

PUBLIC

Code Assessment

of the DSS Exec Lib

Smart Contracts

October 03, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 8

4 Terminology 9

5 Open Findings 10

6 Resolved Findings 11

7 Informational 14

8 Notes 15

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear all,

Thank you for trusting us to help Sky with this security audit. Our executive summary provides an
overview of subjects covered in our audit of the latest reviewed contracts of DSS Exec Lib according to
Scope to support you in forming an opinion on their security risks.

Sky offers DSS Exec Lib, a structured framework for executing governance spells in the Sky Protocol.
The library standardizes how spells are defined, deployed and executed while providing a set of functions
for managing system parameters, collateral and governance.

Individual spells built using this framework must be reviewed separately; the usage and combinations of
DssExecLib functions and the parameter selection when calling these functions are out of scope for this
review.

The most critical subjects covered in our audit are functional correctness, NatSpec documentation and
operational usability. Several observations are highlighted as notes or informational issues in this report.

The general subjects covered are code quality, documentation, maintainability, and correctness of
existing functionality. Note that we reviewed library completeness at a high level only, focusing primarily
on verifying that existing functions work correctly. For detailed considerations regarding completeness,
see Completeness of Functionality.

In summary, we find that the codebase provides a high level of security.

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered, and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code Corrected 1

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the DSS Exec Lib repository based on
the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 01 Sep
2025

19ea58b332058b424ddf4db6a0eba5944d12ff96 Initial Version

2 12 Sep
2025

3996d7083f66bf449fd55ccca88cf20963dac1b4 After Intermediate Report

For the solidity smart contracts, the compiler version 0.8.16 was chosen and evm_version is set to
cancun.

The files in scope were:

CollateralOpts.sol
DssAction.sol
DssExec.sol
DssExecLib.sol

2.1.1 Excluded from scope
All other files and dependencies are out of scope. Spells built using DssAction and the DssExecLib
library are excluded and must be reviewed separately. The usage, combinations and parameter selection
of DssExecLib functions are also out of scope and assumed to be done correctly. Additionally, note that
we expect that the functions provided in DssExecLib are the expected functions (note that some might be
missing or some could be outdated).

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Sky offers DSS Exec Lib, a structured framework for executing governance spells in the Sky Protocol.
The library standardizes how spells are defined, deployed and executed while providing a rich set of
functions for managing system parameters, collateral and governance. In the latest update, DssExecLib
was extended for Sky Protocol with new token support (USDS, sUSDS, SKY), rate management
functions (SSR), and SubDAO spell execution capabilities.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 5

https://github.com/sky-ecosystem/dss-exec-lib/tree/19ea58b332058b424ddf4db6a0eba5944d12ff96
https://github.com/sky-ecosystem/dss-exec-lib/tree/3996d7083f66bf449fd55ccca88cf20963dac1b4
https://chainsecurity.com

2.2.1 DssExec
The spell deployment wrapper. A spell is deployed as follows:

new DssExec(
 "A test dss exec spell", // Description
 block.timestamp + 30 days, // Expiration
 address(new SpellAction())
);

Encapsulates description, expiration, and reference to the action contract.

Exposes schedule() to queue the spell for later execution in MCD_PAUSE. The spell must not be
expired at the time of scheduling and the contract must be authorized via MCD_ADM: SKY token holders
vote in Chief and once this spell is elected as the hat, it has the privilege to call plot() in
MCD_PAUSE.

Provides cast() to trigger execution via MCD_PAUSE. This can be called permissionlessly once
conditions are met and marks the spell as executed. Execution may also be triggered directly in
MCD_PAUSE, bypassing cast().

2.2.2 DssAction
Abstract contract defining the structure of a spell.

A spell must inherit DssAction. Developers must override the actions() function and may use
functionality of the library DssExecLib for protocol interactions.

This provides a uniform interface for governance execution. Most importantly, that includes execute()
as the entrypoint (which utilizes actions() and limits according to the office hour configuration).

2.2.3 DssExecLib
The core library that exposes governance actions as simple function calls. It abstracts low-level
interactions with protocol contracts and enforces precision conventions (amounts, rates, durations,
percentages). It includes:

• Core address helpers: resolve common system contracts (e.g. vat(), jug(), pot(), dog()).

• Risk parameter setters: adjust global and per-ilk debt ceilings, stability fees, liquidation ratios,
auction parameters.

• Rate accumulation: update DSR, SSR, and collateral stability fee accruals.

• Collateral onboarding and management: helper routines for adding new collateral types with
pre-defined CollateralOpts and helpers for managing configurations.

• Changelog (Chainlog) management: update on-chain changelog addresses, versions, and
metadata.

• Governance helpers: manage authorizations, office hours, GSM delay, whitelist and file()
patterns, helpers for executing SubDAO spells.

• Misc: Various other function related to configuring interpolations, DDMs, updating oracles and more.

2.2.4 CollateralOpts.sol
Defines a standard struct for collateral configuration when onboarding new assets.

• Identifiers (ilk, gem, join, clip, calc, pip)

• Risk parameters (debt ceiling, min vault size, liquidation ratio, penalty, max liquidation size)

• Auction parameters (starting price factor, duration, permitted drop, keeper incentives)

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

• Stability fee and liquidation toggles

2.3 Trust Model
This section outlines the trust model for the contracts in scope. Below, the different roles and trust levels
are listed.

1. Governance

• The Governance (Sky Token holders / voters) schedule the spell in MCD_PAUSE and the spell
executes via the MCD_PAUSE_PROXY after the mandated governance delay and any office
hours restriction.

• Trust Level: Fully trusted

• Worst Case: Can change any governed parameter.

2. Spell Author and Deployer

• Description: Writes the DssAction implementation and deploys DssExec with the action
address, description, and expiration.

• Trust Level: Untrusted. Code must be inspected prior to scheduling the spell.

3. Any External Caller

• Description: Can call schedule() and cast() when conditions allow. Can call actions()
directly on the action contract, but without pause proxy authority.

• Trust Level: Untrusted

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 7

https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 8

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 0

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 0

Low -Severity Findings 1

• Code CorrectedFlipperMom Missing in Chainlog

Informational Findings 3

• Code CorrectedAutoline ttl Check Inconsistency

• Specification ChangedNatSpec Problems

• Specification ChangedREADME Inaccuracies

6.1 FlipperMom Missing in Chainlog
Correctness Low Version 1 Code Corrected

CS-SKY-EXL-001

DssExecLib implements

function flipperMom() public view returns (address) {
 return getChangelogAddress("FLIPPER_MOM");
}

At the time of this review the key FLIPPER_MOM is not present in the chainlog, using this function will
revert.

Code corrected:

This getter was removed from DssExecLib.

6.2 Autoline ttl Check Inconsistency
Informational Version 1 Code Corrected

CS-SKY-EXL-002

DssExecLib.setIlkAutoLineParameters() (the variant without the ttl parameters) retrieves and
reuses the existing ttl value without validating it's non-zero.

In contrast, setIlkAutoLineDebtCeiling() includes a require(gap != 0 && ttl != 0)
check.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 11

https://chainsecurity.com

This inconsistency means setIlkAutoLineParameters() can operate on not configured ilks (where
ttl == 0), potentially leading to unintended configurations, while setIlkAutoLineDebtCeiling()
would revert in the same scenario.

Code corrected:

setIlkAutoLineParameters() was updated to include a sanity check ensuring the retrieved ttl is
non-zero.

6.3 NatSpec Problems
Informational Version 1 Specification Changed

CS-SKY-EXL-003

While NatSpec is provided, some problems exist. Below is a non-exhaustive list of problems related to
NatSpec:

1. Several functions do not have any NatSpec associated with them (e.g. getters such as vat()).

2. setAuthority: The NatSpec is inaccurate. It should specify that the authority is set and that
_authority corresponds to the address managing access control. However, it specifies that
authority will have privileges to perform actions. While that could be possible, the authority will be
able to manage privileged access (e.g. Chief will manage who can call the Pause contract).

3. setRWAIlkDebtCeiling: Specifies bytes32("ETH-A") as an example which might be a
misleading example.

4. addNewCollateral: Lacks NatSpec.

5. addCollateralBase & addNewCollateral: Lack descriptions of the intended usecases as the
functions are not always suited to be used independently.

6. executeStarSpell: "Execute a start spell" has a typo. It should be "Execute a star spell".

Specification changed:

The NatSpec comments in the code have been updated to address the issues listed above.

6.4 README Inaccuracies
Informational Version 1 Specification Changed

CS-SKY-EXL-005

The README documents the functions. However, there are some inaccuracies. Below is a
non-exhaustive list of the inaccuracies:

1. Core Address Helpers: esm() is undocumented but in code.

2. Core Address Helpers: govGuard() is documented but in code the function is called
mkrGuard().

3. getChangelogAddress: The function is in section "Changelog Management" in the README. In
code, it is in section "Core Address Helpers".

4. System Configuration: The section lacks the documentation of the two setValue() functions.

5. setSurplusAuctionMinPriceThreshold: 9_80 is suggested for a 2% drop. However, it
should be 98_00.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

6. Abacus Management: The functions are documented as init*Decrease(). However, in code
they are named set*Decrease().

7. Collateral Onboarding: kprFlatReward, kprPctReward and breakerTolerance missing in
CollateralOpts example and are not mentioned in the section.

8. SubDAO/Star Spells: The code for these is undocumented in the README. Thus,
executeStarSpell and tryExecuteStarSpell are not documented.

Specification changed:

The README has been updated to resolve most issues listed above:

• The function mkrGuard has been renamed to govGuard in code, with the README updated to
read SKY instead of MKR Authority.

• The getChangelogAddress location discrepancy remains unchanged.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Non-zero jug.base
Informational Version 1 Risk Accepted

CS-SKY-EXL-004

DssExecLib.setGlobalStabilityFee allows setting jug.base. In previous audits and
discussions, this value was assumed to always remain 0; a non-zero value would break certain systems
(e.g. Sky stUSDS).

This functions presence in the library may suggest it is a valid option to use and hence increases the risk
of mistakes when crafting spells. There is no warning that such usage is unexpected.

Risk accepted:

Sky states:

This is one of the functions that should be marked as deprecated for removal in
future versions. For now it is sufficient to say that governance is aware this
method should not be used.

7.2 Require Error Messages
Informational Version 1 Acknowledged

CS-SKY-EXL-006

No require statement has an error message. However, they are written as in the example below:

require(_eta != 0); // "DssExecLib/invalid eta"

The reason could be the age of the codebase. However, since the library was modernized to Solidity 0.8,
require statements with error messages could be used.

Acknowledged:

Sky states:

This is by design. The require error messages are not included to save on contract
size, since the library is already pretty close to the limit without error messages.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 14

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Completeness of Functionality
Note Version 1

Users of the library as well as governance should be aware that DssExecLib only partially covers the
functionality that governance can call. Thus, the library should only be seen as a helper but is not
expected to be complete in terms of functions available.

Below, we list examples of such functionality:

1. Getters: Many getters for various contracts (e.g. vat()) exist. Some seem to be missing.
MCD_SPLIT is a good example since the flap function exists. Another example contracts without
a getter is SPBEAM_MOM. To summarize, not all possible getters are provided.

2. For some functionality it is unclear whether there could be more versions of it (e.g. file). Note that
wrappers around such functions might not be fully provided.

3. For some system parameters there is custom logic wrapping file. For example, the vow can be
set in many contracts but no wrapper for setting the vow is available for each such contract.

4. The system is big and is not expected that all functionality is covered. For example, the DDM
related functions only include setDDMTargetInterestRate which is very specific to one plan.
Other plans, pools, and the hub have more configuration possibilities.

5. Various system operations may come in different flavors. Most notably that includes collateral
onboarding where addNewCollateral is not suitable for all collaterals. For example, Lockstake
requires custom scripts. Users should be aware that every usage of every function must be
carefully thought through to ensure the correctness of Spells.

To summarize, the library is not expected to be complete. That is due to the size of Sky's ecosystem,
number of parameters and variations in contracts. Users should be aware and thus use the library
responsibly and adjust their code accordingly.

8.2 Hole and Dust Setter Considerations
Note Version 1

There is a dependency between the setter of hole for an ilk in the Dog and the dust of an ilk in the Vat.
Namely, setIlkMinVaultAmount (setting dust) requires that the new dust does not exceed the hole.

1. Thus, setIlkMaxLiquidationAmount must be called before setIlkMinVaultAmount if both
are used in the same script for a given ilk to enforce the property.

2. Calling setIlkMaxLiquidationAmount could violate the property enforced as part of
setIlkMinVaultAmount.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

8.3 Manipulations May Lead to Skipping Intended
Execution
Note Version 1

The following functions perform low-level calls:

1. tryExecuteStarSpell: To execute starProxy.exec(spell, "execute()"). That is to
allow governance spells to handle errors in greater details instead of simply reverting as
executeStarSpell would do.

2. setIlkMinVaultAmount: To execute clipper.upchost(). That is due to the clipper being
0x0 for some ilks (catching such errors).

3. setIlkLiquidationPenalty: As in 2.

Note that the low-level calls could be manipulated to fail. Examples of potential manipulations could
include:

• Gas manipulations leading to Out-of-Gas errors. For example, the executor could provide exactly
enough gas so that the final call executes but fails with Out-of-Gas, while the remaining gas (recall
that the EVM only forwards up to 63/64 of the available gas) is still sufficient to complete the
transaction.

• Other manipulations (e.g. triggering reentrancy locks).

Governance should be aware that such possibilities could exist and should ensure that such
manipulations are not possible or handled accordingly in the spells using the given functionality.
Otherwise, outcomes may not be as expected.

8.4 Office Hours
Note Version 1

Office hours management in the dss_exec library operates on Unix time. By convention, office hours are
Monday through Friday from 14:00 to 21:00 UTC.

Caveats:

• Leap seconds Unix timestamp counts elapsed seconds since 1970-01-01 00:00:00 UTC, treating
every day as exactly 86400 seconds. Real UTC occasionally includes leap seconds (rare days with
86401 seconds). As a result, Unix time drifts from astronomical UTC by a few dozen seconds. In
practice this means the 14:00–21:00 UTC window is defined according to Unix time, not true
astronomical UTC, and may be offset by a few seconds in real UTC.

• Daylight savings UTC does not observe daylight savings time. Office hours are fixed in UTC. When
viewed in a local timezone that observes DST, the apparent local office hours will shift by one hour
twice per year.

8.5 Setting mat Does Not Lead to poke
Note Version 1

Users of the library should be aware that setIlkLiquidationRatio, the setter for an ilk's liquidation
ratio mat in the spotter, does not automatically call poke on the spotter to propagate the changes.
However, that is typically expected to occur.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 16

https://chainsecurity.com

However, note that addNewCollateral propagates the price to the Vat by manually invoking the
function (as both pip and mat are set).

8.6 done Flag May Be Unreliable
Note Version 1

DssExec provides cast() to trigger the execution via MCD_PAUSE:

function cast() public {
 require(!done, "spell-already-cast");
 done = true;
 pause.exec(action, tag, sig, eta);
}

Execution may also be triggered directly in MCD_PAUSE, bypassing cast(). In this case the done flag
will not be set to true when a spell has been executed.

Client states:

The infrastructure that TechOps built for scheduling and casting actually depends
on this. There's this notion of "conforming spells", which are basically spells
that inherit from the DssExec base class.

The assumption is that any governance-supported spell should be conforming.

However, you are correct to point out that it is not actually required to go through
that method. Once the spell has the hat, anyone could call MCD_PAUSE.exec directly.
However, there are neither incentives nor further consequences in doing so.

8.7 setIlkDebtCeiling and Autoline
Note Version 1

DssExecLib.setIlkDebtCeiling, increaseIlkDebtCeiling and decreaseIlkDebtCeiling
do not take autoline configurations into account. Using this without careful consideration can lead to
unwanted outcomes as autoline may be active and interfere.

Sky - DSS Exec Lib - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 DssExec
	2.2.2 DssAction
	2.2.3 DssExecLib
	2.2.4 CollateralOpts.sol

	2.3 Trust Model

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	6 Resolved Findings
	6.1 FlipperMom Missing in Chainlog
	6.2 Autoline ttl Check Inconsistency
	6.3 NatSpec Problems
	6.4 README Inaccuracies

	7 Informational
	7.1 Non-zero jug.base
	7.2 Require Error Messages

	8 Notes
	8.1 Completeness of Functionality
	8.2 Hole and Dust Setter Considerations
	8.3 Manipulations May Lead to Skipping Intended Execution
	8.4 Office Hours
	8.5 Setting mat Does Not Lead to poke
	8.6 done Flag May Be Unreliable
	8.7 setIlkDebtCeiling and Autoline

