OZVotesVotingStrategy, and WhitelistVotingStrategy.

2.6.1 CompVotingStrategy
CompVotingStrategy queries the voting power of a user through the getPriorVotes() interface
provided by Compound-like governance tokens. getPriorVotes() allows to query the governance
token balance at a given block number. Since Snapshot X operates with timestamp instead of block
numbers, a translation layer between timestamp and block numbers is required, which is implemented
through the abstract contract TimestampResolver.sol

2.6.2 OZVotesVotingStrategy
OZVotesVotingStrategy implements the same logic as CompVotingStrategy, but queries a token which
implements the getPastVotes() interface, which is what is implemented by governance tokens in
OpenZeppelin.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

2.6.3 WhitelistVotingStrategy
WhitelistVotingStrategy retrieves the voting power of a user from a list stored in the space. This list holds
voting powers for specific users, sorted by user address. Binary search is used to find a specific address
in this list. The Space controller can update the whitelist.

2.7 Execution Strategies
A Space delegates vote counting and proposal execution to Execution Strategies. A proposal creator can
define an arbitrary Execution Strategy on a new proposal; however, most proposals will be executed
through execution strategies that hold special powers on behalf of the DAO. Execution Strategies define
the getProposalStatus function, which receives the proposal parameters and the vote amounts as
arguments and returns the current status of the proposal. Three abstract strategies currently define
different vote counting methodologies: SimpleQuorumExecutionStrategy,
OptimisticQuorumExecutionStrategy, and EmergencyQuorumStrategy.

2.7.1 Quorum Types

2.7.1.1 SimpleQuorumExecutionStrategy
This abstract contract accepts a proposal if its total vote count exceeds a predefined quorum, and the For
votes are more than the Against votes. Between the minEndTimestamp and maxEndTimestamp of a
proposal, it is still possible to vote on the proposal, but it is in the VotingPeriodAccepted state if more
For votes than Against exist, and the quorum has been reached. This makes the proposal executable
before the end of the voting period.

2.7.1.2 EmergencyQuorumStrategy
This abstract contract defines a getProposalStatus function that can accept a proposal before the
end of the voting period if the total number of votes is bigger than an emergency quorum and the For
votes exceed the Against votes. No concrete contract currently derives from this execution strategy, but
new execution strategies could be created in the future to derive from it.

2.7.1.3 OptimisticQuorumExecutionStrategy
This abstract execution strategy considers any proposal to be accepted, unless the Against votes exceed
a quorum. It allows proposal validation with less gas spent, since it supposes that proposers are not
malicious, and most proposals will be accepted. No concrete contract currently derives from this
execution strategy.

2.7.2 Execution Mechanics
Beyond the role of the execution strategy in vote counting, the role of the execution strategy is to execute
a proposal when it passes a vote. The proposal execution is expected to act on behalf of the DAO and
perform privileged actions over which the execution strategy is authorized to do. How a proposal payload
is interpreted depends on the chosen execution strategy, however, in general it will consist of a list of
transactions which will be sent from a privileged account. There are three concrete execution strategies
which implement this transaction relaying mechanism on behalf of an accepted proposal:
AvatarExecutionStrategy, CompTimelockCompatibleExecutionStrategy, and TimelockExecutionStrategy.
The execution of the execute() method of the execution strategies is limited to trusted Spaces, since it
allows calling arbitrary addresses with admin powers.

2.7.2.1 AvatarExecutionStrategy
AvatarExecutionStrategy executes a successful proposal according to SimpleQuorumExecutionStrategy
by forwarding the list of transactions defined in the proposal payload to a Gnosis-Safe or similar contract,
which will in turn execute the transactions.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

2.7.2.2 CompTimelockCompatibleExecutionStrategy
CompTimelockCompatibleExecutionStrategy queues accepted proposals in a Compound Governance
timelock. This timelock will allow the execution strategy to execute queued proposals once the timelock
delay has elapsed. Beyond the guarded execute() method, which only the Space can call, this
execution strategy implements an unpermissioned executeQueuedProposal method which allows
anybody to ultimately execute a proposal which had been previously queued. A privileged role called
vetoGuardian has the power to cancel queued proposals.

2.7.2.3 TimelockExecutionStrategy
This execution strategy behaves similarly to CompTimelockCompatibleExecutionStrategy. However, it
implements the timelock itself. It has the vetoGuardian role to cancel queued transactions and can act
as a treasury for a DAO. Its execute method queues lists of transactions which will be executed either
with CALL or DELEGATECALL.

The execution strategies are expected to be deployed as proxies to concrete implementation contracts.

2.7.2.4 OptimisticCompTimelockCompatibleExecutionStrategy
Version 3Added in , this strategy behaves identically to the CompTimelockCompatibleExecutionStrategy,

except that it inherits from the OptimisticQuorumExecutionStrategy.

2.7.2.5 OptimisticTimelockExecutionStrategy
Version 3Added in , this strategy behaves identically to the TimelockExecutionStrategy, except that it

inherits from the OptimisticQuorumExecutionStrategy.

2.8 Proxy Factory
Several contracts can be deployed as proxies to implementation contracts. The proxy factory allows
deployment at predictable addresses and initialization in a single transaction. The Space contract can be
deployed as an upgradeable proxy since the contract implements derives from OpenZeppelin
UUPSUpgradeable. The execution strategies can be deployed as non-upgradeable proxies.

2.9 Trust Model
Snapshot X allows implementation of arbitrary governance mechanisms. Fully decentralized governance
can be implemented with self-ownership of all the privileged contracts. Alternatively, more centralized
approaches could be chosen, which would allow privileged EOAs or a multi-sig to perform potentially
disruptive actions on the DAO governance. It is the role of the deployer of a Snapshot X Space to
properly configure the system to implement trustless governance. In particular, we advise caution with
who is set as the owner of the Space contract and the execution strategy contracts. The owner of the
Space contract can change governance parameters and arbitrarily upgrade the contract. The owner of an
execution strategy can define which Space is allowed to call the execution strategy, effectively providing
the owner arbitrary execution powers on behalf of the DAO.

The veto guardian in the timelock execution strategies can also be self-owned by the DAO, by setting it
as another execution strategy which doesn't have an execution delay.

The choice of parameters in a Space can greatly affect the mechanisms under which DAO governance
operates, setting low quorum threshold, low voting delay, or low durations will enable a proposal creator
to pass proposals in their favor. Likewise, active voting strategies, proposal validation strategies, and
authenticators must be carefully inspected to match the desired governance rules.

Misconfigurations are possible, we expect a helpful deployment mechanism to allow deployers to avoid
them, and we assume that the deployers for any specific DAO are not malicious.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

5 Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

• Trust : Violations to the least privilege principle

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 1

• AcknowledgedSystemic Bias Towards Accepting Proposals

Low -Severity Findings 2

• AcknowledgedProposal Can Be Updated Just Before Voting Starts

• AcknowledgedSame Proposal Status for Queued, Executed or Vetoed Proposals

5.1 Systemic Bias Towards Accepting Proposals
Design Medium Version 1 Acknowledged

CS-SNAPSHOT-005

The voting system implemented by the various execution strategies is biased towards accepting
proposals. This is due to the VotingAccepted status of a proposal, where if a proposal receives enough
support between the minVotingDuration and maxVotingDuration, it can be executed even if
users are still voting on it. Therefore, a proposal needs to only have enough support for a very brief
moment during this period to be executed. In contrast, for the proposal to be rejected it must not receive
enough support for this entire duration. Hence, there is a systemic bias towards accepting "narrowly"
supported proposals over rejecting them.

Acknowledged:

Snapshot states:

We are happy with that design. If a DAO does not want the bias, they can set minVotingDuration
and maxVotingDuration to be equal, thereby removing the VotingPeriodAccepted status. In our
docs we will clarify this point so that users are aware of the potential bias.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5.2 Proposal Can Be Updated Just Before Voting
Starts
Design Low Version 1 Acknowledged

CS-SNAPSHOT-019

The author of a proposal is able to change the execution strategy and payload of their proposal up to the
moment when voting starts. This could mean that voters inform themselves about the proposal, decide
how they would like to vote, and then vote when the voting period begins. However, if the author of the
proposal updates it just before the start of the voting period, the voters may not realize it. This is
especially problematic if the duration of the voting period is short, or if there is an incentive to vote quickly
(for example in the case of an emergency).

Acknowledged:

Snapshot states:

We don't think this needs to be addressed at the protocol level but will provide notifications at the UI
level to minimize the probability of confusion.

5.3 Same Proposal Status for Queued, Executed
or Vetoed Proposals
Design Low Version 1 Acknowledged

CS-SNAPSHOT-021

In TimelockExecutionStrategy and CompTimelockCompatibleExecutionStrategy,
executing or vetoing a transaction has the same observable effect of setting the executionTime of the
payload to 0. Different events (ProposalVetoed vs ProposalExecuted) are emitted, but the
proposal status as reported by getProposalStatus will in both cases be Executed. An on-chain
actor will have no way to tell if a queued proposal has been executed or vetoed.

Acknowledged:

Snapshot states:

From the POV of the space, the proposal has been executed if the execute function gets called
without reverting. This is the case even if the proposal then later gets vetoed. We therefore think the
current setup is fine.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 1

• Code CorrectedUnfair Voting Power Timestamp

Medium -Severity Findings 6

• Code CorrectedActiveProposalsLimiter Doesn't Handle maxActiveProposals Decreases Correctly

• Code CorrectedProxy Deployment Vulnerable to Front-Running

• Code CorrectedSpace Relies Heavily on Execution Strategy for Correctness

•
Code Corrected

TimelockExecutionStrategy Deployed as Proxy at Risk From Implementation SELFDESTRUCT

• Code CorrectedTimestamp Resolver May Return Incorrect Block Number

• Code Corrected_quorumReached Counts votesAgainst Toward the Quorum

Low -Severity Findings 16

• Code CorrectedActiveProposalsLimiter User Data Could Use a Struct

• Code CorrectedBetter Storage and Struct Packing Possible

• Code CorrectedComp Timelock Doesn't Support Duplicate MetaTransaction Queueing

• Code CorrectedFunction Parameter Location Optimizations

• Code CorrectedFunction Visibility Can Be Restricted

• Code CorrectedInconsistency in Quorum Modifiability

• Code CorrectedInefficient Boolean Mappings

• Code CorrectedMultiple Voting if Voting Strategy Calls Untrusted Code

• Code CorrectedNo Setter for Delay in TimelockExecutionStrategy

• Specification ChangedPotential Reentrancy in executeQueuedProposal Method

• Code CorrectedQuorum Not Included in the AvatarExecutionStrategySetUp Event Emission

• Code CorrectedTimelockExecutionStrategy Not Fully ERC165 Compliant

• Code CorrectedUnnecessary Binary Search

• Code CorrectedUnused Function

• Code CorrectedVarious Reentrancy Possibilities During Proposal Execution

• Code CorrectedVoting Power Not Easily Estimated in User Interface

6.1 Unfair Voting Power Timestamp
Design High Version 1 Code Corrected

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

CS-SNAPSHOT-001

The snapshotTimestamp of a proposal is the time at which the proposal was created. It is used as a
reference timestamp to decide how much voting power a user should have for certain voting strategies,
namely the CompVotingStrategy and OZVotesVotingStrategy. More specifically, this timestamp resolves
to the block prior to the block in which the proposal was created. This leads to two problems:

1. The proposal author, who knows exactly what block is relevant to their proposal, can purchase
voting power for only that block, then sell it again. This gives them an easy way to have a large
influence on their proposal, without other users getting the same opportunity.

2. Other users cannot "prepare" for the vote - even if it's a proposal that they are heavily invested in,
their voting power is already decided when the proposal is created.

Instead, letting the timestamp at which the voting period starts decide the voting power of each user
would give everyone an equal opportunity to purchase voting power for a proposal.

Code corrected:

Votes are counted at the block prior to the start of the voting period, not the proposal creation time
anymore.

6.2 ActiveProposalsLimiter Doesn't Handle
maxActiveProposals Decreases Correctly
Correctness Medium Version 1 Code Corrected

CS-SNAPSHOT-002

In the ActiveProposalsLimiter contract, if the value of maxActiveProposals is decreased, the
proposal creation limiting mechanism doesn't work as expected. If the current activeProposals value
for a user is higher than the new maxActiveProposals, the user can continuously create proposals
without the limit being enforced.

Code corrected:

The equality check has been replaced with a greater or equal to check.

6.3 Proxy Deployment Vulnerable to
Front-Running
Security Medium Version 1 Code Corrected

CS-SNAPSHOT-003

In the current implementation of the ProxyFactory contract, the deployment of a new proxy contract could
be potentially front-run. The front-runner could deploy a proxy at the same predicted address but with
different parameters.

This issue arises due to the deployProxy method's reliance on salt for proxy address prediction and the
absence of the msg.sender or initializer payload in the address computation parameters.

One mitigation strategy would be to include the msg.sender or the initializer payload in the salt. This
change could make the address prediction unique for every user and initializer, thus preventing potential
front-run attacks. Another mitigation is to properly check that the transaction was successful when

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

deployProxy() is called, as the transaction will revert if a proxy has already been deployed at the
same address.

Code corrected:

Initialization parameters and msg.sender are now included in the CREATE2 salt, making it impossible
for another msg.sender to front-run a deployment to the same address.

6.4 Space Relies Heavily on Execution Strategy
for Correctness
Trust Medium Version 1 Code Corrected

CS-SNAPSHOT-004

The Space contract delegates a lot of responsibility to the execution strategies. This means that users
must either trust proposal authors or check a lot of invariants on proposals they vote on. The Space
contract could instead make some of these checks on its own, before calling the strategy.

For example, the Space contract should never execute a proposal that has already been executed, or
one that has been cancelled. However, it doesn't check this. Additionally, it could check that a proposal
that hasn't reached its minVotingDuration can't be executed. It would also be possible to check the
payloadHash for equality. Similarly, one could check that a proposal hasn't been cancelled or executed
before updating it.

This would reduce the possibilities for malicious proposal authors to omit necessary checks in order to
trick users into trusting their proposals.

Code corrected:

Most suggested checks have been implemented:

1. The payload hash equality is checked in the Space.

2. In execute(), the finalization status has to be Pending.

3. In updateProposal(), the finalization status has to be Pending.

Note that minVotingDuration is not checked in the Space, as it can be overridden by some execution
strategies (e.g. EmergencyQuorumExecutionStrategy).

6.5 TimelockExecutionStrategy Deployed as
Proxy at Risk From Implementation
SELFDESTRUCT
Security Medium Version 1 Code Corrected

CS-SNAPSHOT-006

It is expected that TimelockExecutionStrategy will be deployed as a proxy contract. However, it is
critical that the implementation contract shared by the proxies is disabled and cannot execute
transactions. If the base implementation contract is in operation, a transaction could perform a delegate
call into a contract containing the SELFDESTRUCT opcode, irrecoverably disabling all the proxies using
that implementation.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

Code corrected:

The constructor now disables the contract by transferring ownership to address(1), which means no
delegate call can be performed from the implementation contract.

6.6 Timestamp Resolver May Return Incorrect
Block Number
Security Medium Version 1 Code Corrected

CS-SNAPSHOT-007

In both CompVotingStrategy and OZVotesVotingStrategy contracts, the TimestampResolver
is expected to return the correct block number for a given timestamp. However, it currently only
guarantees the correct return if the same voting strategy is also used with a
PropositionPowerProposalValidationStrategy at proposal creation time.

The issue arises with the method resolveSnapshotTimestamp, where the returned blockNumber
doesn't necessarily correspond to the passed timestamp. blockNumber will only match the
timestamp if resolveSnapshotTimestamp() is called when block.timestamp == timestamp.
The voting power for proposals is currently queried at the proposition timestamp. The proposition
timestamp (snapshotTimestamp) is only guaranteed to be resolved if the proposal validation strategy
queries the same voting strategies as the actual voting.

Code corrected:

TimestampResolver has been removed from the codebase. Timestamps have been replaced with
block numbers, so that no timestamp translation to block number is necessary.

6.7 _quorumReached Counts votesAgainst
Toward the Quorum
Design Medium Version 1 Code Corrected

CS-SNAPSHOT-008

The _quorumReached function in SimpleQuorumExecutionStrategy also counts votesAgainst toward
the quorum. This creates an incentive for Against voters not to vote, at least until the quorum is reached.
Differently from what is done here, Compound's GovernorBravo only counts For votes toward the
quorum, and OpenZeppelin Governor counts For and Abstain votes toward the quorum.

Code corrected:

Only For and Abstain votes are counted for the quorum.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

6.8 ActiveProposalsLimiter User Data Could Use
a Struct
Design Low Version 1 Code Corrected

CS-SNAPSHOT-009

The ActiveProposalsLimiter contract stores the user data, which consist of a uint32 timestamp and a
uint224 counter, in a mapping of type uint256. Manual packing and unpacking are therefore
performed. The same thing could be achieved by using a struct, which would perform the same kind of
storage packing without the need for low level operations such as bit shifts and masking.

Code corrected:

Snapshot switched to using a struct that fits in a single storage slot.

6.9 Better Storage and Struct Packing Possible
Design Low Version 1 Code Corrected

CS-SNAPSHOT-010

The order of declaration of variables in storage and the order of fields in structs are relevant to their
ultimate size. Storage variables that have combined sizes less than one word can be packed into a single
storage slot, which can reduce the number of storage slots used, especially if they are often read or
written together anyway. The same goes for struct fields, where sequential fields can be packed into one
slot if they are small enough.

This can be applied in the following places:

1. The vp field of the Member struct could be reduced to a uint96 so the entire struct would occupy
one word. 96 bits of precision is likely sufficient to measure the voting power of a user.

2. The Proposal struct's fields can be reordered to reduce its size to 4 words instead of 5.

3. The order of storage variables in the Space contract can be reordered to occupy fewer slots.

Code corrected:

1. The vp field in the Member struct has been reduced to 96 bits of precision, making it fit in a single
slot.

2. The Proposal struct's fields have been reordered to only take 4 words.

6.10 Comp Timelock Doesn't Support Duplicate
MetaTransaction Queueing
Design Low Version 1 Code Corrected

CS-SNAPSHOT-011

The execute function of the contract fails silently when trying to queue the same MetaTransaction
twice within the same proposal, due to the internal workings of the Compound Timelock contract.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

If two identical ``MetaTransaction``s are present in the payload, the two queueing attempts will only be
counted as one in Compound's Timelock. This can cause seemingly valid proposals to fail when
executed after the timelock delay has elapsed.

Code corrected:

The hash of each MetaTransaction is checked against the timelock's queuedTransactions so that a
duplicate transaction cannot be queued.

6.11 Function Parameter Location Optimizations
Design Low Version 1 Code Corrected

CS-SNAPSHOT-012

Many functions take parameters in memory instead of in calldata. If the parameters don't need to be
modified, it is more efficient not to copy them to memory unless absolutely necessary. In general, copying
of entire structs should be avoided when possible.

This improvement can be made in the following places: #. All of the Space contract's setter functions, its
initialize function and _getCumulativePower. (Note that the latter would also require an
assertNoDuplicateIndices implementation with a calldata list). #. The
_assertProposalExists takes a Proposal memory as a parameter. However, in the execute and
cancel functions it is passed a Proposal storage variable. Thus, the entire struct will be copied into
memory only to check a single field's value. #. The bytesToAddress function in the
CompVotingStrategy and OZVotingStrategy could take a bytes calldata parameter instead of a
bytes memory. #. The various _verify functions in the SignatureVerifier could take
bytes calldata as a parameter.

Code corrected:

In the Space contract, the memory location of external functions arguments has been optimized by
setting it to calldata as suggested.

_verifyVoteSig() has been modified to take bytes calldata as a parameter. The other _verify
functions have been kept with bytes memory parameters because of stack too deep compilation
errors. Since we expect voting to be the most common user action for a proposal, we are satisfied that
the most visited path is optimized.

The calls to bytesToAddress() were replaced by a type conversion: address(bytes20(params))

The suggestion regarding _assertProposalExists() was intentionally not addressed, because it
would sacrifice abstraction.

6.12 Function Visibility Can Be Restricted
Design Low Version 1 Code Corrected

CS-SNAPSHOT-013

The visibility of the following functions can be restricted in order to save gas:

1. The Space contract's initialize function can be made external.

2. The SpaceManager contract's enableSpace and disableSpace functions could be made
external. Alternatively, an internal and external copy of the functions could exist, if inheriting
contracts should have access to these functions. Additionally, the isSpaceEnabled function

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

could be made external, and internal uses (e.g. the onlySpace modifier) should directly access
the spaces mapping to save gas.

Code corrected:

Snapshot has restricted the concerned functions' visibility to external.

6.13 Inconsistency in Quorum Modifiability
Design Low Version 1 Code Corrected

CS-SNAPSHOT-014

SimpleQuorumExecutionStrategy defines a storage variable for the quorum. It could be useful to
add a setter for the quorum, as it could be useful to change it depending on the circulating voting power.

Moreover, there is an inconsistency between SimpleQuorumExecutionStrategy and
EmergencyQuorumStrategy in how they handle the quorum variable. In the latter it is set as an
immutable. This prevents contracts deriving from EmergencyQuorumStrategy from being deployed as
proxies.

Code corrected:

A setQuorum() method has been added to SimpleQuorumExecutionStrategy,
OptimisticQuorumExecutionStrategy, and EmergencyQuorumStrategy. EmergencyQuorumStrategy has
been modified to use storage variables instead of immutables so that it can be initialized by cloning.

6.14 Inefficient Boolean Mappings
Design Low Version 1 Code Corrected

CS-SNAPSHOT-015

Various contracts have mappings which map to a boolean value. In Solidity, this is inefficient, because
writing to such a mapping incurs an additional storage read. It is more gas-efficient to map to a type
which occupies the entire size of the storage slot, e.g. a uint256.

Code corrected:

The following boolean mappings have been replaced with uint256 mappings:

1. authenticators in Space.

2. voteRegistry in Space.

3. spaces in SpaceManager.

4. usedSalts in SignatureVerifier.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

6.15 Multiple Voting if Voting Strategy Calls
Untrusted Code
Security Low Version 1 Code Corrected

CS-SNAPSHOT-016

There is a possible reentrancy in the vote method of a Space. If the voting strategy calls untrusted code,
vote() can be reentered and a user can vote several times, because the voteRegistry is updated only
after the interactions (vote counting and incrementing) have happened.

Code corrected:

The voter's entry in the voteRegistry is now updated before making external calls, thus preventing
any reentrant calls into the vote function.

6.16 No Setter for Delay in
TimelockExecutionStrategy
Design Low Version 1 Code Corrected

CS-SNAPSHOT-017

No setter is defined for the timelockDelay storage variable in the TimelockExecutionStrategy
contract.

Code corrected:

The TimelockExecutionStrategy owner can now set the timelock delay.

6.17 Potential Reentrancy in
executeQueuedProposal Method
Security Low Version 1 Specification Changed

CS-SNAPSHOT-018

The executeQueuedProposal function, as present in both
CompTimelockCompatibleExecutionStrategy and TimelockExecutionStrategy, is
susceptible to potential reentrancy issues. While the method does not allow the same proposal to be
executed twice by resetting the execution time to zero before any external calls, this does not protect
from different proposals executing their meta-transactions in an interleaved order if one of them calls
untrusted code. This could lead to unexpected outcomes, particularly when executing proposals with
dependencies or conflicts.

Specification changed:

This particular behavior, which is shared with other governance systems, has been properly documented
in the timelock execution strategy's NatSpec.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 22

https://chainsecurity.com

6.18 Quorum Not Included in the
AvatarExecutionStrategySetUp Event Emission
Design Low Version 1 Code Corrected

CS-SNAPSHOT-020

The AvatarExecutionStrategySetUp event, emitted in the setUp function, does not include the
_quorum parameter in its emission. Although it is initialized correctly and stored in the contract state, this
omission could lead to potential issues with transparency and event tracking.

Code corrected:

The AvatarExecutionStrategySetUp event has been modified to include the _quorum in its data.

6.19 TimelockExecutionStrategy Not Fully
ERC165 Compliant
Design Low Version 1 Code Corrected

CS-SNAPSHOT-022

The ERC165 defined supportsInterface(bytes4 interfaceId) function should return true when
interfaceId == type(IERC165).interfaceId.

Code corrected:

TimelockExecutionStrategy has been modified so that supportsInterface() is ERC165 compliant.

6.20 Unnecessary Binary Search
Design Low Version 1 Code Corrected

CS-SNAPSHOT-023

The WhitelistVotingStrategy allows the Space contract to provide an ordered list of whitelisted users, so
that the strategy can check that a given user is allowed to vote. It searches through this list using a binary
search. However, this leads to two main problems:

1. When the admin / owner of a space updates the whitelist, this may involve writing an arbitrarily
large number of storage slots, as they must reorder the entire list.

2. The gas cost of voting is higher than necessary, as every voter must run the binary search
on-chain.

An alternative to this would be to provide the WhitelistVotingStrategy with an unordered list of members.
When a user votes, they must provide the index of their own whitelist entry, so that the contract only
needs to confirm that their address is at that index in the list, without going over any other entries. They
could provide this index using the userParams field.

Code corrected:

The proposed addressing scheme has been implemented by the client.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

6.21 Unused Function
Design Low Version 1 Code Corrected

CS-SNAPSHOT-024

The _assertValidAuthenticator function is never used.

Code corrected:

The unused function has been removed.

6.22 Various Reentrancy Possibilities During
Proposal Execution
Security Low Version 1 Code Corrected

CS-SNAPSHOT-025

The execute function of the Space contract has a nonReentrant modifier, meaning the execution
strategy can't call back into it. However, it may still call all the other functions of the Space contract.

If external systems rely on the state of the Space contract to make decisions, this may lead to problems.
For example, a malicious Space owner could execute a strategy which cancels its own proposal, which
may lead an external system to believe the proposal can no longer be executed. However, the execute
call is already being executed. Alternatively, a proposal author could update their proposal during its
execution, or even vote on it.

For example, the author could execute the proposal while it is in the VotingAccepted state, and in the
execution provide a high number of Against votes so that it is no longer accepted. An external system will
again not be able to know that the proposal is already being executed, despite not having enough votes
to pass.

These issues stem from the fact that the finalizationStatus of the proposal is only set to Executed
after the execution of the proposal. If this status change were put in storage before the call (while still
providing the same proposal in memory to the execution strategy), the reentrancies could be avoided as
it would be clear that the execution of the proposal has already begun.

Code corrected:

The proposal execution status is set to Finalized before it is executed, so reentrancies are no longer
possible.

6.23 Voting Power Not Easily Estimated in User
Interface
Design Low Version 1 Code Corrected

CS-SNAPSHOT-026

In the current implementation, estimating the voting power for each voting strategy of a space before
casting a vote is challenging. The issue lies with the getVotingPower() method in the voting strategy

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

contracts, which is not a view function and can perform state changes due to the potential need for
resolving the timestamp, in CompVotingStrategy and OZVotesVotingStrategy.

This makes it hard for the user interface to call the function for estimation purposes without sending a
transaction.

Code corrected:

The TimestampResolver has been removed, and the mutability of the getVotingPower() methods
has been reduced to view.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

7 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

7.1 Benign Reentrancies
Note Version 1

There are two cases in which reentrant calls could result in unexpected outcomes:

1. ProxyFactory.deployProxy: If the call to proxy.call(implementation) reentrantly calls
deployProxy again, the ProxyDeployed events will be emitted in the wrong order.

2. Space.propose: If the call to the ProposalValidationStrategy results in a reentrant call (by calling
untrusted code), the second call to propose will have a lower proposalId, and emit the
ProposalCreated event first. Hence, a call to propose should not assume the resulting proposal
will have the next available proposalId. Additionally, note that an on-chain actor isn't easily able
to determine the ID of the proposal that was just created, as no value is returned. Instead, they
would have to query the nextProposalId and subtract one.

7.2 Cloning and Initialization Must Happen in
Same Transaction
Note Version 1

Many contracts are expected to be deployed as proxies to an implementation contract, and then
initialized through an initialization function. The contracts in question are:

1. Space

2. AvatarExecutionStrategy

3. CompTimelockCompatibleExecutionStrategy

4. TimelockExecutionStrategy

It is important that deploying proxy deployment and initialization happen in the same transaction, so that
the initialization isn't vulnerable to front-running. The ProxyFactory contract correctly performs
deployment and initialization together.

7.3 PropositionPower Strategies May Differ From
Space
Note Version 1

When the admin / owner of a Space changes the voting strategies of that space, it does not update the
voting strategies used by a PropositionPower-based proposal validation strategy. Hence, they must
always update the parameters of the proposal validation strategy simultaneously to keep them
consistent. This additional requirement should be clearly documented.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

7.4 Space Can Have Duplicate Voting Strategies
Note Version 1

In the Space contract's _getCumulativePower function, it is asserted that a user doesn't provide the
same index for a voting strategy twice. However, if the owner / admin inadvertently adds the same voting
strategy twice, this index could be different for the same voting strategy, allowing the user to double
count their votes.

7.5 Vanilla Contracts Should Not Be Used in
Production
Note Version 1

The various Vanilla contracts should not be used in production. Ideally it should be documented that
these contracts are for testing purposes and not to be used for real-world systems, as using them would
introduce a variety of vulnerabilities.

Snapshot - Snapshot X - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.3 System architecture
	2.4 Authenticators
	2.4.1 EthTxAuthenticator
	2.4.2 EthSigAuthenticator

	2.5 Proposal Validation Strategies
	2.5.1 ActiveProposalsLimiterProposalValidationStrategy
	2.5.2 PropositionPowerProposalValidationStrategy
	2.5.3 Combination of the previous two

	2.6 Voting Strategies
	2.6.1 CompVotingStrategy
	2.6.2 OZVotesVotingStrategy
	2.6.3 WhitelistVotingStrategy

	2.7 Execution Strategies
	2.7.1 Quorum Types
	2.7.1.1 SimpleQuorumExecutionStrategy
	2.7.1.2 EmergencyQuorumStrategy
	2.7.1.3 OptimisticQuorumExecutionStrategy

	2.7.2 Execution Mechanics
	2.7.2.1 AvatarExecutionStrategy
	2.7.2.2 CompTimelockCompatibleExecutionStrategy
	2.7.2.3 TimelockExecutionStrategy
	2.7.2.4 OptimisticCompTimelockCompatibleExecutionStrategy
	2.7.2.5 OptimisticTimelockExecutionStrategy

	2.8 Proxy Factory
	2.9 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Findings
	5.1 Systemic Bias Towards Accepting Proposals
	5.2 Proposal Can Be Updated Just Before Voting Starts
	5.3 Same Proposal Status for Queued, Executed or Vetoed Proposals

	6 Resolved Findings
	6.1 Unfair Voting Power Timestamp
	6.2 ActiveProposalsLimiter Doesn't Handle maxActiveProposals Decreases Correctly
	6.3 Proxy Deployment Vulnerable to Front-Running
	6.4 Space Relies Heavily on Execution Strategy for Correctness
	6.5 TimelockExecutionStrategy Deployed as Proxy at Risk From Implementation SELFDESTRUCT
	6.6 Timestamp Resolver May Return Incorrect Block Number
	6.7 _quorumReached Counts votesAgainst Toward the Quorum
	6.8 ActiveProposalsLimiter User Data Could Use a Struct
	6.9 Better Storage and Struct Packing Possible
	6.10 Comp Timelock Doesn't Support Duplicate MetaTransaction Queueing
	6.11 Function Parameter Location Optimizations
	6.12 Function Visibility Can Be Restricted
	6.13 Inconsistency in Quorum Modifiability
	6.14 Inefficient Boolean Mappings
	6.15 Multiple Voting if Voting Strategy Calls Untrusted Code
	6.16 No Setter for Delay in TimelockExecutionStrategy
	6.17 Potential Reentrancy in executeQueuedProposal Method
	6.18 Quorum Not Included in the AvatarExecutionStrategySetUp Event Emission
	6.19 TimelockExecutionStrategy Not Fully ERC165 Compliant
	6.20 Unnecessary Binary Search
	6.21 Unused Function
	6.22 Various Reentrancy Possibilities During Proposal Execution
	6.23 Voting Power Not Easily Estimated in User Interface

	7 Notes
	7.1 Benign Reentrancies
	7.2 Cloning and Initialization Must Happen in Same Transaction
	7.3 PropositionPower Strategies May Differ From Space
	7.4 Space Can Have Duplicate Voting Strategies
	7.5 Vanilla Contracts Should Not Be Used in Production

