PUBLIC

Code Assessment

of the Lockstake

Smart Contracts

September 26, 2025

Produced for

= Sky

by
S CHAINSECURITY




Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

@ Sky - Lockstake - ChainSecurity - © Decentralized Security AG

12
13
14
15
18
19


https://chainsecurity.com

1 Executive Summary

Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of Lockstake according to
Scope to support you in forming an opinion on their security risks.

Sky implements a staking framework that allows borrowing against governance tokens as collateral while
retaining the ability to delegate their voting power and simultaneously allowing these tokens to be staked
to earn yield.

The latest version reviewed version includes the new LockstakeCappedOsmWrapper, which reduces the
risk of minting against price peaks linked to the low liquidity of the SKY token.

The most critical subjects covered in our audit are functional correctness, access control and integration
with other contracts of the system. The general subjects covered are specification, complexity and unit
testing. For the Lockstake implementation, Security regarding all the aforementioned subjects is high.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 3


https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings

(C)-Severity Findings

(Medium)-Severity Findings

(Low)-Severity Findings

¥ Code Corrected

J Acknowledged

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG



https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Lockstake repository based on the
documentation files. The table below indicates the code versions relevant to this report and when they
were received.

Date Commit Hash Note
\Y
08 Apr a21be78009d80a94f1b84ad4ecc04aef74f | Initial Version
1| 2024 c40ea
16 Apr f07f45c0d1a47b9e3f82a1db29f4f800c21e | After Intermediate Report
2| 2024 aef3
26 Apr ca0c577018dd664e2399e7d842364f2e5d | Final Changes
3| 2024 ac235f
05 July 39dbea91e47911ddbfl122d5edd8c4a99 | Finalization
4| 2024 934b059
27 Aug 7c71318623f5d6732457fd0c247al1f17609 | Fix and Renaming
5| 2024 60011
10 Apr ccclcl6b60ab5eb30b4c5836ac93d63al3 | SKY Migration
6 | 2025 8f70f54
23 Apr 9cb25125bceh488f39dc4ddd3b54c05217 | Migrator Reset Line
7 | 2025 a260d1
02 Aug 43662905a3504debc48d7ba3b3907c98fff | stUSDS Clipper
8 | 2025 b35f8
15 Aug d4dbe6eab1644e398d3fab9fe84c0522fa | stUSDS Clipper Fixes
9 | 2025 d46532
22 Sep 4df712d3a739a24718698f3ffdcf2488176 | LockstakeCappedOsmWrapper
1| 2025 9e98
0
26 Sep 7db951621c7ac49e6d459a91ffbc0a8a43 | LockstakeCappedOsmWrapper
1| 2025 adb12f Finalization
1

For the solidity smart contracts, the compiler version 0. 8. 16 was chosen. In the compiler
version was changed to 0. 8. 21. Since the evm ver si on is set to shanghai .

The following files are in scope of this review:
src/
Lockst aked i pper. sol

Lockst akeEngi ne. sol
Lockst akeMkr . sol

(S: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 5


https://github.com/makerdao/lockstake/tree/a21be78009d80a94f1b84a44ecc04aef74fc40ea
https://github.com/makerdao/lockstake/tree/a21be78009d80a94f1b84a44ecc04aef74fc40ea
https://github.com/makerdao/lockstake/tree/f07f45c0d1a47b9e3f82a1db29f4f800c21eaef3
https://github.com/makerdao/lockstake/tree/f07f45c0d1a47b9e3f82a1db29f4f800c21eaef3
https://github.com/makerdao/lockstake/tree/ca0c577018dd664e2399e7d842364f2e5dac235f
https://github.com/makerdao/lockstake/tree/ca0c577018dd664e2399e7d842364f2e5dac235f
https://github.com/makerdao/lockstake/tree/39dbea91e47911ddbf1122d5edd8c4a99934b059
https://github.com/makerdao/lockstake/tree/39dbea91e47911ddbf1122d5edd8c4a99934b059
https://github.com/makerdao/lockstake/tree/7c71318623f5d6732457fd0c247a1f1760960011
https://github.com/makerdao/lockstake/tree/7c71318623f5d6732457fd0c247a1f1760960011
https://github.com/makerdao/lockstake/tree/ccc1c16b60a5eb30b4c5836ac93d63a138f70f54
https://github.com/makerdao/lockstake/tree/ccc1c16b60a5eb30b4c5836ac93d63a138f70f54
https://github.com/makerdao/lockstake/tree/9cb25125bceb488f39dc4ddd3b54c05217a260d1
https://github.com/makerdao/lockstake/tree/9cb25125bceb488f39dc4ddd3b54c05217a260d1
https://github.com/makerdao/lockstake/tree/43662905a3504debc48d7ba3b3907c98fffb35f8
https://github.com/makerdao/lockstake/tree/43662905a3504debc48d7ba3b3907c98fffb35f8
https://github.com/makerdao/lockstake/tree/d4dbe6eab1644e398d3fa59fe84c0522fad46532
https://github.com/makerdao/lockstake/tree/d4dbe6eab1644e398d3fa59fe84c0522fad46532
https://github.com/makerdao/lockstake/tree/4df712d3a739a24718698f3ffdcf24f881769e98
https://github.com/makerdao/lockstake/tree/4df712d3a739a24718698f3ffdcf24f881769e98
https://github.com/makerdao/lockstake/tree/7db951621c7ac49e6d459a91ffbc0a8a43a4b12f
https://github.com/makerdao/lockstake/tree/7db951621c7ac49e6d459a91ffbc0a8a43a4b12f
https://chainsecurity.com

Lockst akeUr n. sol
Mul ticall. sol

In (Version 3), the deployment scripts have been added to the scope of the review:

depl oy/
Lockst akeDepl oy. sol
Lockst akel ni t. sol
Lockst akel nst ance. sol

Note that the contracts at have been deployed.
The contracts in scope starting from are:

src/
Lockst aked i pper. sol
Lockst akeEngi ne. sol
Lockst akeM grat or. sol
Lockst akeSky. sol
Lockst akeUr n. sol
Mul ticall.sol

depl oy/
Lockst akeDepl oy. sol
Lockst akel nit. sol
Lockst akel nst ance. sol

In (Version 10), the following contract has been added to the scope of the review:

src/ Lockst akeCappedOsm apper . sol

2.1.1 Excluded from scope

All files not listed above including the tests are out of scope. The parameter selection is out of scope. The
VoteDelegate and the farms have been part of other reviews. All other contracts are out of scope.

2.2 System Overview

This system overview describes the latest received version as well as the previously deployed version (
(Version 5)) of the contracts as defined in the Assessment Overview.

At the end of this report section we have added a changelog for each of the changes accordingly to the
versions. Furthermore, in the findings section, we have added a version icon to each of the findings to
increase the readability of the report.

Sky implements a staking mechanism that allows participating in governance and yield farming while
using the governance token as collateral for CDPs. Note that v1 is (being) deprecated and is using MKR
while v2 is using SKY.

2.2.1 Lockstake vl: MKR

Note that this subsection only describes the Lockstake module up to which corresponds to
Lockstake v1 where MKR is used.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 6


https://chainsecurity.com

Sky introduces the LockstakeEngine that allows users to open() arbitrarily many LockstakeUrn
contracts which will be used for the users' positions. Note that these urns can only be managed through
the engine by the owner (urn deployer) or addresses authorized by the owner through the usual hope()
/ nope() mechanism.

To manage the urn's position, the following functionality is provided:

1.1 ock() and | ockSky(): Users can deposit MKR as locked collateral (ink) to arbitrary urns of
Lockstake ilk. The latter additionally converts SKY to MKR before locking the MKR.

2.free() and freeSky() : Similarly, urn-authorized addresses can unlock the collateral using these
functions. Note that this collects an exit penalty in the form of burning parts of the MKR being
unlocked.

3. draw() : Additionally, the urn-authorized addresses may dr aw() debt which mints the USDS
token. This modifies the urn using vat . f r ob() which enforces the limits / minimum health factor.

4. wi pe() and wi peAl | () : Any address can repay debt partially or fully. Note that technically debt
of addresses other than Lockstake urns can be repaid.

Locked MKR is typically held by the LockstakeEngine. Users can optionally move and thus delegate their
locked MKR to one delegate (deployed by the vote delegate factory) per urn with
sel ect Vot eDel egat e() . In this case, the staked MKR tokens will be transferred to the VoteDelegate
contract, where they will be deposited and locked in the Chief. Locking and unlocking delegates to and
undelegates automatically if a delegate is selected, the MKR tokens are moved accordingly.

Further, users' urns will hold LockstakeMkr tokens (ERC-20), a tokenized representation of an urn's
MKR collateral locked. Note that it represents the i nk and not the gem As a consequence, during
liquidations, the IsMKR will be burned on ki ck() since the LockstakeClipper will hold only a gem
balance but not an i nk balance. However, upon auction completion, IsMKR could be reminted due to
adding the leftover collateral as i nk to the urn.

Users can choose to deposit the ISMKR tokens into farms by selecting at most one farm per urn with
sel ect Far m() . Note that farms have to be whitelisted by governance, managed with addFar n{) and
del Far m() . Locking and unlocking deposits and withdraws automatically (however deposits only work if
the farm is still active). The farms will yield rewards that can be claimed anytime, even after unstaking or
staking to another farm, through get Rewar d() .

The LockstakeEngine supports mul ti cal | () to batch operations.

Liguidations of unhealthy urns will be initiated through Dog. bar k() which invokes C i pper. ki ck() to
start the Dutch auction. See our Liquidations 2.0 audit for a detailed description of how liquidations work.
For the Lockstake ilk, a specialized LockstakeClipper which features callbacks to the engine is used.
The LockstakeClipper works similarly and is different in the following aspects:

1. When an auction is started with ki ck(), the LockstakeEngine's onKi ck() hook is invoked to
undelegate the MKR tokens, unstake and burn the LockstakeMkr tokens and track the auction
(increases the urnAuctions counter, a non-zero urnAuctions counter disables delegating and
staking).

2. The collateral transfer in take() is not implemented as a Vat-internal gem transfer with
Vat . fl ux() but is rather implemented as a reduction of the LockstakeClipper's gem balance by
the slice taken and calling the LockstakeEngine's onTake() hook which transfers out the collateral
(MKR) directly.

3. The dipperCall ee.clipperCall () is disallowed on the LockstakeEngine.

4. When t ake() completes the auction (either all t ab is covered or there is no more | ot to sell) the
LockstakeEngine's onRenmove() hook is called. Parameters passed include the amount of MKR
sold and left. onRenmove() implements the functionality to calculate and burn the exit fee which
applies, if sufficient funds are available, on liquidated urns (sold collateral / MKR) as well. Further,
the urn's liquidation counter in the LockstakeEngine is reduced since the auction completed.

(S: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 7


https://chainsecurity.com/security-audit/maker-protocol-liquidations-2-0/
https://chainsecurity.com

5. Upon yank() (cancelling an auction during End. cage() ), onRenove reduces the urns auction
counter.

Note that the LockstakeEngine further implements the standard authentication with rel y() and
deny() . The authorization allows setting the Jug with fi | e(), add and deactivate farms (see above),
and call the hooks. It is expected that the specialized clipper will hold the authorization. Additionally, there
is a function fr eeNoFee() that allows an urn-authorized and authorized address to call free without
collecting fees (e.g. in case of migrations). Further, LockstakeMkr implements the same authorization
mechanism that allows to i nt () (engine is expected to hold these rights).

2.2.1.1 Deployment
The Lockstake system is deployed in two steps:

1. Some EOA deploys the contracts and - if necessary - changes the owner of these contracts to the
PausePr oxy.

2. A governance Spel | with quorum executes the initialization of the contracts through the
PausePr oxy.

LockstakeDeploy implements depl oyLockst ake() to deploy a lockstake instance from an EOA using
Foundry. A Lockstake instance consists of four contracts: LockstakeMkr, LockstakeEngine and
LockstakeClipper and a calculator (for the Dutch-style auctions; deployed by the contract retrieved from
the Chainlog with CALC_FAB) contract which are newly deployed.

The initialization is done by executing initLockstake of Lockstakelnit in the context of the
Governance Pause proxy. It implements the following steps:

1. The state of the given Lockstake instance is crosschecked with the LockstakeConfig passed as
function argument cf g.

2. Sanity checks are performed on numeric parameters of the LockstakeConfig.

3. The new ilk is registered in the VAT, ward permissions are given to the LockstakeEngine and
Clipper (Auction contract). Note that normally Clipper contracts do not get the ward role in the VAT,
this special Clipper needs it due to different collateral management.

4. The line for the ilk is configured, the global Line is increased accordingly
(Aut oLi neLi ke. set11k()).

. The rate module is initialized.

. Spotter, Clipper, ClipperMom and End are added to the bud mapping of Pl P_IMKR (price oracle).
. The OSMMom is given the ward role in Pl P_MKR.

. The spotter is configured (nat , pi p) and updated (poke()).

©O© 00 N O O

. Liquidation contract Dog is configured (cl i p, chop, hol e), the LockstakeClipper is given the ward
role.

10. LockstakeEngine is authorized on IsMKR.

11. The rate module j ug is registered in the engine, farms are added. The LockstakeClipper is given
the ward role in the engine.

12. LockstakeClipper is initialized (buf, tai |, cusp, chi p, ti p, stopped, vow, cal ¢). upchost ()
is triggered to update the cached dust * chop value. The Dog, End and ClipperMom are given the
ward role in LockstakeClipper.

13. If provided, LineMom and ClipperMom are initialized.

(S: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 8


https://chainsecurity.com

2.2.2 Lockstake v2: SKY

Note that this subsection only describes the Lockstake module starting from which corresponds
to Lockstake V2 where SKY is used.

Lockstake for SKY is mostly equivalent to its predecessor. Besides renaming from MKR to SKY the most
notable changes include:

* Fees are now immutable.

| ockSky() and freeSky() have been removed, given that MKR is not used in the new version of
Lockstake. Similarly, the converter contract MkrSky have been removed from the contract.

« VoteDelegate v3 is used instead of the v2.

Since (Version 8), Lockstake v2 works with stUSDS, where USDS is staked as segregated risk capital for
borrowing backed by staked SKY in Lockstake. The new LockstakeClipper tracks debt under auction and
can slash stUSDS deposits via cut () when bad debt occurs during liquidation.

2.2.2.1 Capped OSM Wrapper

In a capped OSM wrapper was added for the SKY token. It wraps the current OSM while
enforcing a cap. The goal is to limit minting against short term price peaks given the low liquidity of SKY.
This mitigates minting risks but introduces potential risks for liquidations which are known and
documented.

Generally, the same interface as an OSM is implemented with readers having to be authorized buds.
Since it's a wrapper, it does not implement the usual privileged configuration functions of an OSM. Note
that it is only intended to be used with Pl P_SKY and recommended with liquidations off or in the contrary
carefully evaluated the risk parameters. Liquidations for the Lockstake ilk are currently halted (the circuit
breaker of the Lockstake clipper is currently set to 3 meaning liquidations are halted). In case of
underwater positions exist it will be evaluated which process could be taken, e.g. offchain liquidations.

The initialization script replaces the current OSM for the Lockstake ilk in the spotter and ilk registry and
sets the initial cap. It removes the spotter, clipper, clipper mom, and end from the buds list of the old
OSM, and adds them to the buds list of the new capped OSM. It adds the capped OSM to the buds of the
old OSM allowing the wrapper to read the price.

2.2.2.2 Migration

A new contract, LockstakeMigrator, facilitating the migrations of urns from the vl to v2 has been
introduced. The contract exposes the function mi gr at e() to users which can operate as follows:

« If an urn has no debt, collateral is freed (without fee) from the old engine so that MKR can be
converted to SKY and locked in the new one.

« If an urn has debt, a Vat . dai flashloan is taken. First all debt is wiped. Second the collateral is
migrated as described above. Last, the flashloan debt is settled by drawing debt accordingly using
the new engine.

The new ilk is assumed to have 0 line configured in the vat, and the migrator will lift the line to 55M
temporarily in each migration.

Note that only addresses authorized for both source and target urn are allowed perform operations with
the urns.
2.2.2.3 Deployment

The deployment script additionally deploys LockstakeMigrator besides LockstakeSky, LockstakeEngine,
LockstakeClipper and the calculator. Otherwise, the deployment is equivalent to the deployment of v1
(however, adjusted for new code).

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 9


https://chainsecurity.com

The initialization of the new version is mostly equivalent to the prior version. The most notable differences
beside renaming of variables are:

» The oracle used in steps 6 and 7 (of the v1 deployment) is not PI P_MKR but Pl P_SKY.

* The v1 addresses are migrated to new identifiers (<pr evi ous identifiers> | _O.LD V1) while
v2 uses the same identifiers as the previous version used. The only exception is for the
LockstakeSky token which is stored with LOCKSTAKE_SKY (LOCKSTAKE_MKR does not exist
anymore in the Chainlog).

» The migrator is sanity checked and is granted authorization on the v1 engine to be able to call
freeNoFee().

» The migrator is also granted ward role on the vat for temporarily lifting the new ilk's line.

* The initialization script disables borrowing for the v1 ilk by setting the Vat . | i ne for the ilk to zero.

In (Version 8), depl oyd i pper () is added to the deployment library to deploy a new LockstakeClipper
that tracks auction debt and manages stUSDS slashing.

It is initialized with updat ed i pper (). Assuming the liquidation is paused and there is ho ongoing
liquidation, the existing Clipper for Issky will be detached, and the new Clipper will be attached, namely:

« Parameters are configured and contracts are wired with each other.

* Necessary roles are granted between the Clipper and other system components such as Dog, Vat,
Osm, and End.

» Updates are made in ilkRegistry and Chainlog to reflect the changes.

Note liquidation is stopped (level==3) on the new clipper. Function enabl eLi qui dati ons() is
provided to enable the liquidations later and enable ClipperMom on the Clipper.

2.2.3 Changelog

Since (Version 2), the locking functions (collateral top-ups) are not permissioned anymore but only ensure
that the urn address is a LockstakeUrn.

In (Version 3), deployment scripts have been added to the scope.

In (Version 5) NST and NGT has been renamed to USDS and SKY respectively. In addition, the following
changes are made:

1. CREATEZ2 has been replaced to CREATE when creating a new ur n.

2. As a consequence, an additional mapping owner Ur ns is provided to retrieve an ur n address by
an owner and an i ndex. Hence, function get Ur n() is removed.

3.fee is no longer immutable and is by an auth-ed function
file(bytes32 what, uint256 data).

4. Instead of specifying the ur n as a parameter for the functions, the owner and i ndex are specified.

5. Function sel ect Vot eDel egat e() will call jug.drip(ilk) to use the up-to-date rate when
checking if the urn is safe.

6. Under certain conditions, vat . frob() in function onRenove() reverted. To prevent reverts on
dusty urns, vat . gr ab() is now used instead.

7. The deployment and initialization script have been adjusted accordingly. Note since the f ee is no
longer set in the constructor (default to 0), it is now configured in the initialization script.
In (Version 6), a new version based on SKY has been introduced. More details can be found in the
respective section.

In (Version 7), the line will not be configured for the new ilk during initialization, and the migrator will lift the
line to 55M temporarily in each migration for the existing positions in Lockstake v1.

(S: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 10


https://chainsecurity.com

In (Version 8), the LockstakeClipper contract is updated to enable stUSDS deposit slashing. The existing
Clipper will be detached and replaced with the new one.

In (Version 10), the LockstakeCappedOsmWrapper will replace the current OSM for the SKY token. It
returns the minimum of the price reported by the current OSM and the configured cap.

2.3 Roles and Trust Model

The following roles are defined:

1. Governance:  Authorizer of addresses. Fully trusted. Could mint unbacked
LockstakeMkr/LockstakeSky tokens or call the hooks arbitrarily leading to unexpected behaviour.
For example, MKR/SKY could be transferred out of the system.

2. Farms: Trusted. Expected to be the Endgame Synthetix-like staking contracts. We expect that the
farms correspond to the contracts reviewed in the Endgame Toolkit Audit. Could move and reuse
the IsSMKR/IsSky tokens if malicious.

3. Delegates: For v2 of Lockstake, we expect VoteDelegate v3 (referencing the new Chief contract).
For v1 of Lockstake, we expect VoteDelegate v2 that implements an on-demand window for freeing
due to flashloan protection on DsChief potentially delaying liquidations. Please see our
VoteDelegate Report for more details.

4. Other authorized addresses: Trusted to implement the proper logic.

5. Users: Untrusted.

Additionally, we expect that the setup is performed accordingly, see note Setup for some more details.

Since (Version 8), it is further assumed the LockstakeMigrator is deprecated (as August 2025 it is no longer
a ward on Vat). Otherwise, it could directly change i | k. | i ne during migration.

For the Lockst akeCappedOsm apper (introduced in | ver 10| ), it is assumed it is only used for
Pl P_SKY and the cap is set properly at all times. Note that use is recommended with liquidations off.
Otherwise the risk parameters must be carefully evaluated. Urn owners should be aware of the potential
liquidation loss since the SKY collateral might be under-valued if the cap caps the real price of the SKY
token. In the worst case, the governance can set a low cap when liquidation is on, hence liquidating all
active SKY positions. The capped SKY price also applies in the End process, which may prevent fixing
an excessively high SKY price peak but could result in a too low price if the cap is below the true SKY
value. Should the end process be considered, this needs to be evaluated carefully.

Deployers are supposed to deploy the contracts as specified by the reviewed script. Deployers are,
however, EOAs that could perform undesired actions besides simple deployment, such as changing the
settings of the system or granting themselves special privileges. It is important that after deployment,
concerned parties thoroughly check the state of the deployed contracts to ensure that no unexpected
action has been taken on them during deployment.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 11


https://chainsecurity.com/security-audit/maker-endgame-toolkit/
https://www.chainsecurity.com/security-audit/makerdao-votedelegate-smart-contracts
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 12


https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 13


https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

ETT)-Severity Findings 0
(CZD-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

« Rate and urnimplementation Not Validated ()

5.1 Rate and urnimplementation Not Validated

D (Low) (Version 3)( )

During initialization, all state is validated for consistency. While voters must ensure the deployment is
legitimate, the expected bytecode has been deployed and the expected constructor code has been
executed, the initialization code should validate all state variables to be set correctly.

CS-MLS-001

Lockstakel nit.initLockstake() does not validate the correct setting of the r at e parameter nor
the ur nl npl enent ati on.

Acknowledged:
Sky states:

The goal of the deploynment scripts validations is to only check the constructor parans.
Anything else that is done in the deployment or afterwards (including internal imutables
setting and storage wites) are out of scope and are assunmed to be checked separately.
Sone init scripts might validate nore, but that is considered nice-to-have at best.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 14


https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EIED-severity Findings 0
CLZ)-Severity Findings 0
(Medium)-Severity Findings 0
(Low)-Severity Findings 1

« Line Is Temporarily Under-Estimated upon Slashing

Informational Findings 5

« Clip Update in llk Registry (SalieLI{= )
* Inconsistent line Update iR e N
e Outdated Comment ELeiler 1l TN el ET T

* Specification Mismatches Gl NS ET-l
» Unpermissioned Collateral Top up (ELERSUEE

6.1 Linels Temporarily Under-Estimated upon
Slashing
D (Low) (Version 8) (CXIYITED)

In Lockstake Clipper, if bad debt occurs during a liquidation (t ake() ), deposit on stUSDS will be slashed
with cut () to cover it, which also updates the | i ne of the ilk:

CS-MLS-005

vat . file(ilk, "line", _mn(line, _subcap(total Supply chi, clip.Due())));

However, this update in cut () uses the old cl i p. Due() before Due is decreased by the total debt
wiped in this t ake() :

i f (due owe cuttee address(0)) {
CutteeLi ke(cuttee). cut(due owe) ;

}

Due due;

Consequently, the | i ne will be under-estimated. Though a consecutive user operation on stUSDS (i.e.
drip(),deposit()..)wilcorrectthel i ne.

Code corrected:

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 15


https://chainsecurity.com

Code has been corrected to reduce the Due before calling cut () , hence updating the | i ne correctly.

6.2 Clip Update in llk Registry
[Informational] [Version 8]

In the initialization library, updat eCl i pper () callsi | kRegi stry. put () to update the clip address of
the ilk. Since only the clip is being changed, i | kRegi stry.file("xlip") may be used instead of
overwriting all the ilk configs.

CS-MLS-006

Code corrected:

Instead of overwriting all configs, it now uses fil e(ilk, "xlip", address(se.clipper)) toonly
change the clipper.

6.3 Inconsistent | i ne Update

[Informational] [Version 8] Specification Changed

In Lockstake Clipper, when a new liquidation is trigger (ki ck()), dri p() will be called on cuttee
(stUSDS) to sync the | i ne. In the scenarios outlined below, the | i ne may also need to be synced since
Due is modified:

CS-MLS-007

1.Int ake() when there is no stUSDS slashing.
2. Inyank() .

This can be corrected by anyone with a following call to dri p() (or any other user operation that
updates | i ne).

Specification Changed:

Additional comments have been added in take() and yank() clarifying the requirement to call
cuttee.drip().

6.4 Outdated Comment
[Informationalj [Version 8]

The comment in Lockst akeCl i pper .t ake()

CS-MLS-008

DogLi ke dog_ = dog;

if (
data.l ength 0
who address(vat)

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 16


https://chainsecurity.com

who address(dog_)
who addr ess(engi ne)
(who cuttee cuttee address(0))

)

has not been updated to include the new cut t ee and still reads three contracts instead of four.

Specification changed:

The comment has been corrected.

6.5 Specification Mismatches

[Informational] [Version 1] Specification Changed

The README specifies the module. Below is a list of mismatches:

CS-MLS-003

1. sel ect Del egat e is defined in the user-facing functions of the LockstakeEngine. However,
sel ect Vot eDel egat e is the function name.

2.w peAl | is undocumented.

3. Lockst akeCl i pper. stopped is a configurable parameter that is undocumented while
Lockst aked i pper . chost is updated by function upchost and notbyfil e.

Specification changed:
The README has been updated accordingly.

6.6 Unpermissioned Collateral Top up

[Informational] [Version 1]

Unlike direct interactions with VAT. frob(), the LockstakeEngine does not permit unauthorized
increases in (locked) collateral.

CS-MLS-004

Code corrected:

The locking functions (collateral top-ups) are no longer permissioned. The internal | ock() now
ensures that the urn address is a LockstakeUrn.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 17


https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Default Cap of O

(Informational] [Version 10]

CS-MLS-009

In the constructor of the Capped Osm Wrapper, no cap is set, hence the initial cap is 0. This is not a safe
default since the OSM wrapper returns min(cap, price). Without a configured cap, it would return a price
of zero. Note that a price of 0 inhibits drawing more debt or starting auctions in the clipper.

The provided initialization script explicitly sets a cap in updat eOsm() during initialization, so this is not
an issue in this project. For future reference, users of this code should be aware that the default
unconfigured value means a price of 0.

7.2 Locking Discrepancy With Zero
(Informational] [Version 1]( ]

CS-MLS-002

The semantics of locking and unlocking an amount of zero are different when an urn has a farm and
when it does not. Namely, the operations will revert when a farm is selected and will not when no farm is
selected due to the farms reverting when zero amounts are staked/unstaked.

Acknowledged:
Sky replied:

Consi dering the asymetry is happeni ng due to some Staki ngRewards code, we are fine leaving it as it is.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 18


https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Capped Osm Wrapper Interfaces

The Capped OSM Wrapper is a wrapper that relays OSM prices and can be used as an OSM in the
system. However, as a wrapper it does not implement the following standard OSM interfaces:

1. Privileged functions do not exist: st op(), start (), change(), step(),and voi d().

2. Batched ki ss() and di ss() functions are not available.

8.2 Considerations for Migrations

(D) (Version 6

Users: Prior to using the Lockstake Migrator to migrate from v1 to v2, an user has to perform a set of
action:

«hope(m grat or) must be called in the old and new engine, respectively, for the source and the
destination urn (note that for the destination urn this might be overly restrictive sometimes as
outlined in the README).

* The destination urn must be created with open.

Further, note that if an urn is being liquidated, migrating the urn might result in needing to migrate again.

Users should be aware that migration might fail under certain circumstances. However, the migration can
be performed manually.

In addition, the migration does not include the farm and vote delegate selection, hence users need to
select them manually after the migration.

Governance: Governance should be aware that if Mkr Sky fees are enabled, the migrator will fail to
perform the operations. Hence, when activating fees in that contract, the migration of Lockstake should
be considered. Note that other such configurations exist (e.g. | i ne set to zero).

Further, governance should be aware that VOTE_DELEGATE_FACTORY and MKR_SKY should be updated
in the Chainlog prior to the Lockstakelnit library being used. Additionally, it is expected that Pl P_SKY will
be configured prior to the execution of the library's code.

In addition, the fee and configuration of the new ilk (SKY) may influence the migration incentives if they
are different to the existing ones.

8.3 Deployment Verification

Since deployment of the contracts is not performed by the governance directly, special care has to be
taken that all contracts have been deployed correctly. While some variables can be checked upon
initialization through the PausePr oxy, some things have to be checked beforehand.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 19


https://chainsecurity.com

We therefore assume that the initcode, bytecode, traces and storage (e.g. mappings) are checked for
unintended entries, calls or similar. This is especially crucial for any value stored in a mapping array or
similar (e.g. could break access control, could lead to stealing of funds). Additionally, it is of utmost
importance that no allowance is given to unexpected addresses (e.g. MKR/SKY approval to arbitrary
addresses could have been given in the constructor).

8.4 End Considerations

(D) (Version 1

The LockstakeClipper implements yank() which is required by the shutdown process. Note that the
emergency shutdown is unsupported (as documented) since the gem balance that would be received
during shutdown is not redeemable and thus the MKR tokens would not be able to be exited from the
LockstakeEngine. A governance-assisted shutdown, which must be carefully planned, can be possible.
For this, a mechanism must be implemented in order to make the collateral redeemable.

Further, yank() will not collect any fees on collateral already sold.

8.5 Governance Token as Collateral

(D) (Version 1)

The Lockstake contracts allow for borrowing USDS (so-called NST in before (Version 5)) against the
governance token. Governance should carefully set the ilk parameters (e.g. debt ceiling) due to the
potential correlation between the price of the governance token and the price of the USDS. In tumultuous
situations, when the USDS loses its peg, the price of the governance token could drop as a consequence
(e.g. if liquidations fail to complete in time or successfully). As a consequence, the price of the USDS
could further depeg leading to a vicious circle. Ultimately, governance should ensure that parameters and
collateral diversity limit the risk.

It's worth mentioning since USDS deposited in stUSDS is expected to fund the staked SKY
backed borrowing, hence mitigating the risks of incurring system bad debt. For more details please refer
to the stUSDS Review.

8.6 Ink Token During Liquidations
(D) (Version 1

IsMkr/IsSky is minted to an urn when i nk is added to a LockstakeUrn position and burned when i nk is
removed from such a position. Ultimately, it is a tokenization of i nk of LockstakeUrn. When the collateral
is seized during liquidation and moved to the Clipper, the IsMkr/IsSky is burned. Should there be leftover
collateral after the auction concludes, the ink is moved back to the LockstakeUrn and the respective
amount of IsMkr/IsSky is minted again.

8.7 Migration Line Should Not Be Exceeded
(D) (Version 7

In this version, the migrator will lift the line of new ilk to 55M temporarily in each migration of the existing
positions in Lockstake v1. With this design, it should be ensured that the line of ilk LSE- MKR- A should be
below 55M with sufficient room preserved for i.e. stability fees. By the time of this review (April 2025), the
VAT. | i ne, AUTOLI NE. | i ne, and AUTOLI NE. gap of LSE- MKR- A are all 45M.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 20


https://chainsecurity.com

8.8 One Hour Update Delay Is Not Guaranteed
(D) (Version 10

OSM enforces a one-hour delay before the next value becomes effective. However, due to the Capped
OSM Wrapper design, the price returned from r ead() may change within 1 hour if a new cap is set.
Further, the price returned from r ead() may not change after one hour if both the current and the next
price exceed the cap.

8.9 Setup
(D) (Version 1)

The deployment is expected to be trusted and the parameters are expected to be set accordingly.
The following authorization should be given by the governance.

1. LockstakeClipper should be authorized on LockstakeEngine.

2. LockstakeEngine should be authorized on IsSMKR/IsSky contract to be able to mint.

3. Dog should be authorized on LockstakeClipper.

Additionally, it is expected that the liquidation parameters are set so that exit fees can be taken on
liquidations, too. Note that README. nd outlines parts of this. If that is not the case it could be profitable to
self-liquidate to bypass the exit fees which would violate the specification.

8.10 Token Received in Liquidation Auction

Liguidators should be aware that for this special ilk, they will not receive a gembalance in the VAT but will
receive MKR/SKY tokens directly when buying collateral in auctions.

I:$: Sky - Lockstake - ChainSecurity - © Decentralized Security AG 21


https://chainsecurity.com

	1   Executive Summary
	1.1   Overview of the Findings

	2   Assessment Overview
	2.1   Scope
	2.1.1   Excluded from scope

	2.2   System Overview
	2.2.1   Lockstake v1: MKR
	2.2.1.1   Deployment

	2.2.2   Lockstake v2: SKY
	2.2.2.1   Capped OSM Wrapper
	2.2.2.2   Migration
	2.2.2.3   Deployment

	2.2.3   Changelog

	2.3   Roles and Trust Model

	3   Limitations and use of report
	4   Terminology
	5   Open Findings
	5.1   Rate and urnImplementation Not Validated

	6   Resolved Findings
	6.1   Line Is Temporarily Under-Estimated upon Slashing
	6.2   Clip Update in Ilk Registry
	6.3   Inconsistent line Update
	6.4   Outdated Comment
	6.5   Specification Mismatches
	6.6   Unpermissioned Collateral Top up

	7   Informational
	7.1   Default Cap of 0
	7.2   Locking Discrepancy With Zero

	8   Notes
	8.1   Capped Osm Wrapper Interfaces
	8.2   Considerations for Migrations
	8.3   Deployment Verification
	8.4   End Considerations
	8.5   Governance Token as Collateral
	8.6   Ink Token During Liquidations
	8.7   Migration Line Should Not Be Exceeded
	8.8   One Hour Update Delay Is Not Guaranteed
	8.9   Setup
	8.10   Token Received in Liquidation Auction


